《3的倍數(shù)特征》說課稿
作為一名專為他人授業(yè)解惑的人民教師,時常要開展說課稿準(zhǔn)備工作,編寫說課稿是提高業(yè)務(wù)素質(zhì)的有效途徑。優(yōu)秀的說課稿都具備一些什么特點呢?下面是小編整理的《3的倍數(shù)特征》說課稿,歡迎大家分享。
《3的倍數(shù)特征》說課稿1
一、教材分析
《3的倍數(shù)的特征》是人教版實驗教材小學(xué)數(shù)學(xué)五年級下冊第19頁的內(nèi)容,它是在因數(shù)和倍數(shù)的基礎(chǔ)上進(jìn)行教學(xué)的,是求最大公因數(shù)、最小公倍數(shù)的重要基礎(chǔ),也是學(xué)習(xí)約分和通分的必要前提。因此,使學(xué)生熟練地掌握2、5、3的倍數(shù)的特征,具有十分重要的意義。
教材的安排是先教學(xué)2、5的倍數(shù)的特征,再教學(xué)3的倍數(shù)的特征。因為2、5的倍數(shù)的特征僅僅體現(xiàn)在個位上的數(shù),比較明顯,容易理解。而3的倍數(shù)的特征,不能只從個位上的數(shù)來判定,必須把其各位上的數(shù)相加,看所得的和是否是3的倍數(shù)來判定,學(xué)生理解起來有一定的困難,因此,本課的教學(xué)目標(biāo),我從知識、能力、情感三方面綜合考慮,確定教學(xué)目標(biāo)如下:
1、使學(xué)生通過理解和掌握3的倍數(shù)的特征,并且能熟練地去判斷一個數(shù)是否是3的倍數(shù),以培養(yǎng)學(xué)生觀察、分析、動手操作及概括問題的能力,進(jìn)一步發(fā)展學(xué)生的數(shù)感。
2.通過觀察、猜測、驗證等活動,讓學(xué)生經(jīng)歷3的倍數(shù)的特征的歸納過程。以發(fā)展學(xué)生的抽象思維和培養(yǎng)相互間的交流、合作與競爭意識。
3.通過學(xué)習(xí),讓學(xué)生體驗數(shù)學(xué)問題的探究性和挑戰(zhàn)性,進(jìn)一步激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,并從中獲得積極的情感體驗。
根據(jù)以上的目標(biāo),我確定了本課的
教學(xué)重點:使學(xué)生理解和掌握3的倍數(shù)的特征,并能熟練地去判斷一個數(shù)是否是3的倍數(shù)。
教學(xué)難點:3的倍數(shù)的數(shù)的特征的歸納過程。
二、教法和學(xué)法。
根據(jù)對教材的理解,從學(xué)生的自主學(xué)習(xí)出發(fā),我從三個方面考慮教法和學(xué)法:
1、創(chuàng)設(shè)情景,激趣導(dǎo)入。
2、尊重學(xué)生,相信學(xué)生,讓學(xué)生通過、觀察、猜測、驗證,動手操作、自主探究、合作交流,使學(xué)生成為學(xué)習(xí)的主人,使課堂變?yōu)閷W(xué)堂。
3、采用讓學(xué)生自主發(fā)現(xiàn)的學(xué)習(xí)方法。
蘇霍姆林斯基說:“在小學(xué)面臨的許多任務(wù)中,首要的任務(wù)是教會兒童學(xué)習(xí)”。這里的學(xué)習(xí)指學(xué)習(xí)方法,3的倍數(shù)的特征,有規(guī)律可循,容易上成機械刻板,枯燥無味的課,學(xué)生能死套規(guī)律判斷,但學(xué)生的能力沒能培養(yǎng),智力得不到開發(fā)。本課的設(shè)計旨在揚棄“滿堂灌”的教學(xué),取而代之以啟發(fā)與發(fā)現(xiàn)相結(jié)合的'教學(xué)方法,點撥學(xué)生大膽猜想,動手實踐,去發(fā)現(xiàn)規(guī)律,使全體學(xué)生積極參與,積極思考,激發(fā)學(xué)生學(xué)習(xí)的積極性。
下面重點說說本課的教學(xué)過程設(shè)計,我分以下的六個環(huán)節(jié)進(jìn)行教學(xué)。
三、教學(xué)過程。
(一)復(fù)習(xí)導(dǎo)入。
為了能把新舊知識有機地結(jié)合起來,達(dá)到溫故而知新的目的,我出示了這樣一道復(fù)習(xí)題。
下面的數(shù),哪些是2的倍數(shù)?哪些是5的倍數(shù)。
364、420、515、736、1028、905
讓學(xué)生回答并說出判斷依據(jù),從而進(jìn)行小結(jié):我們在判斷一個數(shù)是否是2、5的倍數(shù),都是從一個數(shù)的個位上的情況來判定。而今天,我們將學(xué)習(xí)新的內(nèi)容,從而引出課題。(板書:3的倍數(shù)的特征)
為了使學(xué)生產(chǎn)生探索的興趣,激發(fā)學(xué)習(xí)動機,形成最佳的學(xué)習(xí)心理狀態(tài),我便充分利用小學(xué)生好奇心強這一心理特點,創(chuàng)設(shè)了一個《猜一猜》的游戲情境:讓學(xué)生出題,隨意說一個數(shù),老師迅速地作出該數(shù)是不是3的倍數(shù)的判斷,以此來調(diào)動學(xué)生學(xué)習(xí)的積極性。
(二)猜想驗證。
由于學(xué)生在《猜一猜》游戲中產(chǎn)生了急于探索的熱情,我便讓學(xué)生去作猜想“3的倍數(shù)可能有什么特征?”,讓學(xué)生充分表達(dá)各種各樣的猜想,也許有些學(xué)生會不假思索地說出他的猜想:“個位上是3、6、9的數(shù),都是3的倍數(shù)”。我便引導(dǎo)學(xué)生去驗證,并在驗證中推翻了剛才的猜想,由此,使學(xué)生意識到已經(jīng)不能用原來的方法(也就是從數(shù)的個位上的情況)來判斷一個數(shù)是否是3的倍數(shù),而應(yīng)該換個角度去思考。
(三)體驗新知。
由于學(xué)生求知欲空前高漲,學(xué)習(xí)積極性高。這時我出示了一組這樣的數(shù)據(jù)。
3×1=3、3×2=6、3×3=9、3×4=12、3×5=15、3×6=18、3×7=21……
并引導(dǎo)學(xué)生進(jìn)行觀察發(fā)現(xiàn):3、6、9是3的倍數(shù),但12、15、18個位上的數(shù)不是3的倍數(shù),再讓學(xué)生與同桌合作,動手?jǐn)[小棒,一人擺,一人記錄。順便提出要求:擺小棒時,每個數(shù)位上的數(shù)是幾,就用幾根小棒表示。然后觀察各位上的數(shù)的和,你發(fā)現(xiàn)了什么?此時有的學(xué)生可能會說:“12個位上的數(shù)不是3的倍數(shù),但1+2=3,3是3的倍數(shù)”。同時,學(xué)生也發(fā)現(xiàn)15、18、21各位上的數(shù)相加的和也是3的倍數(shù)。于是形成新的猜想:一個數(shù)如果是3的倍數(shù),那么它各位上數(shù)的和也是3的倍數(shù)。為了驗證這一猜想我隨即說道:“這么簡單的數(shù)你會了,那么大一點的數(shù)是否也有這樣的規(guī)律呢?”,接著我便又出示一組這樣的數(shù)據(jù):30、31、46、134、156、296、463、405、384。要求學(xué)生用最快的速度算出各位上的數(shù)的和,可以使用計算器,并讓學(xué)生把結(jié)果填到各自的練習(xí)卡紙上,然后先跟同桌說說,再把結(jié)果匯報結(jié)果給老師,盡可能多地提供機會讓學(xué)生在實踐操作中學(xué)習(xí),這也正應(yīng)了美國數(shù)學(xué)教育家波利亞所說的:“學(xué)習(xí)任何知識的最佳途徑都是由學(xué)生自己去發(fā)現(xiàn)的”。
四、歸納總結(jié)。
在學(xué)習(xí)操作驗證完成后,我用充足的時間讓小組代表上講臺展示成果,說出各自的思考過程,對學(xué)生的回答我給予充分的肯定和表揚,引導(dǎo)學(xué)生驗證自己的發(fā)現(xiàn)是否正確,最后達(dá)成共識:一個數(shù)的各位上的數(shù)的和是3的倍數(shù),這個數(shù)就3的倍數(shù)(板書)。這樣便巧妙地突出本課的重點,突破了本課的難點。
五、實踐應(yīng)用。
當(dāng)學(xué)生學(xué)會了老師猜數(shù)所用的竅門,顯然興致極高,個個躍躍欲試,想一顯身手,我便針對小學(xué)生的年齡特點和個性差異,以便使不同層次的學(xué)生都能得到不同程度的提高,設(shè)計了三個不同層次的練習(xí)。
練習(xí)1:課本P19做一做1。
(這是一個基本練習(xí),使全體學(xué)生都能對新知識有進(jìn)一步的理解,達(dá)到鞏固新知的目的。)
練習(xí)2:①P21頁(5、6題),在基本練習(xí)的基礎(chǔ)上我增設(shè)了3道發(fā)展題。
、诎褦(shù)娃娃送回家。題目如下:
這樣設(shè)計的目的是通過判斷、選擇等題目,使學(xué)生在判斷中明事理,提高找規(guī)律的能力,進(jìn)一步發(fā)展數(shù)感。)
練習(xí)3:P21(7題)
7、在口里填一個數(shù)字,使每個數(shù)都是3的倍數(shù)。
口、7、4、口、2、口、44、65、口、12、口、1
(這是一個綜合練習(xí),以檢驗學(xué)生綜合運用知識的能力,達(dá)到舉一反三的效果,提高思維的靈活性。)
(六)拓展延伸
為增添課的趣昧性和挑戰(zhàn)性,我讓學(xué)生暢談?wù)?jié)課的收獲,并讓學(xué)生式寫出一些能同時是2、5的倍數(shù),又是3的倍數(shù),和同伴交流,觀察它們有什么特點?
縱觀整節(jié)課的教學(xué)流程,體現(xiàn)了數(shù)學(xué)的教學(xué)目標(biāo)是促進(jìn)學(xué)生全面發(fā)展的新課標(biāo)理念,讓學(xué)生在實踐中學(xué)會新知,相信能取得良好的教學(xué)效果,讓每一個學(xué)生都能在數(shù)學(xué)學(xué)習(xí)中得到不同程度的提高,促進(jìn)學(xué)生的全面發(fā)展。我說課完畢謝謝大家!
附:設(shè)板書設(shè)計:
3的倍數(shù)的特征
一個數(shù)的各位上的數(shù)的和是3的倍數(shù),這個數(shù)就是3的倍數(shù)。
《3的倍數(shù)特征》說課稿2
一、教材簡析
《3的倍數(shù)的特征》是北師大版第九冊的內(nèi)容,屬于“數(shù)與代數(shù)”領(lǐng)域中有關(guān)“倍數(shù)與因數(shù)”的知識。學(xué)生在已經(jīng)學(xué)習(xí)“2,5倍數(shù)的特征”的基礎(chǔ)上,繼續(xù)學(xué)習(xí)3的倍數(shù)的特征。
二、教學(xué)目標(biāo)
1.經(jīng)歷探索3的倍數(shù)的特征的過程,理解3的倍數(shù)的特征,能判斷一個數(shù)是不是3的倍數(shù)。
2.發(fā)展分析、比較、猜測、驗證的能力。
三、教學(xué)思路
本節(jié)課我緊緊抓住猜想→觀察→舉證→歸納這條主線展開教學(xué),讓學(xué)生經(jīng)歷有效探究的學(xué)習(xí)過程。
基于以上想法,本課設(shè)計以下兩個大環(huán)節(jié):
探究、深化
四、教學(xué)過程
(一)探究
這個部分,我為學(xué)生提供了四個探究平臺:
。1)猜想
復(fù)習(xí):2和5的倍數(shù)特征。猜測3的倍數(shù)的特征。
。2)觀察
在百數(shù)表中找出所有3的倍數(shù),通過觀察否定猜想。
借助計數(shù)器,在百數(shù)表中任意選一個3的倍數(shù),用計數(shù)器將它撥出來,并記錄下?lián)苓@個數(shù)用了幾顆數(shù)珠。再觀察記錄表,你能發(fā)現(xiàn)什么?
學(xué)生很快能發(fā)現(xiàn)所用數(shù)珠的顆數(shù)都是3的倍數(shù)。
當(dāng)學(xué)生的認(rèn)知出現(xiàn)困難時,借助計數(shù)器來研究3的倍數(shù)的特征,直觀地降低了學(xué)生觀察發(fā)現(xiàn)特征的難度,使得所學(xué)新知更貼近學(xué)生的“最近發(fā)展區(qū)”。
如果給你3顆數(shù)珠,那你猜一猜在計數(shù)器上撥出100以內(nèi)的數(shù)會是3的倍數(shù)嗎?給出4顆、5顆…….,自己撥一撥,發(fā)現(xiàn)了什么?
經(jīng)過研究,學(xué)生發(fā)現(xiàn)100以內(nèi)是3的倍數(shù),所用數(shù)珠的顆數(shù)都是3的倍數(shù),而不是3的倍數(shù),所用數(shù)珠的顆數(shù)都不是3的倍數(shù)。也就是說:100以內(nèi)的數(shù),如果在計數(shù)器上撥它,所用數(shù)珠的顆數(shù)是3的倍數(shù),這個數(shù)就是3的倍數(shù)。
。3)舉證
我們之前的研究結(jié)論對所有的數(shù)都適用嗎?學(xué)生馬上會提出研究比100更大的數(shù)。
小組合作:隨意想出多個大于100的數(shù),先用計算器算一下,然后記錄下來。最后用計數(shù)器撥一撥看有什么發(fā)現(xiàn)?
經(jīng)過合作探討,交流匯報,學(xué)生發(fā)現(xiàn)在這些較大的數(shù)當(dāng)中,之前的研究結(jié)論依然適用。
所研究的對象范圍越廣,代表性越強,研究結(jié)論就越可靠。本環(huán)節(jié)通過“更大的.數(shù)”和“隨意想”兩方面,讓研究對象范圍更廣,培養(yǎng)了學(xué)生縝密思考的意識和習(xí)慣。
。4)歸納
現(xiàn)在如果給你一個數(shù),不做除法,你怎樣快速地判斷它是不是3的倍數(shù)呢?咦!我發(fā)現(xiàn)有的同學(xué)沒有用計數(shù)器也判斷對了,還很快呢!你們是怎么想的呢?學(xué)生會說所用數(shù)珠的顆數(shù)其實就是各個數(shù)位上的數(shù)字之和。
“各個數(shù)位上的數(shù)字之和”這種稍復(fù)雜的表述方式,由學(xué)生在操作中自然歸納得出,突出了學(xué)生探究學(xué)習(xí)的自主性,彰顯了學(xué)生的主體地位。
(二)深化
讓學(xué)生拿出事先準(zhǔn)備好的從0到9的十張卡片,在游戲中解決以下問題:
。1)你能任意選3張卡片,擺出一個3的倍數(shù)嗎?用你選的這3張卡片,還能擺出不同的3的倍數(shù)嗎?一共能擺出幾個?
(2)隨意抽取3張卡片,在它的基礎(chǔ)上加卡片,使擺出的數(shù)還是3的倍數(shù)。如果加一張怎樣加?加兩張呢?三張?……你最多能用到幾張?
(3)當(dāng)十張卡片全部用上時,我們就得到了比較大的3的倍數(shù),你能快速去掉一些卡片,讓這個數(shù)依然是3的倍數(shù)嗎?
如果要去掉一張卡片,你怎么做?如果要去掉兩張?三張?……
剛才的練習(xí)有沒有給你什么啟發(fā)?
用你們的方法判斷下面的這些數(shù)是不是3的倍數(shù):
36996969336,1827457874。
判斷數(shù)位多的數(shù)是否是3的倍數(shù),運用常規(guī)方法比較麻煩。如何突破這一難點?通過這一系列的卡片游戲,學(xué)生在操作中自然而然地摸索出解題的捷徑,完成了對所學(xué)知識的拓展。
各位老師,剛才我描述的這個教學(xué)過程,是讓學(xué)生在探究3的倍數(shù)的特征過程中不但為學(xué)生積累了數(shù)學(xué)活動經(jīng)驗,而且也積淀了基本的數(shù)學(xué)思想:讓學(xué)生逐步領(lǐng)悟到猜想、觀察、舉證、歸納是解決數(shù)學(xué)問題的一般方法。
謝謝!
【《3的倍數(shù)特征》說課稿】相關(guān)文章:
小學(xué)數(shù)學(xué)《3的倍數(shù)特征》說課稿01-20
小學(xué)數(shù)學(xué)3的倍數(shù)的特征的說課稿(精選10篇)07-28
淺談3的倍數(shù)的特征教學(xué)片斷與思考03-12
小升初數(shù)學(xué)倍數(shù)特征知識點的歸納整理08-28
《生物的特征》說課稿(精選10篇)03-04
高中政治《實踐及其特征》說課稿02-20
小學(xué)數(shù)學(xué)五年級下冊《因數(shù)和倍數(shù)》說課稿10-01
小學(xué)數(shù)學(xué)《三角形的特征》說課稿范文12-12
《實踐及其特征》教師招聘高中政治說課稿07-29