初二數(shù)學(xué)學(xué)習(xí)方法匯編15篇
無論是在學(xué)校還是在社會中,我們大家都離不開學(xué)習(xí),正確的學(xué)習(xí)方法,能夠讓我們學(xué)習(xí)事半功倍!什么樣的學(xué)習(xí)方法才是真正有效的呢?以下是小編為大家整理的初二數(shù)學(xué)學(xué)習(xí)方法,希望能夠幫助到大家。
初二數(shù)學(xué)學(xué)習(xí)方法1
(一)運用公式法
我們知道整式乘法與因式分解互為逆變形。如果把乘法公式反過來就是把多項式分解因式。于是有:
a2-b2=(a+b)(a-b)
a2+2ab+b2=(a+b)2
a2-2ab+b2=(a-b)2
如果把乘法公式反過來,就可以用來把某些多項式分解因式。這種分解因式的方法叫做運用公式法。
(二)平方差公式
平方差公式
(1)式子:a2-b2=(a+b)(a-b)
(2)語言:兩個數(shù)的平方差,等于這兩個數(shù)的和與這兩個數(shù)的差的積。這個公式就是平方差公式。
(三)因式分解
1.因式分解時,各項如果有公因式應(yīng)先提公因式,再進一步分解。
2.因式分解,必須進行到每一個多項式因式不能再分解為止。
(四)完全平方公式
(1)把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反過來,就可以得到:
a2+2ab+b2=(a+b)2
a2-2ab+b2=(a-b)2
這就是說,兩個數(shù)的平方和,加上(或者減去)這兩個數(shù)的積的2倍,等于這兩個數(shù)的和(或者差)的平方。
把a2+2ab+b2和a2-2ab+b2這樣的式子叫完全平方式。
上面兩個公式叫完全平方公式。
(2)完全平方式的形式和特點
、夙棓(shù):三項
、谟袃身検莾蓚數(shù)的的平方和,這兩項的符號相同。
、塾幸豁検沁@兩個數(shù)的積的兩倍。
(3)當(dāng)多項式中有公因式時,應(yīng)該先提出公因式,再用公式分解。
(4)完全平方公式中的a、b可表示單項式,也可以表示多項式。這里只要將多項式看成一個整體就可以了。
(5)分解因式,必須分解到每一個多項式因式都不能再分解為止。
(五)分組分解法
我們看多項式am+an+bm+bn,這四項中沒有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.
如果我們把它分成兩組(am+an)和(bm+bn),這兩組能分別用提取公因式的方法分別分解因式.
原式=(am+an)+(bm+bn)
=a(m+n)+b(m+n)
做到這一步不叫把多項式分解因式,因為它不符合因式分解的意義.但不難看出這兩項還有公因式(m+n),因此還能繼續(xù)分解,所以
原式=(am+an)+(bm+bn)
=a(m+n)+b(m+n)
=(m+n)×(a+b).
初二數(shù)學(xué)學(xué)習(xí)方法2
初二學(xué)習(xí)內(nèi)、外部環(huán)境的變化
1、學(xué)科上的變化:和初一比較,初二開始添設(shè)幾何和物理,這兩個學(xué)科都是思維訓(xùn)練要求較強的學(xué)科,直接為進入高一級學(xué)科或就業(yè)服務(wù)的學(xué)科。
2、學(xué)科思維訓(xùn)練的變化:初二各學(xué)科在概念的演化、推理的要求、思維的全面性、深刻性、嚴密性、創(chuàng)造性方面都提出了比初一更高的要求。
3、思維發(fā)展內(nèi)部的變化:您的思維發(fā)展從思維發(fā)展心理學(xué)的角度看已進入新的階段,即已經(jīng)熾烈地、急劇地進入第五個飛躍期的高峰。這個飛躍期是否會縮短,飛躍的質(zhì)量是否理想要靠兩個條件:
1)教師精心的指導(dǎo);
2)您自己不懈地努力。
4、外部干擾因素的變化:初二正是您性格定型加快節(jié)奏,幻想重重的年齡期,常常表現(xiàn)出心理狀態(tài)和情緒的不穩(wěn)定,例如逆反情緒發(fā)展。這給外部的誘惑和干擾創(chuàng)造了乘亂而入、乘虛而入的條件。不要因為這些妨礙您正常地接受教師和家長的指導(dǎo);破壞了您專一學(xué)習(xí)的正常心理狀態(tài)。要學(xué)會冷靜、自抑,把充沛的青春活力投入到學(xué)習(xí)活動中去。
二、初二學(xué)法指導(dǎo)要點
1、積極培養(yǎng)自己對新添學(xué)科的學(xué)習(xí)興趣;平面幾何是邏輯推理、形象思維、抽象思維訓(xùn)練的體操,平幾學(xué)習(xí)的好壞,直接影響您的思維發(fā)展,影響您順利地完成第五個思維發(fā)展飛躍。理化學(xué)科是您將來從事理工科的基礎(chǔ),語文的快速閱讀和寫作訓(xùn)練也在為您今后的發(fā)展奠定基矗。
您在生理上的浙趨成熟,已經(jīng)為您自我培養(yǎng)廣泛的學(xué)習(xí)興趣和學(xué)科愛好創(chuàng)造了前提條件。但切記勿偏科,初中階段的所有學(xué)科都是您和諧完美發(fā)展的第一塊基石。
2、用好讀、聽、議、練、評五字學(xué)習(xí)法,掌握學(xué)習(xí)主動權(quán)。讀:讀書預(yù)習(xí);聽:聽課;議:講議討論;練:復(fù)讀練習(xí),形成技能;評:自我評價掌握學(xué)習(xí)內(nèi)容的水平。
3、在評價中學(xué)習(xí),在評價中達標(biāo):在評價中學(xué)習(xí)是指給自己提出明確的學(xué)習(xí)目標(biāo),在目標(biāo)的指導(dǎo)和鞭策下學(xué)習(xí),以利提高學(xué)習(xí)效率(增加有效學(xué)習(xí)時間)。在評價中達標(biāo)是指只有進入自我評價狀態(tài)的學(xué)習(xí),才能有效地達到學(xué)習(xí)目標(biāo),強烈的自我追逐學(xué)習(xí)目標(biāo),才能高質(zhì)量、高水平的達到目標(biāo);貞浤谶M入考場前的幾分鐘強記強背的情境,效率之高,達標(biāo)之快,超過平時的十倍、百倍,原因在于您進入了激奮的自我評價狀態(tài)。
4、聽課要訣:
1)在自學(xué)預(yù)習(xí)的基礎(chǔ)上聽;
2)手腦并用,勤于實踐議練,勤于筆記,養(yǎng)成筆記的習(xí)慣;
3)勇于發(fā)言,發(fā)問,暴露自己的疑點、弱點;
4)把握重點和難點。對重點要練而不厭,對難點要鍥而不舍;
5)形散神不散。課堂上,教師的讀、講、議、練、評活動安排從形式上可能有些散,您要積極參與配合,做到45分鐘形散神不散;
6)重視每節(jié)課的歸納小結(jié),把感性認識上升為理性認識。就數(shù)學(xué)而言要學(xué)會歸納知識結(jié)構(gòu)、題型、數(shù)學(xué)思想和方法。
5、重視知識、題型積累,更重視思維訓(xùn)練和能力發(fā)展。您的成才之日在20xx年末或21世紀(jì)初,我國科技發(fā)展、經(jīng)濟騰飛屆時主要靠智能型人才和創(chuàng)造型人才,您要適應(yīng)21世紀(jì)初人才需求的標(biāo)準(zhǔn),必須是既有知識,又有能力,會思考、會運籌的人,怎樣培養(yǎng)自己的能力呢?
1)在聽懂雙基知識點的同時,著力弄清思路和方法;
2)學(xué)會變式地思考問題,就是在研究問題的證與解的同時,著力思考多解和多變,自己編一些變條件,變解答過程,變結(jié)論的問題(詳見本書《學(xué)會變式的教與學(xué)》);
3)有目的地提高自己的動手能力。常言道:動腦不動手,沙地起高樓,新的見解,常出于實踐議練之中;
4)有目的地提高自己的特異思維能力,不要只滿足于教師講的,書上寫的解法和證法。一題多解,勝練十題,特異思維的一次成功,就是思維發(fā)展的一次飛躍。
初二數(shù)學(xué)學(xué)習(xí)方法3
一、該記的記,該背的背,不要以為理解了就行
有的同學(xué)認為,數(shù)學(xué)不像英語、史地,要背單詞、背年代、背地名,數(shù)學(xué)靠的是智慧、技巧和推理。我說你只講對了一半。數(shù)學(xué)同樣也離不開記憶。試想一下,小學(xué)的加、減、乘、除運算要不是背熟了“乘法九九表”,你能順利地進行運算嗎?盡管你理解了乘法是相同加數(shù)的和的運算,但你在做9*9時用九個9去相加得出81就太不合算了。而用“九九八十一”得出就方便多了。同樣,是運用大家熟記的法則做出來的。同時,數(shù)學(xué)中還有大量的規(guī)定需要記憶,比如規(guī)定(a≠0)等等。因此,我覺得數(shù)學(xué)更像游戲,它有許多游戲規(guī)則(即數(shù)學(xué)中的定義、法則、公式、定理等),誰記住了這些游戲規(guī)則,誰就能順利地做游戲;誰違反了這些游戲規(guī)則,誰就被判錯,罰下。因此,數(shù)學(xué)的定義、法則、公式、定理等一定要記熟,有些最好能背誦,朗朗上口。比如大家熟悉的“整式乘法三個公式”,我看在座的有的背得出,有的就背不出。在這里,我向背不出的同學(xué)敲一敲警鐘,如果背不出這三個公式,將會對今后的學(xué)習(xí)造成很大的麻煩,因為今后的學(xué)習(xí)將會大量地用到這三個公式,特別是初二即將學(xué)的因式分解,其中相當(dāng)重要的三個因式分解公式就是由這三個乘法公式推出來的,二者是相反方向的變形。
對數(shù)學(xué)的定義、法則、公式、定理等,理解了的要記住,暫時不理解的也要記住,在記憶的基礎(chǔ)上、在應(yīng)用它們解決問題時再加深理解。打一個比方,數(shù)學(xué)的定義、法則、公式、定理就像木匠手中的斧頭、鋸子、墨斗、刨子等,沒有這些工具,木匠是打不出家具的;有了這些工具,再加上嫻熟的手藝和智慧,就可以打出各式各樣精美的家具。同樣,記不住數(shù)學(xué)的定義、法則、公式、定理就很難解數(shù)學(xué)題。而記住了這些再配以一定的方法、技巧和敏捷的思維,就能在解數(shù)學(xué)題,甚至是解數(shù)學(xué)難題中得心應(yīng)手。
二、幾個重要的數(shù)學(xué)思想
1、“方程”的思想
數(shù)學(xué)是研究事物的空間形式和數(shù)量關(guān)系的,初中最重要的數(shù)量關(guān)系是等量關(guān)系,其次是不等量關(guān)系。最常見的等量關(guān)系就是“方程”。比如等速運動中,路程、速度和時間三者之間就有一種等量關(guān)系,可以建立一個相關(guān)等式:速度*時間=路程,在這樣的等式中,一般會有已知量,也有未知量,像這樣含有未知量的等式就是“方程”,而通過方程里的已知量求出未知量的過程就是解方程。我們在小學(xué)就已經(jīng)接觸過簡易方程,而初一則比較系統(tǒng)地學(xué)習(xí)解一元一次方程,并總結(jié)出解一元一次方程的五個步驟。如果學(xué)會并掌握了這五個步驟,任何一個一元一次方程都能順利地解出來。初二、初三我們還將學(xué)習(xí)解一元二次方程、二元二次方程組、簡單的三角方程;到了高中我們還將學(xué)習(xí)指數(shù)方程、對數(shù)方程、線性方程組、、參數(shù)方程、極坐標(biāo)方程等。解這些方程的思維幾乎一致,都是通過一定的方法將它們轉(zhuǎn)化成一元一次方程或一元二次方程的形式,然后用大家熟悉的解一元一次方程的五個步驟或者解一元二次方程的求根公式加以解決。物理中的能量守恒,化學(xué)中的化學(xué)平衡式,現(xiàn)實中的大量實際應(yīng)用,都需要建立方程,通過解方程來求出結(jié)果。因此,同學(xué)們一定要將解一元一次方程和解一元二次方程學(xué)好,進而學(xué)好其它形式的方程。
所謂的“方程”思想就是對于數(shù)學(xué)問題,特別是現(xiàn)實當(dāng)中碰到的未知量和已知量的錯綜復(fù)雜的關(guān)系,善于用“方程”的觀點去構(gòu)建有關(guān)的方程,進而用解方程的方法去解決它。
2、“數(shù)形結(jié)合”的思想
大千世界,“數(shù)”與“形”無處不在。任何事物,剝?nèi)ニ馁|(zhì)的方面,只剩下形狀和大小這兩個屬性,就交給數(shù)學(xué)去研究了。初中數(shù)學(xué)的兩個分支?-代數(shù)和幾何,代數(shù)是研究“數(shù)”的,幾何是研究“形”的。但是,研究代數(shù)要借助“形”,研究幾何要借助“數(shù)”,“數(shù)形結(jié)合”是一種趨勢,越學(xué)下去,“數(shù)”與“形”越密不可分,到了高中,就出現(xiàn)了專門用代數(shù)方法去研究幾何問題的一門課,叫做“解析幾何”。在初三,建立平面直角坐標(biāo)系后,研究函數(shù)的問題就離不開圖象了。往往借助圖象能使問題明朗化,比較容易找到問題的關(guān)鍵所在,從而解決問題。在今后的數(shù)學(xué)學(xué)習(xí)中,要重視“數(shù)形結(jié)合”的思維訓(xùn)練,任何一道題,只要與“形”沾得上一點邊,就應(yīng)該根據(jù)題意畫出草圖來分析一番,這樣做,不但直觀,而且全面,整體性強,容易找出切入點,對解題大有益處。嘗到甜頭的人慢慢會養(yǎng)成一種“數(shù)形結(jié)合”的好習(xí)慣。
初二數(shù)學(xué)學(xué)習(xí)方法4
在你學(xué)習(xí)時,千萬別忘了那就是在你做事時候,集中精力是最重要的除了正在做的這件事在外,別的什么事情都 不要想。就象你做游戲時候一樣都需要認真,如果你不能認真地集中注意力你就做不好游戲,學(xué)習(xí)也是一樣。你不論做什么事情都需集中注意力,如果不能認真地集中注意力,都將毫無進展,也無法從中獲得絲毫滿足感。
課內(nèi)重視聽講,課后及時復(fù)習(xí)。
新知識的接受,數(shù)學(xué)能力的培養(yǎng)主要在課堂上進行,所以要特點重視課內(nèi)的學(xué)習(xí)效率,尋求正確的學(xué)習(xí)方法。上課時要緊跟老師的思路,積極展開思維預(yù)測下面的步驟,比較自己的解題思路與教師所講有哪些不同。特別要抓住基礎(chǔ)知識和基本技能的學(xué)習(xí),課后要及時復(fù)習(xí)不留疑點。首先要在做各種習(xí)題之前將老師所講的知識點回憶一遍,正確掌握各類公式的推理過程,慶盡量回憶而不采用不清楚立即翻書之舉。認真獨立完成作業(yè),勤于思考,從某種意義上講,應(yīng)不造成不懂即問的學(xué)習(xí)作風(fēng),對于有些題目由于自己的思路不清,一時難以解出,應(yīng)讓自己冷靜下來認真分析題目,盡量自己解決。在每個階段的學(xué)習(xí)中要進行整理和歸納總結(jié),把知識的點、線、面結(jié)合起來交織成知識網(wǎng)絡(luò),納入自己的知識體系。
突出重點,精益求精在考試大綱的要求中,對內(nèi)容有理解,了解,知道三個層次的要求;對方法有掌,會(能)兩個層次的要求,一般地說,要求理解的內(nèi)容,要求掌握的方法,是考試的重點。在歷年考試中,這方面考題出現(xiàn)的概率較大;在同一份試卷中,這方面試題所占有的分數(shù)也較多。猜題的人,往往要在這方面下功夫。一般說來,也確能猜出幾分來。但遇到綜合題,這些題在主要內(nèi)容中含有次要內(nèi)容。這時,猜題便行不通了。我們講的突出重點,不僅要在主要內(nèi)容和方法上多下功夫,更重要的是要去尋找重點內(nèi)容與次要內(nèi)容間的聯(lián)系,以主帶次,用重點內(nèi)容擔(dān)挈整個內(nèi)容。主要內(nèi)容理解透了,其它的內(nèi)容和方法迎刃而解。即抓出主要內(nèi)容不是放棄次要內(nèi)容而孤立主要內(nèi)容,而是從分析各內(nèi)容的聯(lián)系,從比較中自然地突出主要內(nèi)容。
基本訓(xùn)練 反復(fù)進行學(xué)習(xí)數(shù)學(xué),要做一定數(shù)量的題,把基本功練熟練透,但我們不主張題海戰(zhàn)術(shù),而是提倡精練,即反復(fù)做一些典型的題,做到一題多解,一題多變。要訓(xùn)練抽象思維能力,對些基本定理的證明,基本公式的推導(dǎo),以及一些基本練習(xí)題,要作到不用書寫,就象棋手下盲棋一樣,只需用腦子默想,即能得到正確答案。這就是我們在常言中提到的,在20分鐘內(nèi)完成10道客觀題。其中有些是不用動筆,一眼就能作出答案的題,這樣才叫訓(xùn)練有素,熟能生巧,基本功扎實的人,遇到難題辦法也多,不易被難倒。相反,作練習(xí)時,眼高手低,總找難題作,結(jié)果,上了考場,遇到與自己曾經(jīng)作過的類似的題目都有可能不會;不少考生把會作的題算錯了,歸為粗心大意,確實,人會有粗心的,但基本功扎實的人,出了錯立即會發(fā)現(xiàn),很少會粗心地出錯。
調(diào)整心態(tài),正確對待考試。
首先,應(yīng)把主要精力放在基礎(chǔ)知識、基本技能、基本方法這三個方面上,因為每次考試占絕大部分的也是基礎(chǔ)性的題目,而對于那些難題及綜合性較強的題目作為調(diào)劑,認真思考,盡量讓自己理出頭緒,做完題后要總結(jié)歸納。調(diào)整好自己的心態(tài),使自己在任何時候鎮(zhèn)靜,思路有條不紊,克服浮躁的情緒。特別是對自己要有信心,永遠鼓勵自己,除了自己,誰也不能把我打倒,要有自己不垮,誰也不能打垮我的自豪感。
初二數(shù)學(xué)學(xué)習(xí)方法5
一、課內(nèi)重視聽講,課后及時復(fù)習(xí)。
新知識的接受,數(shù)學(xué)能力的培養(yǎng)主要在課堂上進行,所以要特點重視課內(nèi)的學(xué)習(xí)效率,尋求正確的學(xué)習(xí)方法。上課時要緊跟老師的思路,積極展開思維預(yù)測下面的步驟,比較自己的解題思路與教師所講有哪些不同。特別要抓住基礎(chǔ)知識和基本技能的學(xué)習(xí),課后要及時復(fù)習(xí)不留疑點。首先要在做各種習(xí)題之前將老師所講的知識點回憶一遍,正確掌握各類公式的推理過程,慶盡量回憶而不采用不清楚立即翻書之舉。認真獨立完成作業(yè),勤于思考,從某種意義上講,應(yīng)不造成不懂即問的學(xué)習(xí)作風(fēng),對于有些題目由于自己的思路不清,一時難以解出,應(yīng)讓自己冷靜下來認真分析題目,盡量自己解決。在每個階段的學(xué)習(xí)中要進行整理和歸納總結(jié),把知識的點、線、面結(jié)合起來交織成知識網(wǎng)絡(luò),納入自己的知識體系。
二、適當(dāng)多做題,養(yǎng)成良好的解題習(xí)慣。
要想學(xué)好數(shù)學(xué),多做題目是難免的,熟悉掌握各種題型的解題思路。剛開始要從基礎(chǔ)題入手,以課本上的習(xí)題為準(zhǔn),反復(fù)練習(xí)打好基礎(chǔ),再找一些課外的習(xí)題,以幫助開拓思路,提高自己的分析、解決能力,掌握一般的解題規(guī)律。對于一些易錯題,可備有錯題集,寫出自己的解題思路和正確的解題過程兩者一起比較找出自己的錯誤所在,以便及時更正。在平時要養(yǎng)成良好的解題習(xí)慣。讓自己的精力高度集中,使大腦興奮,思維敏捷,能夠進入最佳狀態(tài),在考試中能運用自如。實踐證明:越到關(guān)鍵時候,你所表現(xiàn)的解題習(xí)慣與平時練習(xí)無異。如果平時解題時隨便、粗心、大意等,往往在大考中充分暴露,故在平時養(yǎng)成良好的解題習(xí)慣是非常重要的。
三、調(diào)整心態(tài),正確對待考試。
首先,應(yīng)把主要精力放在基礎(chǔ)知識、基本技能、基本方法這三個方面上,因為每次考試占絕大部分的也是基礎(chǔ)性的題目,而對于那些難題及綜合性較強的題目作為調(diào)劑,認真思考,盡量讓自己理出頭緒,做完題后要總結(jié)歸納。調(diào)整好自己的心態(tài),使自己在任何時候鎮(zhèn)靜,思路有條不紊,克服浮躁的情緒。特別是對自己要有信心,永遠鼓勵自己,除了自己,誰也不能把我打倒,要有自己不垮,誰也不能打垮我的自豪感。
在考試前要做好準(zhǔn)備,練練常規(guī)題,把自己的思路展開,切忌考前去在保證正確率的前提下提高解題速度。對于一些容易的基礎(chǔ)題要有十二分把握拿全分;對于一些難題,也要盡量拿分,考試中要學(xué)會嘗試得分,使自己的水平正常甚至超常發(fā)揮。
由此可見,要把數(shù)學(xué)學(xué)好就得找到適合自己的學(xué)習(xí)方法,了解數(shù)學(xué)學(xué)科的特點,使自己進入數(shù)學(xué)的廣闊天地中去。
初一學(xué)生如何利用暑假提前學(xué)習(xí)初二知識點?
{RKEY},{RKEY},{RKEY},初一學(xué)生如何利用暑假提前學(xué)習(xí)初二知識點?,{RKEY},{RKEY},{RKEY}
如今中考的競爭越來越激烈,北京市各重點中學(xué)為了在中考中取得好成績,大都加強了小升初中的選拔力度,從而為本校初中部儲備更多優(yōu)秀的生源。但這還遠遠不夠,到了初中,幾乎所有的實驗班又要在初二進行一次選拔考試。選拔的目的無外乎兩種:
其一,選拔出優(yōu)秀的學(xué)生進入實驗班。為此實驗班會有一個很好的學(xué)習(xí)競爭環(huán)境,更進一步地促進優(yōu)秀生的更高層次的提高;
其二、在初二結(jié)束學(xué)完大部分初中知識后進行選拔,從而區(qū)分不同層次的學(xué)生,在中考之前錄取一部分最優(yōu)秀的學(xué)生免試進入本校高中部學(xué)習(xí)。
因此,初二是初中階段一個至關(guān)重要的時期,把握住這樣的選拔機會對每一個學(xué)生來說都是重要的。
1、初一的學(xué)生為什么要提前學(xué)習(xí)初二的知識?
各個學(xué)校的實驗班基本上都要求在初二結(jié)束前把初中的內(nèi)容講完,因此,進入初二之后,學(xué)習(xí)進度的加快是顯而易見的。在初一階段,實驗班的教學(xué)主要是在難度上進行加深;而到了初二以后,難度變大,速度變快 初一學(xué)生如何利用暑假提前學(xué)習(xí)初二知識點?,學(xué)科增多,因此提前掌握基本的知識點是非常有必要的。如果我們不能夠提前對所學(xué)知識進行一定的了解,在知識點比較難以理解的時候,就很難跟上初二的學(xué)習(xí)步伐。
提前學(xué)過一遍,在新學(xué)期學(xué)習(xí)的過程中,孩子會感到學(xué)得輕松很多。這樣孩子能夠更好地樹立起對學(xué)科的信心。尤其是已經(jīng)學(xué)過初二數(shù)學(xué)和物理的孩子,在碰到難題的時候不容易氣餒。而且,提前學(xué)完了功課,孩子在學(xué)習(xí)過程中有余力去攻克一些難題,有更多的時間去補習(xí)自己的弱項。
2、在暑期學(xué)習(xí)中如何拓寬知識面?
重點中學(xué)實驗班與普通班的區(qū)別除了教學(xué)進度不同外,最主要的不同就是教學(xué)難度加深,大部分實驗班都將所學(xué)知識點的`基礎(chǔ)奧數(shù)內(nèi)容融合在教學(xué)中,而初二的考試是屬于選拔性的,有相當(dāng)一部分比較難的題目。所以,同學(xué)們一定要在暑期學(xué)習(xí)的同時,利用課外時間進一步深化所學(xué)知識點的難度,適當(dāng)掌握相關(guān)的奧數(shù)知識和技巧。
進入初二以后,要保持不斷進取的學(xué)習(xí)態(tài)度,養(yǎng)成良好的學(xué)習(xí)習(xí)慣,摸索出適合自己的一套學(xué)習(xí)方法,這樣才能在學(xué)習(xí)中取得好的成績。
3、暑期要提前學(xué)習(xí)哪些知識點 初一學(xué)生如何利用暑假提前學(xué)習(xí)初二知識點??
如果說初一的數(shù)學(xué)是基礎(chǔ),那么初二的數(shù)學(xué)就是深入,因為初二數(shù)學(xué)有很多知識點和技巧是很難的。比如初二數(shù)學(xué)中“三角形”、“一次函數(shù)”等問題。這些知識點的提前學(xué)習(xí),可以幫助同學(xué)們在暑期開學(xué)后的新初二的學(xué)習(xí)中在基礎(chǔ)上有個提高。
另外初二年級又增加了一門新的學(xué)科--物理,在暑期先把這門科目進行系統(tǒng)的學(xué)習(xí),把重點部分如“光的折射、反射”、“簡單運動”等著重的學(xué)習(xí)一遍,有利于開學(xué)后新課程學(xué)習(xí)的更好、更快的掌握。
想要在初二繼續(xù)領(lǐng)先,必須在暑期把初二的知識系統(tǒng)的學(xué)習(xí)一遍,對知識先進行一個大概的了解,特別是對初二上學(xué)期課程的學(xué)習(xí),只有這樣才能在初二的學(xué)習(xí)中,以及秋季班的同步提高學(xué)習(xí)打下一個堅實的基礎(chǔ)。
綜上所述,只要保持不斷進取的學(xué)習(xí)態(tài)度,及時解決學(xué)習(xí)中的各種問題,掌握系統(tǒng)復(fù)習(xí)的學(xué)習(xí)方法,加深難度,熟練技巧,抓住良機,以戰(zhàn)略的眼光做好調(diào)整,才能為初二年級的學(xué)習(xí)進步創(chuàng)造條件。
初二數(shù)學(xué)學(xué)習(xí)方法6
學(xué)好初中數(shù)學(xué)課前要預(yù)習(xí)
初中生想要學(xué)好數(shù)學(xué),那么就要利用課前的時間將課上老師要講的內(nèi)容預(yù)習(xí)一下。初中數(shù)學(xué)課前的預(yù)習(xí)是要明白老師在課上大致所講的內(nèi)容,這樣有利于和方便初中生整理知識結(jié)構(gòu)。
初中生課前預(yù)習(xí)數(shù)學(xué)還能夠知道自己有哪些不明白的知識點,這樣在課上就會集中注意力去聽,不會出現(xiàn)溜號和走神的情況。同時課前預(yù)習(xí)還可以將知識點形成體系,可以幫助初中生建立完整的知識結(jié)構(gòu)。
2學(xué)習(xí)初中數(shù)學(xué)課上是關(guān)鍵
初中生想要學(xué)好學(xué)生,在課上就是一個字:跟。上初中數(shù)學(xué)課時跟住老師,老師講到哪里一定要跟上,仔細看老師的板書,隨時知道老師講的是哪里,涉及到的知識點是什么。有的初中生喜歡記筆記,在這里提醒大家,初中數(shù)學(xué)課上的時候盡量不要記筆記。
你的主要目的是跟著老師,而不是一味的記筆記,即使有不會的地方也要快速簡短的記下來,可以在課后完善。跟上老師的思維是最重要的,這就意味著你明白了老師的分析和解題過程。
3課后可以適當(dāng)做一些初中數(shù)學(xué)基礎(chǔ)題
在每學(xué)完一課后,初中生可以在課后做一些初中數(shù)學(xué)的基礎(chǔ)題型,在做這樣的題時,建議大家是,不要出現(xiàn)錯誤的情況,做完題后要學(xué)會思考和整理。當(dāng)你的初中數(shù)學(xué)基礎(chǔ)題沒問題的時候,就可以做一些有點難度的提升題了,如果做不出來可以根據(jù)解析看題。
初二數(shù)學(xué)學(xué)習(xí)方法7
一、初中生數(shù)學(xué)學(xué)習(xí)存在的主要障礙
1.依賴心理。
2.急躁心理。
3.定勢心理。
4.偏重結(jié)論。
二、初中生課前的數(shù)學(xué)學(xué)習(xí)方法
1.課前的預(yù)習(xí)方法:一看、二讀、三做。
2.不同的知識預(yù)習(xí)方法有所不同。
(1)數(shù)學(xué)概念的學(xué)習(xí)方法:
、僮x概論,記住名稱或符號;
②閱讀背誦定義,掌握特性;
③舉出正反實例,體會概念反映的范圍;
④進行練習(xí),準(zhǔn)確地判斷;
、菖c其他概念相比較,弄清概念間的關(guān)系。
(2)數(shù)學(xué)公式的學(xué)習(xí)方法:
、僬_書寫公式,記住公式中字母間的關(guān)系;
、诙霉降膩睚埲ッ},掌握推導(dǎo)過程;
③用數(shù)字驗算公式,在公式具體化過程中體會公式中反映的規(guī)律;
④將公式進行各種變換,了解其不同的變化形式;
、葑兓街械淖帜杆N含的內(nèi)容,達到自如地應(yīng)用公式。
(3)數(shù)學(xué)定理的學(xué)習(xí)方法:
、俦痴b定理;
②分清定理的條件和結(jié)論;
、劾斫舛ɡ淼淖C明過程;
、軕(yīng)用定理證明有關(guān)問題;
、蒹w會定理與有關(guān)定理和概念的內(nèi)在關(guān)系。
初二數(shù)學(xué)學(xué)習(xí)方法8
按部就班
數(shù)學(xué)是環(huán)環(huán)相扣的一門學(xué)科,哪一個環(huán)節(jié)脫節(jié)都會影響整個學(xué)習(xí)的進程。所以,平時學(xué)習(xí)不應(yīng)貪快,要一章一章過關(guān),不要輕易留下自己不明白或者理解不深刻的問題。
強調(diào)理解
概念、定理、公式要在理解的基礎(chǔ)上記憶。每新學(xué)一個定理,嘗試先不看答案,做一次例題,看是否能正確運用新定理;若不行,則對照答案,加深對定理的理解。
基本訓(xùn)練
學(xué)習(xí)數(shù)學(xué)是不能缺少訓(xùn)練的,平時多做一些難度適中的練習(xí),當(dāng)然莫要陷入死鉆難題的誤區(qū),要熟悉高考的題型,訓(xùn)練要做到有的放矢。
重視錯誤
訂一個錯題本,專門搜集自己的錯題,這些往往就是自己的薄弱之處。復(fù)習(xí)時,這個錯題本也就成了寶貴的復(fù)習(xí)資料。
數(shù)學(xué)的學(xué)習(xí)有一個循序漸進的過程,妄想一步登天是不現(xiàn)實的。熟記書本內(nèi)容后將書后習(xí)題認真寫好,有些同學(xué)可能認為書后習(xí)題太簡單不值得做,這種想法是極不可取的,書后習(xí)題的作用不僅幫助你將書本內(nèi)容記牢,還輔助你將書寫格式規(guī)范化,從而使自己的解題結(jié)構(gòu)緊密而又嚴整,公式定理能夠運用的恰如其分,以減少考試中無謂的失分。
初二數(shù)學(xué)學(xué)習(xí)方法9
部分分式是初中數(shù)學(xué)競賽的重要內(nèi)容,在初中數(shù)學(xué)競賽中常有應(yīng)用,而且在今后學(xué)習(xí)微積分時還要經(jīng)常用到。部分分式中體現(xiàn)出來的把整體分解成部分來處理問題的方法也是一種重要的思想方法,這種方法對我們解決問題有指導(dǎo)意義。下面我們介紹部分分式及其應(yīng)用。
對于一個分子、分母都是多項式的分式,當(dāng)分母的次數(shù)高于分子的次數(shù)時,我們把這個分式叫做真分式。如果一個分式不是真分式,可以通過帶余除法化為一個多項式與一個真分式的和。把一個真分式化為幾個更簡單的真分式的代數(shù)和,稱為將分式化為部分分式。
把一個分式分為部分分式的一般步驟是:
(1)把一個分式化成一個整式與一個真分式的和;
(2)把真分式的分母分解因式;
(3)根據(jù)真分式的分母分解因式后的形式,引入待定系數(shù)來表示成為部分分式的形式;
(4)利用多項式恒等的性質(zhì)和多項式恒等定理列出關(guān)于待定系數(shù)的方程或方程組;
(5)解方程或方程組,求待定系數(shù)的值;
(6)把待定系數(shù)的值代入所設(shè)的分式中,寫出部分分式。
初二數(shù)學(xué)學(xué)習(xí)方法10
1做題之后加強反思
學(xué)生一定要明確,現(xiàn)在正坐著的題,一定不是考試的題目。而是要運用現(xiàn)在正做著的題目的解題思路與方法。因此,要把自己做過的每道題加以反思。總結(jié)一下自己的收獲。要總結(jié)出,這是一道什么內(nèi)容的題,用的是什么方法。做到知識成片,問題成串,日久天長,構(gòu)建起一個內(nèi)容與方法的科學(xué)的網(wǎng)絡(luò)系統(tǒng)。
2錯題本
說到錯題本不少同學(xué)都覺得自己的記憶力好,不需要錯題本就能記住,這是一種“錯覺”,每個人都有這種感覺,等到題目增多,學(xué)習(xí)內(nèi)容加深,這時就會發(fā)現(xiàn)自己力不從心了。錯題本能夠隨時記錄自己的知識短板,幫助強化知識體系,有助于提升學(xué)習(xí)效率。有很多學(xué)霸都是因為積極使用了錯題本,而考取了高分。
3夯實基礎(chǔ),學(xué)會思考
數(shù)學(xué)中考試題中,基礎(chǔ)分值占的最多。因此,初三數(shù)學(xué)復(fù)習(xí)教學(xué)中,必須扎扎實實地夯實基礎(chǔ),使每個學(xué)生對初中數(shù)學(xué)知識都能達到“理解”和“掌握”的要求;在應(yīng)用基礎(chǔ)知識時能做到熟練、正確和迅速。
4雙基訓(xùn)練
雙基即基礎(chǔ)知識與基本技能。基礎(chǔ)知識是指數(shù)學(xué)概念、定理、法則、公式以及各種知識之間的內(nèi)在聯(lián)系;基本技能是一種較穩(wěn)定的心理因素,是一種已經(jīng)程式化了的動作,初中數(shù)學(xué)基本技能包括運算技能、畫圖技能、運用數(shù)字語言的技能、推理論證的技能等。只有扎實地掌握“雙基”,才能靈活應(yīng)用、深入探索,不斷創(chuàng)新。
初二數(shù)學(xué)學(xué)習(xí)方法11
要想學(xué)好數(shù)學(xué),必須多做練習(xí),但有的同學(xué)多做練習(xí)能學(xué)好,有的同學(xué)做了很多練習(xí)仍舊學(xué)不好,究其因,是“多做練習(xí)”是否得法的問題。
我們所說的“多做練習(xí)”,不是搞“題海戰(zhàn)術(shù)”。后者只做不思,不能起到鞏固概念,拓寬思路的作用,而且有“副作用”:把已學(xué)過的知識攪得一塌糊涂,理不出頭緒,浪費時間又收獲不大,我們所說的“多做練習(xí)”,是要大家在做了一道新穎的題目之后,多想一想:它究竟用到了哪些知識,是否可以多解,其結(jié)論是否還可以加強、推廣,等等,還要真正掌握方法,切實做到以下三點,才能使“多做練習(xí)”真正發(fā)揮它的作用。
1.必須熟悉各種基本題型并掌握其解法。
課本上的每一道練習(xí)題,都是針對一個知識點出的,是最基本的題目,必須熟練掌握;課外的習(xí)題,也有許多基本題型,其運用方法較多,針對性也強,應(yīng)該能夠迅速做出。
許多綜合題只是若干個基本題的有機結(jié)合,基本題掌握了,不愁解不了它們。
2.在解題過程中有意識地注重題目所體現(xiàn)的出的思維方法,以形成正確的思維定勢。
數(shù)學(xué)是思維的世界,有著眾多思維的技巧,所以每道題在命題、解題過程中,都會反映出一定的思維方法,如果我們有意識地注重這些思維方法,時間長了頭腦中便形成了對每一類題型的“通用”解法,即正確的思維定勢,這時在解這一類的題目時就易如反掌了;同時,掌握了更多的思維方法,為做綜合題奠定了一定的基礎(chǔ)。
3.多做綜合題。
綜合題,由于用到的知識點較多,頗受命題人青睞。
做綜合題也是檢驗自己學(xué)習(xí)成效的有力工具,通過做綜合題,可以知道自己的不足所在,彌補不足,使自己的數(shù)學(xué)水平不斷提高。
初中溫馨建議:“多做練習(xí)”要長期堅持,每天都要做幾道,時間長了才會有明顯的效果和較大的收獲。
初二數(shù)學(xué)學(xué)習(xí)方法12
全等三角形的性質(zhì):全等三角形對應(yīng)邊相等、對應(yīng)角相等。
全等三角形的判定:三邊相等(SSS)、兩邊和它們的夾角相等(SAS)、兩角和它們的夾邊(ASA)、兩角和其中一角的對邊對應(yīng)相等(AAS)、斜邊和直角邊相等的兩直角三角形(HL)。
角平分線的性質(zhì):角平分線平分這個角,角平分線上的點到角兩邊的距離相等
角平分線推論:角的內(nèi)部到角的兩邊的距離相等的點在叫的平分線上。
證明兩三角形全等或利用它證明線段或角的相等的基本方法步驟:
、、確定已知條件(包括隱含條件,如公共邊、公共角、對頂角、角平分線、中線、高、等腰三角形、等所隱含的'邊角關(guān)系)
②、回顧三角形判定,搞清我們還需要什么
、、正確地書寫證明格式(順序和對應(yīng)關(guān)系從已知推導(dǎo)出要證明的問題)
人教版八年級數(shù)學(xué)全等三角形知識點講解就為大家介紹到這里了,希望大家都能養(yǎng)成善于總結(jié)的好習(xí)慣。
這種利用分組來分解因式的方法叫做分組分解法.從上面的例子可以看出,如果把一個多項式的項分組并提取公因式后它們的另一個因式正好相同,那么這個多項式就可以用分組分解法來分解因式.
初二數(shù)學(xué)學(xué)習(xí)方法13
首先,應(yīng)把主要精力放在基礎(chǔ)知識、基本技能、基本方法這三個方面上,因為每次考試占絕大部分的也是基礎(chǔ)性的題目,而對于那些難題及綜合性較強的題目作為調(diào)劑,認真思考,盡量讓自己理出頭緒,做完題后要總結(jié)歸納。調(diào)整好自己的心態(tài),使自己在任何時候鎮(zhèn)靜,思路有條不紊,克服浮躁的情緒。特別是對自己要有信心,永遠鼓勵自己,除了自己,誰也不能把我打倒,要有自己不垮,誰也不能打垮我的自豪感。
在考試前要做好準(zhǔn)備,練練常規(guī)題,把自己的思路展開,切忌考前去在保證正確率的前提下提高解題速度。對于一些容易的基礎(chǔ)題要有十二分把握拿全分;對于一些難題,也要盡量拿分,考試中要學(xué)會嘗試得分,使自己的水平正常甚至超常發(fā)揮。
另外,對于數(shù)學(xué)這門學(xué)科來說,要根據(jù)自己的實力,特別是中等水平以下的同學(xué),適當(dāng)放棄自己力不從心的高難題,才能取得較好的成績。揚長補短應(yīng)該是一種比較有效的方法,俗話說“狗熊嘴大啃地瓜,麻雀嘴小啄芝麻”,我這個小嘴“麻雀”,在數(shù)學(xué)學(xué)習(xí)中沒有多大的優(yōu)勢,數(shù)學(xué)最后一道題對我而言難度就挺大的,于是決定放棄了這個難啃的“地瓜”,并立刻回頭檢查前面已經(jīng)做過的試題,幸運的是檢查出做錯的一道選擇題;蛟S,正是由于這樣量力而行的戰(zhàn)術(shù),我保住了“芝麻”基礎(chǔ)題,只在較難題目上失分,其他題全部做對,做到了數(shù)學(xué)考試的超水平發(fā)揮。
初二數(shù)學(xué)學(xué)習(xí)方法14
初二數(shù)學(xué)學(xué)習(xí)是比較關(guān)鍵的時候,學(xué)好初二數(shù)學(xué)對于中考十分重要,同學(xué)們要如何學(xué)習(xí)呢?卓越教育認為,學(xué)習(xí)初二數(shù)學(xué)首先要學(xué)好新知識,其次要多做練習(xí)。想必大多數(shù)同學(xué)也了解這一點,關(guān)鍵是如何去做。
新知識的學(xué)習(xí)
初二數(shù)學(xué)在整個初中學(xué)習(xí)過程中有著承上啟下的作用,卓越教育認為,同學(xué)們首先要學(xué)好新知識,數(shù)學(xué)能力的培養(yǎng)主要在課堂上進行,所以要特點重視課內(nèi)的學(xué)習(xí)效率,尋求正確的學(xué)習(xí)方法。
在數(shù)學(xué)課堂上,同學(xué)們要注意緊跟老師的思路,積極展開思維預(yù)測下面的步驟,比較自己的解題思路與教師所講有哪些不同。卓越教育認為同學(xué)們特別要抓住基礎(chǔ)知識和基本技能的學(xué)習(xí),課后要及時復(fù)習(xí)不留疑點。
對于習(xí)題的聯(lián)系,卓越教育建議同學(xué)們首先要在做各種習(xí)題之前將老師所講的知識點回憶一遍,正確掌握各類公式的推理過程,盡量回憶而不采用不清楚立即翻書之舉。認真獨立完成作業(yè),勤于思考,從某種意義上講,應(yīng)不造成不懂即問的學(xué)習(xí)作風(fēng),對于有些題目由于自己的思路不清,一時難以解出,應(yīng)讓自己冷靜下來認真分析題目,盡量自己解決。在每個階段的學(xué)習(xí)中要進行整理和歸納總結(jié),把知識的點、線、面結(jié)合起來交織成知識網(wǎng)絡(luò),納入自己的知識體系。
課后練習(xí)
要想學(xué)好數(shù)學(xué),多做題目是難免的,卓越教育認為同學(xué)們在練習(xí)時更應(yīng)該熟悉掌握各種題型的解題思路。剛開始要從基礎(chǔ)題入手,以課本上的習(xí)題為準(zhǔn),反復(fù)練習(xí)打好基礎(chǔ),再找一些課外的習(xí)題,以幫助開拓思路,提高自己的分析、解決能力,掌握一般的解題規(guī)律。
對于一些易錯題,卓越教育建議同學(xué)們可備有錯題集,寫出自己的解題思路和正確的解題過程兩者一起比較找出自己的錯誤所在,以便及時更正。卓越教育認為同學(xué)們在平時要養(yǎng)成良好的解題習(xí)慣。讓自己的精力高度集中,使大腦興奮,思維敏捷,能夠進入最佳狀態(tài),在考試中能運用自如。實踐證明:越到關(guān)鍵時候,同學(xué)們所表現(xiàn)的解題習(xí)慣與平時練習(xí)無異。如果平時解題時隨便、粗心、大意等,往往在大考中充分暴露,故在平時養(yǎng)成良好的解題習(xí)慣是非常重要的。
初二數(shù)學(xué)學(xué)習(xí)方法15
1.溫故法
概念教學(xué)的起步是在已有的認知結(jié)論的基礎(chǔ)上進行的。因此,教學(xué)新概念前,如果能對自己認知結(jié)構(gòu)中原有的概念適當(dāng)作一些結(jié)構(gòu)上的變化,引入新概念,則有利于促進新概念的形成。
2.類比法
抓住新舊知識的本質(zhì)聯(lián)系,有目的、有計劃地讓自己將有關(guān)新舊知識進行類比,就能很快地得出新舊知識在某些屬性上的相同(相似)的結(jié)構(gòu)而引進概念。
3.喻理法
為正確理解某一概念,以實例或生活中的趣事、典故作比喻,引出新概念,謂之喻理導(dǎo)入法。
如,學(xué)“用字母表示數(shù)”時,先出示的兩句話:“阿Q和小D在看《W的悲劇》。”、“我在A市S街上遇見一位朋友。”問:這兩個句子中的字母各表示什么?再出示撲克牌“紅桃
A”,要求自己回答這里的A則表示什么?最后出示等式“0.5×x=3.5”,擦去等號及3.5,變成“0.5×x”后,問兩道式子里的X各表示什么?根據(jù)自己的回答,教師結(jié)合板書進行小結(jié):字母可以表示人名、地名和數(shù),一個字母可以表示一個數(shù),也可以表示任何數(shù)。
這樣,枯燥的概念變得生動、有趣,同學(xué)們在由衷的喜悅中進入了“字母表示數(shù)”概念的學(xué)習(xí)。
4.置疑法
通過揭示數(shù)學(xué)自身的矛盾來引入新概念,以突出引進新概念的必要性和合理性,調(diào)動了解新概念的強烈動機和愿望。
5.演示法
有些教學(xué)概念,如果把它最本質(zhì)的屬性用恰當(dāng)?shù)膱D形表示出來,把數(shù)與形結(jié)合起來,使感性材料的提供更為豐富,則會收到良好效果,易于理解和掌握。
如,學(xué)“求一個數(shù)的幾倍是多少”的應(yīng)用題,重要的是建立“倍”的概念。引進這個概念,可出示
2只一行的白蝴蝶圖,再2只、2只地出示3個2只的第二行花蝴蝶圖,結(jié)合演示,通過循序答問,使自己清晰地認識到:花蝴蝶與白蝴蝶比較,白蝴蝶1個2只,花蝴蝶是3個2只;把一個2只當(dāng)作1份,則白蝴蝶的只數(shù)相當(dāng)于1份,花蝴蝶就有3份。用數(shù)學(xué)上的話說:花蝴蝶與白蝴蝶比,把白蝴蝶當(dāng)作一倍,花蝴蝶的只數(shù)就是白蝴蝶的3倍,這樣,從演示圖形中讓自己看到從“個數(shù)”到“份數(shù)”,再引出倍數(shù),很快地觸及了概念的本質(zhì)。
6.問答法
引入概念采用問答式,能在疑、答、辯的過程中,步步探幽,引人入勝。
【初二數(shù)學(xué)學(xué)習(xí)方法匯編15篇】相關(guān)文章:
初二數(shù)學(xué)學(xué)習(xí)方法(15篇)10-11
初二數(shù)學(xué)學(xué)習(xí)方法15篇10-11
初二數(shù)學(xué)學(xué)習(xí)方法(精選15篇)10-11
數(shù)學(xué)學(xué)習(xí)方法(匯編15篇)12-21
奧數(shù)學(xué)習(xí)方法(匯編11篇)11-08
小學(xué)數(shù)學(xué)學(xué)習(xí)方法匯編15篇12-27
小學(xué)數(shù)學(xué)學(xué)習(xí)方法(匯編15篇)12-27
數(shù)學(xué)如何學(xué)習(xí)方法12-27