国产激情久久久久影院小草_国产91高跟丝袜_99精品视频99_三级真人片在线观看

小學四年級數(shù)學《三角形內(nèi)角和》說課稿

時間:2020-09-24 12:02:30 小學說課稿 我要投稿

小學四年級數(shù)學《三角形內(nèi)角和》說課稿

  作為一名無私奉獻的老師,通常需要準備好一份說課稿,是說課取得成功的前提。那么大家知道正規(guī)的說課稿是怎么寫的嗎?以下是小編收集整理的小學四年級數(shù)學《三角形內(nèi)角和》說課稿,僅供參考,大家一起來看看吧。

小學四年級數(shù)學《三角形內(nèi)角和》說課稿

小學四年級數(shù)學《三角形內(nèi)角和》說課稿1

各位老師:

  下午好!

  今天我們相聚在云周小學,共同行走在“生本”課堂的道路上。作為一名新教師,我也是抱著一種學習的心態(tài)來評課。應老師的這節(jié)《三角形內(nèi)角和》,無論是他的設計,還是他對課的演繹,都充分體現(xiàn)了“以生為本”的理念。

  這節(jié)課有以下幾點值得我們?nèi)ヌ接懀?/p>

  一、學生的起點在哪里?

  既然是生本課堂,那我們在備課之前,就要做到備學生,找起點。新課導入時,應老師花了一些時間復習三角形的分類和平角的知識,充分喚醒學生對三角形的認知,分類是為了抓住三角形的本質(zhì),縮小驗證時選材的范圍,而三個角拼成一個平角的練習,則為學生之后的驗證搭好一個腳手架,降低他們學習的難度。但從課堂上來看,部分學生已經(jīng)知道三角形內(nèi)角和是180°,而且當出示平角那道題時,學生立刻說出180°是三角形內(nèi)角和,而沒有想到平角,這需要我們來反思這個環(huán)節(jié)的必要性。為什么學生會聯(lián)想到內(nèi)角和呢?我想可能是應老師在此之前詢問了:“三角形有幾個角?如果告訴你兩個角,會求第三個角嗎?”同樣是為了復習,卻產(chǎn)生了負遷移,反而沒有達成預定的效果。再此之后又介紹“內(nèi)角”等概念,這樣難免有回課嫌疑。課堂選材要有取舍,我覺得這個環(huán)節(jié)可以刪除。

  二、既然量正確了,為什么還要拼?

  有位老師說過:“數(shù)學老師和語文老師就是不一樣,語文老師會發(fā)散,將一句簡單的話復雜化;而數(shù)學老師會收斂,將復雜的例題、方法融匯成一句話。”所以數(shù)學課上必須讓學生親身經(jīng)歷知識的發(fā)展過程。在探究過程中,應老師放手讓學生想方法驗證猜想,學生首先會想到量出內(nèi)角并相加,從反饋來看,學生量得的結果都是180°,既然得到想要的結果了,再拼不是多此一舉了嗎?課堂上應老師也對學生的精確結果趕到意外,究竟量角的誤差在哪里?

  學生的心里總是不敢犯錯的,這就會讓很多數(shù)據(jù)失真。其實誤差不僅僅只是存在于內(nèi)角總和,還存在于每個內(nèi)角的度數(shù)。課堂反饋上,對于同樣的銳角,學生量出了“60°,40°,80°和55°,45°,80°”同樣一個三角形,為什么內(nèi)角度數(shù)會有所不同,此時通過對比,讓學生明白量角時有誤差,容易改變角度,看來量不是最準確的方法,而撕角拼角則不會改變它的大小。我想這就是我們?yōu)槭裁磳⒘饣ㄔ诩羝捶ㄉ狭恕?/p>

  三、如何凸顯內(nèi)角和的本質(zhì)?

  通過各種方法的驗證,我們知道了三角形的內(nèi)角和是180°,難道點到即止嗎?應老師巧妙借助幾何畫板,改變?nèi)切蔚男螤詈痛笮,并引導學生觀察什么變了,什么不變?這一簡單的演示卻寓意深遠,無論形狀大小如何改變,三角形內(nèi)角和永遠是180°,這也從另一個角度說明了三角形為什么具有穩(wěn)定性,只要確定兩個角,第三個角永遠的唯一的。結論只是靜態(tài)的文字,而課件是動態(tài)的演示,這種動靜結合的美渲染了我們的眼球,同時也凸顯了內(nèi)角和的本質(zhì),讓結論更具說服力。

  四、練習設計的創(chuàng)新點在哪里?

  練習是一節(jié)課的精髓,這節(jié)課的練習主要分三層,一算二辨三延伸。應老師在練習的設計上很注重一材多用,而且非常有坡度性,這也是本節(jié)課最大的亮點。在“只知道一個角”的環(huán)節(jié)中,應老師設計了只露出一個70°角的等腰三角形,求另兩個角。大多數(shù)學生只想到一種情況后,便沾沾自喜,不會更深入思考問題,因為在學生潛意識中總認為正確答案只有一個。這也給了我們一個啟示,關注答案,更要關注學生解題的意識,引導學生從多維角度思考問題。

  這里我有一個的想法,這個想法也來源于作業(yè)本的習題。能不能把70°角改成40°,當學生算出答案后,詢問學生,如果按角分,這是一個什么三角形?溝通按角分和按邊分三角形的橫向聯(lián)系,在練習中溫故而知新。再設計已知一個角是140°的等腰三角形的練習,打破學生的思維定勢,并不是所有等腰三角形都有兩種可能。之后再詢問:“一個角都不知道,如何求內(nèi)角!弊尵毩暩邔哟涡。

  應老師這節(jié)課還有很多值得我們學習的地方,比如應老師自如的教態(tài)、親切的語言讓學生倍感溫暖;精心準備的教具讓課堂不再沉悶;精彩的練習讓知識落到實處。以上是我對這節(jié)課一些不成熟的想法,希望各位老師給予批評和指正。

小學四年級數(shù)學《三角形內(nèi)角和》說課稿2

  一,說教材

  (一)教材的地位和作用

  《三角形內(nèi)角和》一課是人教版義務教育課程標準實驗教材四年級下冊第五單元的內(nèi)容,是在學生學習了《三角形的特性》以及《三角形三邊關系》,《三角形的分類》之后進行的,在此之后則是《圖形的拼組》,它是三角形的一個重要特征,也是掌握多邊形內(nèi)角和及解決其他實際問題的基礎,因此,學習,掌握三角形的內(nèi)角和是180°這一規(guī)律具有重要意義。

  (二)教學目標

  基于以上對教材的分析以及對教學現(xiàn)狀的思考,我從知識與技能,教學過程與方法,情感態(tài)度價值觀三方面擬定了本節(jié)課的教學目標:

  1。通過量一量;算一算;拼一拼折一折的小組活動的方法,探索發(fā)現(xiàn)驗證三角形內(nèi)角和等于180°,并能應用這一知識解決一些簡單問題。

  2。通過把三角形的內(nèi)角和轉(zhuǎn)化為平角進行探究實驗,滲透轉(zhuǎn)化;的數(shù)學思想。

  3。通過數(shù)學活動使學生獲得成功的體驗,增強自信心。培養(yǎng)學生的創(chuàng)新意識,探索精神和實踐能力。

  (三)教學重,難點

  因為學生已經(jīng)掌握了三角形的概念,分類,熟悉了鈍角,銳角,平角這些角的知識。對于三角形的內(nèi)角和是多少度,學生并不陌生,也有提前預習的習慣,學生幾乎都能回答出三角形的內(nèi)角和是180°。在整個過程中學生要了解的是內(nèi)角的概念,如何驗證得出三角形的內(nèi)角和是180°。因此本節(jié)課我提出的教學的重點是:驗證三角形的內(nèi)角和是180°。

  二,說教法,學法

  本節(jié)課主要是通過教師的精心引導和點撥,學生在小組中合作探索,通過量一量,折一折,撕一撕,畫一畫,選擇不同的一種或者幾種方法來驗證三角形的內(nèi)角和是180°。

  因為《課程標準》明確指出要結合有關內(nèi)容的教學,引導學生進行觀察,操作,猜想,培養(yǎng)學生初步的思維能力。四年級學生經(jīng)過第一學段以及本單元的學習,已經(jīng)掌握了三角形的分類,比較熟悉平角等有關知識;具備了初步的動手操作,主動探究的能力,他們正處于由形象思維向抽象思維過渡的階段。因此,本節(jié)課,我將重點引導學生從猜測――驗證展開學習活動,讓學生感受這種重要的數(shù)學思維方式。

  三,說教學過程

  我以引入,猜測,證實,深化和應用五個活動環(huán)節(jié)為主線,讓學生通過自主探究學習進行數(shù)學的思考過程,積累數(shù)學活動經(jīng)驗。

  引入

  呈現(xiàn)情境:出示多個已學的平面圖形,讓學生認識什么是內(nèi)角;。( 把圖形中相鄰兩邊的夾角稱為內(nèi)角) 長方形有幾個內(nèi)角 (四個)它的內(nèi)角有什么特點 (都是直角)這四個內(nèi)角的和是多少 (360°)三角形有幾個內(nèi)角呢 從而引入課題。

  【設計意圖】讓學生整體感知三角形內(nèi)角和的知識,這樣的教學, 將三角形內(nèi)角和置于平面圖形內(nèi)角和的大背景中, 拓展了三角形內(nèi)角和的數(shù)學知識背景, 滲透數(shù)學知識之間的聯(lián)系, 有效地避免了新知識的橫空出現(xiàn)

  猜測

  提出問題:長方形內(nèi)角和是360°,那么三角形內(nèi)角和是多少呢

  【設計意圖】引導學生提出合理猜測:三角形的內(nèi)角和是180°。

  (三)驗證

  (1)量:請學生每人畫一個自己喜歡的三角形,接著用量角器量一量,然后把這三個內(nèi)角的度數(shù)加起來算一算,看看得出的三角形的內(nèi)角和是多少度

 。2)撕―拼:利用平角是180°這一特點,啟發(fā)學生能否也把三角形的三個內(nèi)角撕下來拼在一起,成為一個平角 請學生同桌合作,從學具中選出一個三角形,撕下來拼一拼。

 。3)折—拼:把三角形的'三個內(nèi)角都向內(nèi)折,把這三個內(nèi)角拼組成一個平角,一個平角是180°,所以得出三角形的內(nèi)角和是180°。

  (4)畫:根據(jù)長方形的內(nèi)角和來驗證三角形內(nèi)角和是180°。

  一個長方形有4個直角,每個直角90°,那么長方形的內(nèi)角和就是360°,每個長方形都可以平均分成兩個直角三角形,每個直角三角形的內(nèi)角和就是180°。從長方形的內(nèi)角和聯(lián)想到直角三角形的內(nèi)角和是180°。

  【設計意圖】利用已經(jīng)學過的知識構建新的數(shù)學知識, 這不僅有助于學生理解新的知識, 而且是一種非常重要的學習方法。在探索三角形內(nèi)角和規(guī)律的教學中,注意引導學生將三角形內(nèi)角和與平角,長方形四個內(nèi)角的和等知識聯(lián)系

  起來, 并使學生在新舊知識的連接點和新知識的生長點上把握好他們之間的內(nèi)在聯(lián)系。在整個探索過程中學生積極思考并大膽發(fā)言, 他們的創(chuàng)造性思維得到了充分發(fā)揮。

  深化

  質(zhì)疑: 大小不同的三角形, 它們的內(nèi)角和會是一樣嗎

  觀察指著黑板上兩個大小不同但三個角對應相等的三角形并說明原因,三角形變大了, 但角的大小沒有變。)

  結論: 角的兩條邊長了, 但角的大小不變。因為角的大小與邊的長短無關。

  實驗: 教師先在黑板上固定小棒, 然后用活動角與小棒組成一個三角形, 教師手拿活動角的頂點處, 往下壓, 形成一個新的三角形, 活動角在變大, 而另外兩個角在變小。這樣多次變化, 活動角越來越大, 而另外兩個角越來越小。最后, 當活動角的兩條邊與小棒重合時。

  結論:活動角就是一個平角180°, 另外兩個角都是0°。

  【設計意圖】小學生由于年齡小, 容易受圖形或物體的外在形式的影響。教師主要是引導學生與角的有關知識聯(lián)系起來,通過讓學生觀察利用角的大小與邊的長短無關的舊知識來理解說明。

  對于利用精巧的小教具的演示, 讓學生通過觀察,交流,想象, 充分感受三角形三個角之間的聯(lián)系和變化, 感悟三角形內(nèi)角和不變的原因。

  (五)應用

  1;A練習:書本練習十四的習題9,求出三角形各個角的度數(shù)。

  2。變式練習:一個三角形可能有兩個直角嗎 一個三角形可能有兩個鈍角嗎 你能用今天所學的知識說明嗎3。(1)將兩個完全一樣的直角三角形拼成一個大三角形, 這個大三角形的內(nèi)角和是多少

 。2) 將一個大三角形分成兩個小三角形, 這兩個小三角形的內(nèi)角和分別是多少

  4。智力大挑戰(zhàn): 你能求出下面圖形的內(nèi)角和嗎 書本練習十四的習題

  【設計意圖】習題是溝通知識聯(lián)系的有效手段。在本節(jié)課的四個層次的練習中, 能充分注意溝通知識之間的內(nèi)在聯(lián)系, 使學生從整體上把握知識的來龍去脈和縱橫聯(lián)系,逐步形成對知識的整體認知, 構建自己的認知結構, 從而發(fā)展思維, 提高綜合運用知識解決問題的能力。

  第一題將三角形內(nèi)角和知識與三角形特征結合起來,引導學生綜合運用內(nèi)角和知識和直角三角形,等邊三角形等圖形特征求三角形內(nèi)角的度數(shù)。

  第二題將三角形內(nèi)角和知識與三角形的分類知識結合起來,引導學生運用三角形內(nèi)角和的知識去解釋直角三角形,鈍角三角形中角的特征, 較好地溝通了知識之間的聯(lián)系。

  第三題通過兩個三角形的分與合的過程,使學生感受此過程中三角內(nèi)角的 變化情況, 進一步理解三角形內(nèi)角和的知識。

  第四題是對三角形內(nèi)角和知識的進一步拓展, 引導學生進一步研究多邊形的內(nèi)角和。教學中, 學生能把這些多邊形分成幾個三角形, 將多邊形內(nèi)角和與三角形內(nèi)角和聯(lián)系起來,并逐步發(fā)現(xiàn)多邊形內(nèi)角和的規(guī)律, 以此促進學生對多邊形內(nèi)角和知識的整體構建。能充分注意溝通知識之間的內(nèi)在聯(lián)系, 使學生從整體上把握知識的來龍去脈和縱橫聯(lián)系,逐步形成對知識的整體認知, 構建自己的認知結構, 從而發(fā)展思維, 提高綜合運用知識解決問題的能力。

  第一題將三角形內(nèi)角和知識與三角形特征結合起來,引導學生綜合運用內(nèi)角和知識和直角三角形,等邊三角形等圖形特征求三角形內(nèi)角的度數(shù)。

  第二題將三角形內(nèi)角和知識與三角形的分類知識結合起來,引導學生運用三角形內(nèi)角和的知識去解釋直角三角形,鈍角三角形中角的特征, 較好地溝通了知識之間的聯(lián)系。

  第三題通過兩個三角形的分與合的過程,使學生感受此過程中三角內(nèi)角的 變化情況, 進一步理解三角形內(nèi)角和的知識。

  第四題是對三角形內(nèi)角和知識的進一步拓展, 引導學生進一步研究多邊形的內(nèi)角和。教學中, 學生能把這些多邊形分成幾個三角形, 將多邊形內(nèi)角和與三角形內(nèi)角和聯(lián)系起來,并逐步發(fā)現(xiàn)多邊形內(nèi)角和的規(guī)律, 以此促進學生對多邊形內(nèi)角和知識的整體構建。

【小學四年級數(shù)學《三角形內(nèi)角和》說課稿】相關文章:

小學數(shù)學四年級《三角形內(nèi)角和》說課稿08-18

三角形內(nèi)角和教學設計08-14

小學四年級數(shù)學《小數(shù)加法和減法》說課稿08-18

小學數(shù)學說課稿《小數(shù)的意義和性質(zhì)》11-26

初中數(shù)學《相似三角形》說課稿范文12-10

小學數(shù)學說課稿01-03

《小學數(shù)學乘法》說課稿08-14

初中數(shù)學《三角形外角和》教學反思09-15

小學數(shù)學《長方體和正方體體積》說課稿08-18

初中數(shù)學《正數(shù)和負數(shù)》優(yōu)秀說課稿06-12