反比例函數(shù)知識點總結(jié)
反比例函數(shù)是函數(shù)知識的基礎(chǔ),那么反比例函數(shù)的關(guān)鍵知識點你又歸納好了嗎?下面反比例函數(shù)知識點總結(jié)是小編為大家?guī)淼模M麑Υ蠹矣兴鶐椭?/p>
反比例函數(shù)知識點總結(jié) 篇1
一、 背景分析
1. 對教材的分析
本節(jié)課講述內(nèi)容為北師大版教材九年級下冊第五章《反比例函數(shù)》的第二節(jié),也這一章的重點。本節(jié)課是在理解反比例函數(shù)的意義和概念的基礎(chǔ)上,進一步熟悉其圖象和性質(zhì)的過程。
本節(jié)課前一課時是在具體情境中領(lǐng)會反比例函數(shù)的意義和概念 。函數(shù)的性質(zhì)蘊涵于概念之中,對反比例函數(shù)性質(zhì)的探索是對其內(nèi)在規(guī)定性的的認識,也是對函數(shù)的概念的深化。同時,本節(jié)課也是下一節(jié)課《反比例函數(shù)的應(yīng)用》的基礎(chǔ),有了本節(jié)課的知識儲備,便于學生利用函數(shù)的觀點來處理問題和解釋問題。
傳統(tǒng)教材在內(nèi)容和編寫意圖的比較:傳統(tǒng)教材里反比例函數(shù)的內(nèi)容僅有一節(jié),新教材里反比例函數(shù)的內(nèi)容增加至一章。本節(jié)課中的作函數(shù)圖象的要求在新舊教材中并不一樣,舊教材對畫圖只是一帶而過,而新教材中讓學生反復作反比例函數(shù)的圖象,為下一步性質(zhì)的探索打下良好的基礎(chǔ)。因為在學生進行函數(shù)的列表、描點作圖是活動中,就已經(jīng)開始了對反比例函數(shù)性質(zhì)的探索,而且通過對函數(shù)的三種表示方式的整和,逐步形成對函數(shù)概念的整體性認識。在舊教材中對反比例函數(shù)性質(zhì)只是簡單觀察以后,由老師講解得到,但是在新教材中注重從操作、觀察、概括和交流這些數(shù)學活動中得到性質(zhì)結(jié)論,從而逐步提高從函數(shù)圖象中獲取信息的能力。這也充分體現(xiàn)了重視獲取知識過程體驗的新課標的精神。
(1) 教學目標:進一步熟悉作函數(shù)圖象的主要步驟,會作反比例函數(shù)的圖象;體會函數(shù)三種方式的相互轉(zhuǎn)換,對函數(shù)進行認識上的整和;逐步提高從函數(shù)圖象中獲取知識的能力,探索并掌握反比例函數(shù)的主要性質(zhì)。
(2) 重點:會作反比例函數(shù)的圖象;探索并掌握反比例函數(shù)的主要性質(zhì)。
(3) 難點:探索并掌握反比例函數(shù)的主要性質(zhì)。
2、對學情的分析
九年級學生在前面學習了一次函數(shù)之后,對函數(shù)有了一定的認識,雖然他們在小學已經(jīng)接觸了反比例,但都處于淺顯的、膚淺的知識表面,這對于他們理解反比例函數(shù)的圖象與性質(zhì)沒有多大的幫助,但由于本節(jié)課采用Z+Z智能教育平臺進行教學,比較形象,便于學生接受。
教學過程
一、憶一憶
師:同學們還記得我們在學習一次函數(shù)時,是怎么作出一次函數(shù)圖象的嗎?一次函數(shù)的圖象是什么圖形?
生:作一次函數(shù)的圖象要采用以下幾個步驟:(1)列表(2)描點(3)連線。
生乙:一次函數(shù)的圖象是一條直線。
師:大家說的很好,看來大家對過去的知識掌握的很牢固,那么同學們想一下,y=4/x 是什么函數(shù)?
生:反比例函數(shù)。
師:你們能作出它的圖象嗎?
生:可以。
點評:復習舊知識,讓學生感受到新舊知識的聯(lián)系,并為后面的作反比例函數(shù)的圖象做好準備。
二、作圖象,試比較
師:請?zhí)顚戨娔X上的表格,并開始在坐標紙上描點,連線。
師:再按照上述方法作y=-4/x的圖象。
(學生動手操作)
師:下面大家分小組討論:對照你們所作出的兩個函數(shù)圖象,找出它們的相同點與不同點。
(學生討論交流,教師參與)
師:討論結(jié)束,下面哪個小組的同學說說你們的看法?
生1:它們的圖象都是由兩支曲線組成的。
生2:y=4/x 的圖象的兩條曲線分布在一、三象限內(nèi),而y=-4/x 的圖象的兩支曲線分布在二、四象限內(nèi)。
點評:這里讓學生自己上臺操作,既培養(yǎng)了學生的動手能力,又可以激發(fā)學生學好數(shù)學的興趣。
三、細觀察,找規(guī)律
師:大家都說得很好,下面我們一起觀察反比例函數(shù) y=k/x的圖象,當k的發(fā)值生變化時,函數(shù)的圖象發(fā)生了怎樣的變化,并分小組討論有什么規(guī)律。
(展示圖象,讓學生觀察y=k/x 的圖象,按下動畫按鈕,在運動中觀察 值的變化與函數(shù)的圖象變化之間的關(guān)系,并與同學們充分討論)
師:請同學們談一談剛才討論的結(jié)果。
生:我發(fā)現(xiàn)函數(shù)圖象的變化與k 的值有關(guān):當 k>0 時,在每一象限內(nèi),y隨 x的增大而減小,當 k<0 時,在每一象限內(nèi) ,y隨x 的增大而增大。
師:看來大家都經(jīng)過了認真的思考和討論,對規(guī)律總結(jié)的也比較完整,下面我們一起把剛才兩個環(huán)節(jié)的知識點一起總結(jié)一下。
(1)反比例函數(shù)y=k/x的圖象是由兩支曲線所組成的。
(2)當 k>0時,兩支曲線分別在一、三象限;當k<0時,兩支曲線分別在二、四象限。
(3)當k>0 時,在每一象限內(nèi),y隨x的增大而減小,當k<0時,在每一象限內(nèi) ,y隨x 的增大而增大。
師:如果我們將反比例函數(shù)的.圖象繞原點旋轉(zhuǎn)180后,你會發(fā)現(xiàn)什么現(xiàn)象?這說明了什么問題?
(由學生在電腦上進行操作)
生:我發(fā)現(xiàn)旋轉(zhuǎn)后的圖象與原圖象完全重合了,這說明反比例函數(shù)的圖象是一個中心對稱圖形。
師:大家做得很好。那么,如果我們在圖象上任取A、B兩點,經(jīng)過這兩點分別作 軸、 軸的垂線,與坐標軸圍成的矩形面積分別 為S1、S2,觀察兩個矩形面積的變化情況,并找出其中的變化規(guī)律。
題目:(1) 拖動k,使k變化,觀察k不斷變化過程中,矩形面積的變化情況,討論得出結(jié)論。
(2) 拖動函數(shù)上的點,觀察矩形面積的變化情況,討論得出結(jié)論。
生:我們發(fā)現(xiàn),在同一個反比例函數(shù)中,不管k 值怎么變化,矩形的面積始終不變。
師:大家的觀察很仔細,總結(jié)得也很正確。
點評:在這個環(huán)節(jié)中,既讓學生動手操作,又讓他們分組交流,這樣既培養(yǎng)了他們的動手能力,又增強了他們的團結(jié)合作的意識。結(jié)論主要有學生來發(fā)現(xiàn),體現(xiàn)了新課程理論的精神。
四、用規(guī)律,練一練
1、 課本137頁隨堂練習1
生:第一幅圖是 y=-2/x的圖象,因為在這里的 k<0,雙曲線應(yīng)在第二、四象限。
2、 下列函數(shù)中,其圖象唯一、三象限的有哪幾個?在其圖象所在象限內(nèi), 的值隨 的增大而增大的有哪幾個?
(1) y=1/(2x)(2)y=0.3/x(3)y=10/x(4)y=-7/(100x)
生:其中(1)(2)(3)的圖象在一、三象限;(4)的圖象在每一象限內(nèi),y 隨x 的增大而增大。
反比例函數(shù)知識點總結(jié) 篇2
反比例函數(shù)y=k/x的圖象是雙曲線,它有兩個分支,這兩個分支分別位于第一、三象限或第二、四象限。
它們關(guān)于原點對稱、反比例函數(shù)的圖象與x軸、y軸都沒有交點,即雙曲線的兩個分支無限接近坐標軸,但永遠不與坐標軸相交。
畫反比例函數(shù)的圖象時要注意的問題:
。1)畫反比例函數(shù)圖象的方法是描點法;
(2)畫反比例函數(shù)圖象要注意自變量的取值范圍是k≠0,因此不能把兩個分支連接起來。
k≠0
。3)由于在反比例函數(shù)中,x和y的值都不能為0,所以畫出的雙曲線的兩個分支要分別體現(xiàn)出無限的接近坐標軸,但永遠不能達到x軸和y軸的變化趨勢。
反比例函數(shù)的性質(zhì):
y=k/x(k≠0)的變形形式為xy=k(常數(shù))所以:
(1)其圖象的位置是:
當k﹥0時,x、y同號,圖象在第一、三象限;
當k﹤0時,x、y異號,圖象在第二、四象限。
。2)若點(m,n)在反比例函數(shù)y=k/x(k≠0)的圖象上,則點(—m,—n)也在此圖象上,故反比例函數(shù)的圖象關(guān)于原點對稱。
。3)當k﹥0時,在每個象限內(nèi),y隨x的增大而減小;
當k﹤0時,在每個象限內(nèi),y隨x的增大而增大;
【反比例函數(shù)知識點總結(jié)】相關(guān)文章:
反比例函數(shù)知識點08-30
反比例函數(shù)教案08-30
反比例函數(shù)圖像教案08-30
反比例函數(shù)練習題08-30