高中數(shù)學(xué)知識點(diǎn)總結(jié)-函數(shù)
一、函數(shù)的定義域的常用求法:
1、分式的分母不等于零;
2、偶次方根的被開方數(shù)大于等于零;
3、對數(shù)的真數(shù)大于零;
4、指數(shù)函數(shù)和對數(shù)函數(shù)的底數(shù)大于零且不等于1;
5、三角函數(shù)正切函數(shù)y=tanx中x≠kπ+π/2;
6、如果函數(shù)是由實(shí)際意義確定的解析式,應(yīng)依據(jù)自變量的實(shí)際意義確定其取值范圍。
二、函數(shù)的解析式的常用求法:
1、定義法;2、換元法;3、待定系數(shù)法;4、函數(shù)方程法;5、參數(shù)法;6、配方法
三、函數(shù)的值域的常用求法:
1、換元法;2、配方法;3、判別式法;4、幾何法;5、不等式法;6、單調(diào)性法;7、直接法
四、函數(shù)的最值的常用求法:
1、配方法;2、換元法;3、不等式法;4、幾何法;5、單調(diào)性法
五、函數(shù)單調(diào)性的常用結(jié)論:
1、若f(x),g(x)均為某區(qū)間上的`增(減)函數(shù),則f(x)+g(x)在這個區(qū)間上也為增(減)函數(shù)
2、若f(x)為增(減)函數(shù),則-f(x)為減(增)函數(shù)
3、若f(x)與g(x)的單調(diào)性相同,則f[g(x)]是增函數(shù);若f(x)與g(x)的單調(diào)性不同,則f[g(x)]是減函數(shù)。
4、奇函數(shù)在對稱區(qū)間上的單調(diào)性相同,偶函數(shù)在對稱區(qū)間上的單調(diào)性相反。
5、常用函數(shù)的單調(diào)性解答:比較大小、求值域、求最值、解不等式、證不等式、作函數(shù)圖象。
六、函數(shù)奇偶性的常用結(jié)論:
1、如果一個奇函數(shù)在x=0處有定義,則f(0)=0,如果一個函數(shù)y=f(x)既是奇函數(shù)又是偶函數(shù),則f(x)=0(反之不成立)
2、兩個奇(偶)函數(shù)之和(差)為奇(偶)函數(shù);之積(商)為偶函數(shù)。
3、一個奇函數(shù)與一個偶函數(shù)的積(商)為奇函數(shù)。
4、兩個函數(shù)y=f(u)和u=g(x)復(fù)合而成的函數(shù),只要其中有一個是偶函數(shù),那么該復(fù)合函數(shù)就是偶函數(shù);當(dāng)兩個函數(shù)都是奇函數(shù)時,該復(fù)合函數(shù)是奇函數(shù)。
5、若函數(shù)f(x)的定義域關(guān)于原點(diǎn)對稱,則f(x)可以表示為f(x)=1/2[f(x)+f(-x)]+1/2[f(x)+f(-x)],該式的特點(diǎn)是:右端為一個奇函數(shù)和一個偶函數(shù)的和。
【高中數(shù)學(xué)知識點(diǎn)總結(jié)-函數(shù)】相關(guān)文章:
反比例函數(shù)知識點(diǎn)08-30
一次函數(shù)圖像應(yīng)用知識點(diǎn)08-29
My SQL數(shù)學(xué)函數(shù)總結(jié)11-12
初三數(shù)學(xué)二次函數(shù)知識點(diǎn)08-30
Java認(rèn)證考試知識點(diǎn):Java時間類的函數(shù)09-21
成人高考專升本高等數(shù)學(xué)知識點(diǎn):函數(shù)09-30
SUN認(rèn)證考試知識點(diǎn):java讀取文件內(nèi)容的函數(shù)09-27
tatic函數(shù)與普通函數(shù)的區(qū)別11-22
人教版高中數(shù)學(xué)《函數(shù)的最大值和最小值》說課稿范文12-01
javascript函數(shù)詳解11-18