淺談初中數(shù)學(xué)學(xué)習(xí)的四大誤區(qū)
誤區(qū)一:課上聽懂知識就掌握了在數(shù)學(xué)學(xué)習(xí)過程中,常常出現(xiàn)這種現(xiàn)象,學(xué)生在課堂上聽懂了,但課后解題特別是遇到新題型時便無所適從。這就說明上課聽懂是一回事,而達到能應(yīng)用知識解決問題是另一回事。波里亞說得好:“教師在課堂上講什么當然重要,然而學(xué)生想什么更是千百倍的重要。“教師所舉例題是范例也是思維訓(xùn)練的手段,作為學(xué)生不應(yīng)該只學(xué)會題中的知識,更要學(xué)會領(lǐng)悟出解題思路與技巧,以及蘊藏其中的數(shù)學(xué)思想方法。
對策一:自己重做一遍例題。
對策二:問自己為什么這樣思考問題。
對策三:探索條件、結(jié)論換一下行嗎?
對策四:思考有其他結(jié)論嗎?
對策五:我能得到什么解題規(guī)律?
誤區(qū)二:多做題目總能遇到考試題每一份綜合試卷,出卷人總要避免考舊題、陳題,盡量從新的角度,新的層面上設(shè)計問題。但是考查的知識點和數(shù)學(xué)思想方法是恒久不變的。所以多做題,不會碰巧和考題零距離親密接觸,反而會把自己陷入無邊無際的題海之中。解決問題的辦法是從知識點和思想方法的角度分別對所解題目進行歸類,總結(jié)解題經(jīng)驗的同時,確認自己是否真正掌握并確認復(fù)習(xí)的重點。
對策一:讓自己花點時間整理最近解題的題型與思路。
對策二:這道題和以前的某一題差不多嗎?
對策三:此題的知識點我是否熟悉了?
對策四:最近有哪幾題的圖形相近?能否歸類?
對策五:這一題的解題思想在以前題目中也用到了,讓我把它們找出來!
誤區(qū)三:鉆研難題基礎(chǔ)題就簡單了有的同學(xué)喜歡挑戰(zhàn)有難度的數(shù)學(xué)題,能讓他從思維中得到快樂,但數(shù)學(xué)分數(shù)卻一直不高。其實這在一定程度上反映出我們數(shù)學(xué)學(xué)習(xí)中的浮躁狀況,老師愛講難題、綜合題,學(xué)生想做綜合題、難題,在忽視基礎(chǔ)的同時,迷失了數(shù)學(xué)學(xué)習(xí)的方向。
對策一:告訴自己數(shù)學(xué)思維不等于復(fù)雜思維,數(shù)學(xué)的美往往體現(xiàn)在一些小題目中。
對策二:“簡約而不簡單”在平常題中體會數(shù)學(xué)思維的.樂趣。
對策三:“一滴朝露也能折射出太陽的光輝。”讓我從基礎(chǔ)題中找到綜合題的影子。
對策四:這道題真的簡單嗎?
對策五:我是一名優(yōu)秀的學(xué)生,我能在平凡中體現(xiàn)出我的優(yōu)秀。
誤區(qū)四:思想有點高不可攀一談到數(shù)學(xué)思想方法,有些學(xué)生會認為深不可測、高不可攀,其實每一道數(shù)學(xué)題之中都包含著數(shù)學(xué)思想方法。數(shù)學(xué)思想方法是指導(dǎo)解題的十分重要的方針,有利于培養(yǎng)學(xué)生思維的廣闊性、深刻性、靈活性和組織性。
對策一:數(shù)學(xué)思想方法并不神秘,它蘊藏在題目之中。
對策二:了解一些數(shù)學(xué)思想,找到幾道典型題。
對策三:解題完畢問自己“我運用了什么數(shù)學(xué)思想方法”?
對策四:解題前問自己從什么角度去思考?
對策五:請老師介紹一些數(shù)學(xué)思想方法。
【淺談初中數(shù)學(xué)學(xué)習(xí)的四大誤區(qū)】相關(guān)文章:
淺談數(shù)學(xué)學(xué)習(xí)誤區(qū)12-05
淺談高一數(shù)學(xué)學(xué)習(xí)誤區(qū)12-05
淺談初中學(xué)生數(shù)學(xué)解題誤區(qū)11-10
孩子學(xué)習(xí)鋼琴的四大誤區(qū)解析09-23
淺談初中數(shù)學(xué)合作學(xué)習(xí)的教學(xué)策略11-24
初中英語寫作的四大誤區(qū)11-22