高中數(shù)學(xué)說(shuō)課稿(通用20篇)
作為一名優(yōu)秀的教育工作者,編寫(xiě)說(shuō)課稿是必不可少的,說(shuō)課稿有助于教學(xué)取得成功、提高教學(xué)質(zhì)量。說(shuō)課稿應(yīng)該怎么寫(xiě)才好呢?下面是小編收集整理的高中數(shù)學(xué)說(shuō)課稿,歡迎閱讀與收藏。
高中數(shù)學(xué)說(shuō)課稿 1
說(shuō)教學(xué)目標(biāo)
A、知識(shí)目標(biāo):
掌握等差數(shù)列前n項(xiàng)和公式的推導(dǎo)方法;掌握公式的運(yùn)用。
B、能力目標(biāo):
。1)通過(guò)公式的探索、發(fā)現(xiàn),在知識(shí)發(fā)生、發(fā)展以及形成過(guò)程中培養(yǎng)學(xué)生觀察、聯(lián)想、歸納、分析、綜合和邏輯推理的能力。
。2)利用以退求進(jìn)的思維策略,遵循從特殊到一般的認(rèn)知規(guī)律,讓學(xué)生在實(shí)踐中通過(guò)觀察、嘗試、分析、類比的方法導(dǎo)出等差數(shù)列的求和公式,培養(yǎng)學(xué)生類比思維能力。
。3)通過(guò)對(duì)公式從不同角度、不同側(cè)面的剖析,培養(yǎng)學(xué)生思維的靈活性,提高學(xué)生分析問(wèn)題和解決問(wèn)題的能力。
C、情感目標(biāo):(數(shù)學(xué)文化價(jià)值)
。1)公式的發(fā)現(xiàn)反映了普遍性寓于特殊性之中,從而使學(xué)生受到辯證唯物主義思想的熏陶。
(2)通過(guò)公式的運(yùn)用,樹(shù)立學(xué)生"大眾教學(xué)"的思想意識(shí)。
。3)通過(guò)生動(dòng)具體的現(xiàn)實(shí)問(wèn)題,令人著迷的數(shù)學(xué)史,激發(fā)學(xué)生探究的興趣和欲望,樹(shù)立學(xué)生求真的勇氣和自信心,增強(qiáng)學(xué)生學(xué)好數(shù)學(xué)的心理體驗(yàn),產(chǎn)生熱愛(ài)數(shù)學(xué)的情感。
說(shuō)教學(xué)重點(diǎn):
等差數(shù)列前n項(xiàng)和的公式。
說(shuō)教學(xué)難點(diǎn):
等差數(shù)列前n項(xiàng)和的公式的靈活運(yùn)用。
說(shuō)教學(xué)方法:
啟發(fā)、討論、引導(dǎo)式。
教具:
現(xiàn)代教育多媒體技術(shù)。
教學(xué)過(guò)程
一、創(chuàng)設(shè)情景,導(dǎo)入新課。
師:上幾節(jié),我們已經(jīng)掌握了等差數(shù)列的概念、通項(xiàng)公式及其有關(guān)性質(zhì),今天要進(jìn)一步研究等差數(shù)列的.前n項(xiàng)和公式。提起數(shù)列求和,我們自然會(huì)想到德國(guó)偉大的數(shù)學(xué)家高斯"神速求和"的故事,小高斯上小學(xué)四年級(jí)時(shí),一次教師布置了一道數(shù)學(xué)習(xí)題:"把從1到100的自然數(shù)加起來(lái),和是多少?"年僅10歲的小高斯略一思索就得到答案5050,這使教師非常吃驚,那么高斯是采用了什么方法來(lái)巧妙地計(jì)算出來(lái)的呢?如果大家也懂得那樣巧妙計(jì)算,那你們就是二十世紀(jì)末的新高斯。(教師觀察學(xué)生的表情反映,然后將此問(wèn)題縮小十倍)。我們來(lái)看這樣一道一例題。
例1,計(jì)算:1+2+3+4+5+6+7+8+9+10。
這道題除了累加計(jì)算以外,還有沒(méi)有其他有趣的解法呢?小組討論后,讓學(xué)生自行發(fā)言解答。
生1:因?yàn)?+10=2+9=3+8=4+7=5+6,所以可湊成5個(gè)11,得到55。
生2:可設(shè)S=1+2+3+4+5+6+7+8+9+10,根據(jù)加法交換律,又可寫(xiě)成S=10+9+8+7+6+5+4+3+2+1。
上面兩式相加得2S=11+10+……+11=10x11=110
10個(gè)
所以我們得到S=55,即1+2+3+4+5+6+7+8+9+10=55
師:高斯神速計(jì)算出1到100所有自然數(shù)的各的方法,和上述兩位同學(xué)的方法相類似。
理由是:1+100=2+99=3+98=……=50+51=101,有50個(gè)101,所以1+2+3+……+100=50x101=5050。請(qǐng)同學(xué)們想一下,上面的方法用到等差數(shù)列的哪一個(gè)性質(zhì)呢?
生3:數(shù)列{an}是等差數(shù)列,若m+n=p+q,則am+an=ap+aq。
二、教授新課(嘗試推導(dǎo))
師:如果已知等差數(shù)列的首項(xiàng)a1,項(xiàng)數(shù)為n,第n項(xiàng)an,根據(jù)等差數(shù)列的性質(zhì),如何來(lái)導(dǎo)出它的前n項(xiàng)和Sn計(jì)算公式呢?根據(jù)上面的例子同學(xué)們自己完成推導(dǎo),并請(qǐng)一位學(xué)生板演。
生4:Sn=a1+a2+……an—1+an也可寫(xiě)成
Sn=an+an—1+……a2+a1
兩式相加得2Sn=(a1+an)+(a2+an—1)+……(an+a1)
n個(gè)
=n(a1+an)
所以Sn=(I)
師:好!如果已知等差數(shù)列的首項(xiàng)為a1,公差為d,項(xiàng)數(shù)為n,則an=a1+(n—1)d代入公式(1)得
Sn=na1+d(II)
上面(I)、(II)兩個(gè)式子稱為等差數(shù)列的前n項(xiàng)和公式。公式(I)是基本的,我們可以發(fā)現(xiàn),它可與梯形面積公式(上底+下底)x高÷2相類比,這里的上底是等差數(shù)列的首項(xiàng)a1,下底是第n項(xiàng)an,高是項(xiàng)數(shù)n。引導(dǎo)學(xué)生總結(jié):這些公式中出現(xiàn)了幾個(gè)量?(a1,d,n,an,Sn),它們由哪幾個(gè)關(guān)系聯(lián)系?[an=a1+(n—1)d,Sn==na1+d];這些量中有幾個(gè)可自由變化?(三個(gè))從而了解到:只要知道其中任意三個(gè)就可以求另外兩個(gè)了。下面我們舉例說(shuō)明公式(I)和(II)的一些應(yīng)用。
三、公式的應(yīng)用(通過(guò)實(shí)例演練,形成技能)。
1、直接代公式(讓學(xué)生迅速熟悉公式,即用基本量例2、計(jì)算:
。1)1+2+3+……+n
。2)1+3+5+……+(2n—1)
。3)2+4+6+……+2n
(4)1—2+3—4+5—6+……+(2n—1)—2n
請(qǐng)同學(xué)們先完成(1)—(3),并請(qǐng)一位同學(xué)回答。
生5:直接利用等差數(shù)列求和公式(I),得
(1)1+2+3+……+n=
。2)1+3+5+……+(2n—1)=
(3)2+4+6+……+2n==n(n+1)
師:第(4)小題數(shù)列共有幾項(xiàng)?是否為等差數(shù)列?能否直接運(yùn)用Sn公式求解?若不能,那應(yīng)如何解答?小組討論后,讓學(xué)生發(fā)言解答。
生6:(4)中的數(shù)列共有2n項(xiàng),不是等差數(shù)列,但把正項(xiàng)和負(fù)項(xiàng)分開(kāi),可看成兩個(gè)等差數(shù)列,所以
原式=[1+3+5+……+(2n—1)]—(2+4+6+……+2n)
=n2—n(n+1)=—n
生7:上題雖然不是等差數(shù)列,但有一個(gè)規(guī)律,兩項(xiàng)結(jié)合都為—1,故可得另一解法:
原式=—1—1—……—1=—n
n個(gè)
師:很好!在解題時(shí)我們應(yīng)仔細(xì)觀察,尋找規(guī)律,往往會(huì)尋找到好的方法。注意在運(yùn)用Sn公式時(shí),要看清等差數(shù)列的項(xiàng)數(shù),否則會(huì)引起錯(cuò)解。
例3、(1)數(shù)列{an}是公差d=—2的等差數(shù)列,如果a1+a2+a3=12,a8+a9+a10=75,求a1,d,S10。
生8:(1)由a1+a2+a3=12得3a1+3d=12,即a1+d=4
又∵d=—2,∴a1=6
∴S12=12a1+66x(—2)=—60
生9:(2)由a1+a2+a3=12,a1+d=4
a8+a9+a10=75,a1+8d=25
解得a1=1,d=3
∴S10=10a1+=145
師:通過(guò)上面例題我們掌握了等差數(shù)列前n項(xiàng)和的公式。在Sn公式有5個(gè)變量。已知三個(gè)變量,可利用構(gòu)造方程或方程組求另外兩個(gè)變量(知三求二),請(qǐng)同學(xué)們根據(jù)例3自己編題,作為本節(jié)的課外練習(xí)題,以便下節(jié)課交流。
師:(繼續(xù)引導(dǎo)學(xué)生,將第(2)小題改編)
、贁(shù)列{an}等差數(shù)列,若a1+a2+a3=12,a8+a9+a10=75,且Sn=145,求a1,d,n
②若此題不求a1,d而只求S10時(shí),是否一定非來(lái)求得a1,d不可呢?引導(dǎo)學(xué)生運(yùn)用等差數(shù)列性質(zhì),用整體思想考慮求a1+a10的值。
2、用整體觀點(diǎn)認(rèn)識(shí)Sn公式。
例4,在等差數(shù)列{an},(1)已知a2+a5+a12+a15=36,求S16;(2)已知a6=20,求S11。(教師啟發(fā)學(xué)生解)
師:來(lái)看第(1)小題,寫(xiě)出的計(jì)算公式S16==8(a1+a6)與已知相比較,你發(fā)現(xiàn)了什么?
生10:根據(jù)等差數(shù)列的性質(zhì),有a1+a16=a2+a15=a5+a12=18,所以S16=8x18=144。
師:對(duì)。ê(jiǎn)單小結(jié))這個(gè)題目根據(jù)已知等式是不能直接求出a1,a16和d的,但由等差數(shù)列的性質(zhì)可求a1與an的和,于是這個(gè)問(wèn)題就得到解決。這是整體思想在解數(shù)學(xué)問(wèn)題的體現(xiàn)。
師:由于時(shí)間關(guān)系,我們對(duì)等差數(shù)列前n項(xiàng)和公式Sn的運(yùn)用一一剖析,引導(dǎo)學(xué)生觀察當(dāng)d≠0時(shí),Sn是n的二次函數(shù),那么從二次(或一次)的函數(shù)的觀點(diǎn)如何來(lái)認(rèn)識(shí)Sn公式后,這留給同學(xué)們課外繼續(xù)思考。
最后請(qǐng)大家課外思考Sn公式(1)的逆命題:
已知數(shù)列{an}的前n項(xiàng)和為Sn,若對(duì)于所有自然數(shù)n,都有Sn=。數(shù)列{an}是否為等差數(shù)列,并說(shuō)明理由。
四、小結(jié)與作業(yè)。
師:接下來(lái)請(qǐng)同學(xué)們一起來(lái)小結(jié)本節(jié)課所講的內(nèi)容。
生11:1、用倒序相加法推導(dǎo)等差數(shù)列前n項(xiàng)和公式。
2、用所推導(dǎo)的兩個(gè)公式解決有關(guān)例題,熟悉對(duì)Sn公式的運(yùn)用。
生12:1、運(yùn)用Sn公式要注意此等差數(shù)列的項(xiàng)數(shù)n的值。
2、具體用Sn公式時(shí),要根據(jù)已知靈活選擇公式(I)或(II),掌握知三求二的解題通法。
3、當(dāng)已知條件不足以求此項(xiàng)a1和公差d時(shí),要認(rèn)真觀察,靈活應(yīng)用等差數(shù)列的有關(guān)性質(zhì),看能否用整體思想的方法求a1+an的值。
師:通過(guò)以上幾例,說(shuō)明在解題中靈活應(yīng)用所學(xué)性質(zhì),要糾正那種不明理由盲目套用公式的學(xué)習(xí)方法。同時(shí)希望大家在學(xué)習(xí)中做一個(gè)有心人,去發(fā)現(xiàn)更多的性質(zhì),主動(dòng)積極地去學(xué)習(xí)。
本節(jié)所滲透的數(shù)學(xué)方法;觀察、嘗試、分析、歸納、類比、特定系數(shù)等。
數(shù)學(xué)思想:類比思想、整體思想、方程思想、函數(shù)思想等。
作業(yè):P49:13、14、15、17
高中數(shù)學(xué)說(shuō)課稿 2
一、教材分析:
《向量的加法》是《必修》4第二章第二單元中"平面向量的線性運(yùn)算"的第一節(jié)課。本節(jié)資料有向量加法的平行四邊形法則、三角形法則及應(yīng)用,向量加法的運(yùn)算律及應(yīng)用,大約需要1課時(shí)。向量的加法是向量的線性運(yùn)算中最基本的一種運(yùn)算,向量的加法及其幾何意義為后繼學(xué)習(xí)向量的減法運(yùn)算及其幾何意義、向量的數(shù)乘運(yùn)算及其幾何意義奠定了基礎(chǔ);其中三角形法則適用于求任意多個(gè)向量的和,在空間向量與立體幾何中有很普遍的應(yīng)用。所以本課在"平面向量"及"空間向量"中有很重要的地位。
二、學(xué)情分析:
學(xué)生在上節(jié)課中學(xué)習(xí)了向量的定義及表示,相等向量,平行向量等概念,明白向量能夠自由移動(dòng),這是學(xué)習(xí)本節(jié)資料的基礎(chǔ)。學(xué)生對(duì)數(shù)的運(yùn)算了如指掌,并且在物理中學(xué)過(guò)力的合成、位移的合成等矢量的加法,所以向量的加法可經(jīng)過(guò)類比數(shù)的加法、以所學(xué)的物理模型為背景引入,這樣做有利于學(xué)生更好地理解向量加法的意義,準(zhǔn)確把握兩個(gè)加法法則的特點(diǎn)。
三、教學(xué)目的:
1、經(jīng)過(guò)對(duì)向量加法的探究,使學(xué)生掌握向量加法的概念,結(jié)合物理學(xué)實(shí)際理解向量加法的意義。能正確領(lǐng)會(huì)向量加法的平行四邊形法則和三角形法則的幾何意義,并能運(yùn)用法則作出兩個(gè)已知向量的和向量。
2、在應(yīng)用活動(dòng)中,理解向量加法滿足交換律和結(jié)合律以及表述兩個(gè)運(yùn)算律的幾何意義。掌握有特殊位置關(guān)系的兩個(gè)向量之和,比如共線向量,共起點(diǎn)向量、共終點(diǎn)向量等。
3、經(jīng)過(guò)本節(jié)的學(xué)習(xí),培養(yǎng)學(xué)生類比、遷移、分類、歸納等數(shù)學(xué)方面的能力。
四、教學(xué)重、難點(diǎn)
重點(diǎn):向量的加法法則。探究向量的加法法則并正確應(yīng)用是本課的重點(diǎn)。兩個(gè)加法法則各有特點(diǎn),聯(lián)系緊密,你中有我,我中有你,實(shí)質(zhì)相同,可是三角形法則適用范圍更加廣泛,且簡(jiǎn)便易行,所以是詳講資料,平行四邊形法則在本課中所占份量略少于三角形法則。
難點(diǎn):對(duì)三角形法則的理解;方向相反的兩個(gè)向量的加法。主要是讓學(xué)生認(rèn)識(shí)到三角形法則的實(shí)質(zhì)是:將已知向量首尾相接,而不是表示向量的有向線段之間必須構(gòu)成三角形。
五、教學(xué)方法
本節(jié)采用以下教學(xué)方法:
1、類比:由數(shù)的加法運(yùn)算類比向量的加法運(yùn)算。
2、探究:由力的合成引入平行四邊形法則,在法則的運(yùn)用中觀察圖形得出三角形法則,探求共線向量的加法,發(fā)現(xiàn)三角形法則適用于任意向量相加;經(jīng)過(guò)圖形,觀察得出向量加法滿足交換律、結(jié)合律等,這些都體現(xiàn)探究式教學(xué)法的運(yùn)用。
3、講解與練習(xí):對(duì)兩個(gè)法則特點(diǎn)的分析,例題都采取了引導(dǎo)與講解的方法,學(xué)生課堂完成教材中的練習(xí)。
4、多媒體技術(shù)的運(yùn)用,能直觀地表現(xiàn)向量的平移,相等向量的意義,更能說(shuō)清兩個(gè)法則的幾何意義及運(yùn)算律。
六、數(shù)學(xué)思想的體現(xiàn):
1、分類的思想:總的來(lái)說(shuō)本課中向量的加法分為不共線向量及共線向量?jī)煞N形式,共線向量又分為方向相同與方向相反兩種情形,然后專門(mén)對(duì)零向量與任意向量相加作了規(guī)定,這樣對(duì)任意向量的加法都做了討論,線索清楚。
2、類比思想:使之與數(shù)的加法進(jìn)行類比,使學(xué)生對(duì)向量的加法不致于太陌生,既有似曾相識(shí)的感覺(jué),又能從比較中看出兩者的不一樣,效果較好。
3、歸納思想:主要體現(xiàn)在以下三個(gè)環(huán)節(jié):
、賹W(xué)完平行四邊形法則和三角形法則后,歸納總結(jié),對(duì)不共線向量相加,兩個(gè)法則都能夠選用。
②由共線向量的加法總結(jié)出三角形法則適用于任意兩個(gè)向量的相加,而三角形法則僅適用于不共線向量相加。
③對(duì)向量加法的結(jié)合律和探討中,又使學(xué)生發(fā)現(xiàn)了三角形法則還適用于任意多個(gè)向量的加法。歸納思想在這三個(gè)環(huán)節(jié)中的運(yùn)用,使得學(xué)生對(duì)兩個(gè)加法法則,尤其是三角形法則的理解,步步深入。
七、教學(xué)過(guò)程:
1、回顧舊知:本節(jié)要進(jìn)行向量的平移,且對(duì)向量加法分共線與不共線兩種情景,所以要復(fù)習(xí)向量、相等向量、共線向量等概念,這些都是新課學(xué)習(xí)中必要的知識(shí)鋪墊。
2、引入新課:
。1)平行四邊形法則的引入。
學(xué)生在物理學(xué)中雖然接觸過(guò)位移的合成,可是并沒(méi)有構(gòu)成三角形法則的概念;而對(duì)平行四邊形法則學(xué)生已學(xué)過(guò),很熟悉。所以我決定由力的合成引入向量加法的平行四邊形法則。平行四邊形法則的特點(diǎn)是起點(diǎn)相同,可是物理中力的合成是在有相同的作用點(diǎn)的條件下合成的,引入到數(shù)學(xué)中向量加法的平行四邊形法則,所給出的圖形也是現(xiàn)成的平行四邊形,而學(xué)生剛學(xué)完相等向量,對(duì)相等向量的概念還沒(méi)有深刻的認(rèn)識(shí),易產(chǎn)生誤解:表示兩個(gè)已知向量的有向線段的起點(diǎn)必須在一起才能用平行四邊形法則,不在一起不能用。這時(shí)要經(jīng)過(guò)講解例1,使學(xué)生認(rèn)識(shí)到能夠經(jīng)過(guò)平移向量,使表示兩個(gè)向量的有向線段有共同的起點(diǎn)。這一點(diǎn)對(duì)理解及運(yùn)用法則求兩向量的和很重要。
設(shè)計(jì)意圖:本著從學(xué)生最熟悉、離學(xué)生最近的知識(shí)經(jīng)驗(yàn)為接入點(diǎn),用學(xué)生熟知的方法來(lái)解決新的問(wèn)題——向量的加法,這樣新中有舊,學(xué)生容易理解,也使學(xué)科間的滲透發(fā)揮了作用,加深了學(xué)生對(duì)向量加法的`平行四邊形法則的"起點(diǎn)相同"這一特點(diǎn)的認(rèn)識(shí),例1的講解使學(xué)生認(rèn)識(shí)到當(dāng)表示向量的有向線段的起點(diǎn)不在一起時(shí),須把起點(diǎn)移到一起,至此才能使學(xué)生完成對(duì)平行四邊形法則理解真正到位。
(2)三角形法則的引入。三角形法則沒(méi)有按照教材中利用位移的合成引入,而是從前面所講的平行四邊形法則的圖形中直接引入。
所以這種把兩個(gè)向量相加的方法稱為三角形法則。接下來(lái)用幻燈片完整展示三角形法則,同時(shí)法則的作法敘述、作圖過(guò)程對(duì)學(xué)生也起到了示例的作用。于是前面的例1還能夠利用三角形法則來(lái)做。
這時(shí),總結(jié)出兩個(gè)不共線向量求和時(shí),平行四邊形法則與三角形法則都能夠用。
設(shè)計(jì)意圖:由平行四邊形法則的圖形引入三角形法則,能夠很清楚地使學(xué)生從向何意義上認(rèn)識(shí)到兩個(gè)法則之間的密切聯(lián)系,理解它們的實(shí)質(zhì),并且銜接自然,能夠使學(xué)生比較地得出兩個(gè)法則的特點(diǎn)與實(shí)質(zhì),并對(duì)兩個(gè)法則的特點(diǎn)有較深刻的印象。
。3)共線向量的加法
方向相同的兩個(gè)向量相加,對(duì)學(xué)生來(lái)說(shuō)較易完成,"將它們接在一起,取它們的方向及長(zhǎng)度之和,作為和向量的方向與長(zhǎng)度。"引導(dǎo)學(xué)生分析作法,結(jié)果發(fā)現(xiàn)還是運(yùn)用了三角形法則:首尾相接,方向由第一個(gè)向量的起點(diǎn)指向第二個(gè)向量的終點(diǎn)。
方向相反的兩個(gè)向量相加,對(duì)學(xué)生來(lái)說(shuō)是個(gè)難點(diǎn),首先從作圖上不明白怎樣做?墒菍W(xué)生學(xué)過(guò)有理數(shù)加法中的異號(hào)兩數(shù)相加:"異號(hào)兩數(shù)相加,用較大的絕對(duì)值減去較小的絕對(duì)值,符號(hào)取絕對(duì)值較大的數(shù)的符號(hào)。"類比異號(hào)兩數(shù)相加,他們會(huì)用較長(zhǎng)的模減去較短的模,方向取模較長(zhǎng)的向量的方向。具體做法由教師引導(dǎo)學(xué)生嘗試運(yùn)用三角形法則去做,發(fā)現(xiàn)結(jié)論正確。
反思過(guò)程,學(xué)生自然會(huì)想到方向相同的兩個(gè)向量相加,類似于同號(hào)兩數(shù)相加。這說(shuō)明兩個(gè)共線向量相加依然可用三角形法則經(jīng)過(guò)以上幾個(gè)環(huán)節(jié)的討論,能夠作個(gè)簡(jiǎn)單的小結(jié):兩個(gè)不共線向量相加,可采用平行四邊形法則或三角形法則,而兩個(gè)共線向量相加在本課所學(xué)方法中只能用三角形法則,說(shuō)明三角形法則適用于任意兩個(gè)向量相加。
設(shè)計(jì)意圖:經(jīng)過(guò)對(duì)共線向量加法的探討,拓寬了學(xué)生對(duì)三角形法則的認(rèn)識(shí),使得不一樣位置的向量相加都有了依據(jù),并且采用類比的方法,使學(xué)生對(duì)共線向量的加法,尤其是方向相反的兩個(gè)向量的加法更易于理解,能夠化解難點(diǎn)。
。4)向量加法的運(yùn)算律
、俳粨Q律:交換律是利用平行四邊形法則的圖形,又結(jié)合三角形法則得出,理解起來(lái)沒(méi)什么困難,再一次強(qiáng)化了學(xué)生對(duì)兩個(gè)法則特點(diǎn)及實(shí)質(zhì)的認(rèn)識(shí)。
②結(jié)合律:結(jié)合律是經(jīng)過(guò)三個(gè)向量首尾相接,先加前兩個(gè)再與第三個(gè)向量相加,和先加后兩個(gè)向量再與第一個(gè)向量相加所得結(jié)果相同。
接下來(lái)是對(duì)應(yīng)的兩個(gè)練習(xí),運(yùn)用交換律與結(jié)合律計(jì)算向量的和。
設(shè)計(jì)意圖:運(yùn)算律的引入給加法運(yùn)算帶來(lái)方便,從后面的練習(xí)中學(xué)生能夠體會(huì)到這點(diǎn)。由結(jié)合律還使學(xué)生發(fā)現(xiàn),多個(gè)向量相加,同樣能夠運(yùn)用三角形法則:將所加向量首尾相接,和向量的方向是由第一個(gè)向量的起點(diǎn)指向最終一個(gè)向量的終點(diǎn)。這樣使學(xué)生明白,三角形法則適用于任意多個(gè)向量相加。
3、小結(jié)
先由學(xué)生小結(jié),檢查學(xué)生對(duì)本課重要知識(shí)的認(rèn)識(shí),也給學(xué)生一個(gè)概括本節(jié)知識(shí)的機(jī)會(huì),然后用課件展示小結(jié)資料,使學(xué)生印象更深。
。1)平行四邊形法則:起點(diǎn)相同,適用于不共線向量的求和。
。2)三角形法則首尾相接,適用于任意多個(gè)向量的求和。
高中數(shù)學(xué)說(shuō)課稿 3
尊敬的各位考官:
大家好!
我是今天的xx號(hào)考生,今天我說(shuō)課的題目是《直線與平面平行的判定》。
高中數(shù)學(xué)課程以學(xué)生發(fā)展為本,提升數(shù)學(xué)學(xué)科核心素養(yǎng)。這節(jié)課我將秉承這一教學(xué)理念,從教材分析、教學(xué)目標(biāo)、教學(xué)過(guò)程等幾個(gè)方面來(lái)展開(kāi)我的說(shuō)課。
一、說(shuō)教材
本節(jié)課選自人教A版高中數(shù)學(xué)必修2第二章第2節(jié)。此前學(xué)生對(duì)空間立體幾何已經(jīng)有了一定的感知。通過(guò)本節(jié)課的學(xué)習(xí),能使學(xué)生進(jìn)一步了解空間中直線與平面平行關(guān)系的判定方法,培養(yǎng)學(xué)生的邏輯思維和空間想象能力。
二、說(shuō)學(xué)情
學(xué)生已經(jīng)學(xué)習(xí)了空間中點(diǎn)、直線、平面間的位置關(guān)系,知道若直線與平面平行,則沒(méi)有公共點(diǎn),但直接利用定義無(wú)法進(jìn)行判斷。因而我會(huì)注意在教學(xué)時(shí)逐步引導(dǎo)學(xué)生,在辯證思考中探索直線與平面平行的條件。
三、說(shuō)教學(xué)目標(biāo)
根據(jù)以上對(duì)教材的分析和對(duì)學(xué)情的把握,我設(shè)置本節(jié)課的教學(xué)目標(biāo)如下:
。ㄒ唬┲R(shí)與技能
掌握直線與平面平行的判定定理,會(huì)用文字語(yǔ)言、符號(hào)語(yǔ)言和圖形語(yǔ)言描述判定定理,并會(huì)進(jìn)行簡(jiǎn)單應(yīng)用。
(二)過(guò)程與方法
通過(guò)直觀感知、觀察、操作確認(rèn)的認(rèn)知過(guò)程,培養(yǎng)空間想象力和邏輯思維能力,體會(huì)“降維”的思想。
(三)情感、態(tài)度與價(jià)值觀
通過(guò)生活中的實(shí)例,體會(huì)平行關(guān)系在生活中的.廣泛應(yīng)用;在探究線面平行判定定理的過(guò)程中,形成學(xué)習(xí)數(shù)學(xué)的積極態(tài)度。
四、說(shuō)教學(xué)重難點(diǎn)
根據(jù)學(xué)生現(xiàn)有的知識(shí)儲(chǔ)備和知識(shí)本身的難易程度,我設(shè)置本節(jié)課教學(xué)重點(diǎn)為:直線與平面平行的判定定理。教學(xué)難點(diǎn)為:直線與平面平行的判定定理的探究。
五、說(shuō)教法和學(xué)法
為達(dá)成教學(xué)目標(biāo),突破教學(xué)重難點(diǎn),本節(jié)課我將采用講授法、自主探究法、練習(xí)法等教學(xué)方法,以達(dá)到教與學(xué)的和諧完美統(tǒng)一。
六、說(shuō)教學(xué)過(guò)程
下面我將重點(diǎn)談?wù)勎业慕虒W(xué)過(guò)程。
。ㄒ唬┮胄抡n
導(dǎo)入環(huán)節(jié)我會(huì)帶領(lǐng)學(xué)生從文字語(yǔ)言、圖形語(yǔ)言和符號(hào)語(yǔ)言這三個(gè)角度復(fù)習(xí)直線與平面有哪些位置關(guān)系。接著我會(huì)請(qǐng)學(xué)生思考,該如何判定直線與平面平行。根據(jù)定義,只需判定直線與平面沒(méi)有公共點(diǎn)即可。但直線無(wú)限伸長(zhǎng),平面無(wú)限延展,如何保證直線與平面無(wú)公共點(diǎn)。由此引發(fā)認(rèn)知沖突,引入本節(jié)課的學(xué)習(xí)。
通過(guò)復(fù)習(xí)導(dǎo)入,不僅鞏固了之前所學(xué),建立起新舊知識(shí)之間的聯(lián)系,而且能夠有效激發(fā)起學(xué)生的學(xué)習(xí)興趣,從而為下面的學(xué)習(xí)打好基礎(chǔ)。
。ǘ┲v解新知
接下來(lái)是新知講解環(huán)節(jié)。
我會(huì)請(qǐng)學(xué)生觀察,教室門(mén)扇的兩邊是平行的,當(dāng)門(mén)扇繞著一邊轉(zhuǎn)動(dòng)時(shí),觀察門(mén)扇轉(zhuǎn)動(dòng)的一邊和門(mén)框所在平面有怎樣的位置關(guān)系。并組織學(xué)生動(dòng)手操作,將書(shū)本平放在桌面上,翻動(dòng)書(shū)的封面,封面邊緣所在直線與桌面所在平面具有什么樣的位置關(guān)系。
學(xué)生不難看出其中的平行關(guān)系。在此基礎(chǔ)上,我會(huì)請(qǐng)學(xué)生同桌兩人交流討論,如果直線與平面平行,則這條直線與平面內(nèi)多少條直線平行。如果這條直線平行于平面內(nèi)的無(wú)數(shù)條直線,那么這條直線是否一定與這個(gè)平面平行。
。ㄈ┱n堂練習(xí)
除了知道知識(shí),學(xué)生還要能對(duì)知識(shí)進(jìn)行應(yīng)用。我會(huì)出示以下練習(xí)題:求證空間四邊形相鄰兩邊中點(diǎn)的連線平行于另外兩邊所在的平面。結(jié)合這一練習(xí)題,我會(huì)進(jìn)一步強(qiáng)調(diào),線面平行問(wèn)題可轉(zhuǎn)化為線線平行問(wèn)題。這也為之后線面、面面關(guān)系的學(xué)習(xí)奠定基礎(chǔ)。
。ㄋ模┬〗Y(jié)作業(yè)
課堂小結(jié)部分,我會(huì)充分發(fā)揮學(xué)生的主體性,請(qǐng)學(xué)生說(shuō)一說(shuō)本節(jié)課的收獲。收獲不僅僅只是知識(shí)方面,也可以說(shuō)一說(shuō)這節(jié)課學(xué)到的思想方法等,進(jìn)一步培養(yǎng)學(xué)生的綜合素質(zhì)。
課后作業(yè)我會(huì)請(qǐng)學(xué)生完成書(shū)上相應(yīng)練習(xí)題,使學(xué)生在課后也能得到思考,夯實(shí)學(xué)生對(duì)于新知的掌握。
七、說(shuō)板書(shū)設(shè)計(jì)
我的板書(shū)設(shè)計(jì)遵循簡(jiǎn)潔明了、突出重點(diǎn)的原則,以下是我的板書(shū)設(shè)計(jì):
略。
高中數(shù)學(xué)說(shuō)課稿 4
各位老師:
大家好!
我叫xx,來(lái)自xx。我說(shuō)課的題目是《用樣本的數(shù)字特征估計(jì)總體的數(shù)字特征》,內(nèi)容選自于高中教材新課程人教A版必修3第二章第二節(jié),課時(shí)安排為三個(gè)課時(shí),本節(jié)課內(nèi)容為第一課時(shí)。下面我將從教材分析、教學(xué)目標(biāo)分析、教學(xué)方法與手段分析、教學(xué)過(guò)程分析四大方面來(lái)闡述我對(duì)這節(jié)課的分析和設(shè)計(jì):
一、教材分析
1、教材所處的地位和作用
在上一節(jié)我們已經(jīng)學(xué)習(xí)了用圖、表來(lái)組織樣本數(shù)據(jù),并且學(xué)習(xí)了如何通過(guò)圖、表所提供的信息,用樣本的頻率分布估計(jì)總體的分布情況。本節(jié)課是在前面所學(xué)內(nèi)容的基礎(chǔ)上,進(jìn)一步學(xué)習(xí)如何通過(guò)樣本的情況來(lái)估計(jì)總體,從而使我們能從整體上更好地把握總體的規(guī)律,為現(xiàn)實(shí)問(wèn)題的解決提供更多的幫助。
2、教學(xué)的重點(diǎn)和難點(diǎn)
重點(diǎn):
⑴能利用頻率頒布直方圖估計(jì)總體的眾數(shù),中位數(shù),平均數(shù)。
、企w會(huì)樣本數(shù)字特征具有隨機(jī)性
難點(diǎn):能應(yīng)用相關(guān)知識(shí)解決簡(jiǎn)單的實(shí)際問(wèn)題。
二、教學(xué)目標(biāo)分析
1、知識(shí)與技能目標(biāo)
。1)能利用頻率頒布直方圖估計(jì)總體的眾數(shù),中位數(shù),平均數(shù)。
。2)能用樣本的眾數(shù),中位數(shù),平均數(shù)估計(jì)總體的眾數(shù),中位數(shù),平均數(shù),并結(jié)合實(shí)際,對(duì)問(wèn)題作出合理判斷,制定解決問(wèn)題的有效方法。
2、過(guò)程與方法目標(biāo):
通過(guò)對(duì)本節(jié)課知識(shí)的學(xué)習(xí),初步體會(huì)、領(lǐng)悟"用數(shù)據(jù)說(shuō)話"的統(tǒng)計(jì)思想方法。
3、情感態(tài)度與價(jià)值觀目標(biāo):
通過(guò)對(duì)有關(guān)數(shù)據(jù)的搜集、整理、分析、判斷培養(yǎng)學(xué)生"實(shí)事求是"的科學(xué)態(tài)度和嚴(yán)謹(jǐn)?shù)墓ぷ髯黠L(fēng)。
三、教學(xué)方法與手段分析
1、教學(xué)方法:結(jié)合本節(jié)課的教學(xué)內(nèi)容和學(xué)生的認(rèn)知水平,在教法上,我采用"問(wèn)答探究"式的教學(xué)方法,層層深入。充分發(fā)揮教師的主導(dǎo)作用,讓學(xué)生真正成為教學(xué)活動(dòng)的主體。
2、教學(xué)手段:通過(guò)多媒體輔助教學(xué),充分調(diào)動(dòng)學(xué)生參與課堂教學(xué)的主動(dòng)性與積極性。
四、教學(xué)過(guò)程分析
1、復(fù)習(xí)回顧,問(wèn)題引入
「屏幕顯示」
〈問(wèn)題1〉在日常生活中,我們往往并不需要了解總體的分布形態(tài),而是更關(guān)心總體的某一數(shù)字特征,例如:買(mǎi)燈泡時(shí),我們希望知道燈泡的平均使用壽命,我們?cè)鯓恿私鉄襞莸牡氖褂脡勖??dāng)然不能把所有燈泡一一測(cè)試,因?yàn)闇y(cè)試后燈泡則報(bào)廢了。于是,需要通過(guò)隨機(jī)抽樣,把這批燈泡的壽命看作總體,從中隨機(jī)取出若干個(gè)個(gè)體作為樣本,算出樣本的數(shù)字特征,用樣本的數(shù)字特征來(lái)估計(jì)總體的數(shù)字特征。
提出問(wèn)題:什么是平均數(shù),眾數(shù),中位數(shù)?
。ń處熖釂(wèn),鋪墊復(fù)習(xí),學(xué)生思考、積極回答。根據(jù)學(xué)生回答,給出補(bǔ)充總結(jié),借助用多媒體分別給出他們的定義)
「設(shè)計(jì)意圖」使學(xué)生對(duì)本節(jié)課的學(xué)習(xí)做好知識(shí)準(zhǔn)備。
(進(jìn)一步提出實(shí)例、導(dǎo)入新課。)
「屏幕顯示」
〈問(wèn)題2〉選擇薪水高的職業(yè)是人之常情,假如你大學(xué)畢業(yè)有兩個(gè)工作相當(dāng)?shù)膯挝豢晒┻x擇,現(xiàn)各從甲乙兩單位分別隨機(jī)抽取了50名員工的月工資資料如下(單位:元)
分組計(jì)算這兩組50名員工的月工資平均數(shù),眾數(shù),中位數(shù)并估計(jì)這兩個(gè)公司員工的平均工資。你選擇哪一個(gè)公司,并說(shuō)明你的理由。
。▽W(xué)生分組分別求兩組數(shù)據(jù)的平均工資。
學(xué)生:甲、乙平均工資分別為:甲:1320元,乙:1530元。
所以我選乙公司。
學(xué)生乙:甲、乙兩公司的眾數(shù)分別為甲:1200,乙:1000,所以我選擇甲公司。
學(xué)生丙:我要根據(jù)我的能力選擇。)
「設(shè)計(jì)意圖」學(xué)生按"常理"做出選擇,教師指出只憑平均工資做出判斷的依據(jù)并不可靠,從而引導(dǎo)學(xué)生進(jìn)一步深入問(wèn)題。
2講授新課,深入認(rèn)識(shí)
、拧钙聊伙@示」
例如,在上一節(jié)抽樣調(diào)查的100位居民的月均用水量的數(shù)據(jù)中,我們畫(huà)出了這組數(shù)據(jù)的頻率分布直方圖。現(xiàn)在,觀察這組數(shù)據(jù)的頻率分布直方圖,能否得出這組數(shù)據(jù)的眾數(shù)、中位數(shù)和平均數(shù)?
。ò褜W(xué)生分成若干小組,分別計(jì)算平均數(shù)、中位數(shù)、眾數(shù),或估計(jì)平均數(shù)、中位數(shù)、眾數(shù)。然后比較結(jié)果,會(huì)發(fā)現(xiàn)通過(guò)計(jì)算的結(jié)果和通過(guò)估計(jì)的'結(jié)果出現(xiàn)了一定的誤差。引導(dǎo)學(xué)生分析產(chǎn)生誤差的原因。原因是由于樣本數(shù)據(jù)的頻率分布直方圖把原始的一些數(shù)據(jù)給遺失了。讓學(xué)生明白產(chǎn)生這樣的誤差對(duì)總體的估計(jì)沒(méi)有大的影響,因?yàn)闃颖颈旧硪灿须S機(jī)性。)
「設(shè)計(jì)意圖」讓學(xué)生懂得如何根據(jù)頻率分布直方圖估計(jì)樣本的平均數(shù)、中位數(shù)和眾數(shù)。使學(xué)生明白從直方圖中估計(jì)樣本的數(shù)字特征雖然會(huì)有一些誤差,但直觀、快速、可避免繁瑣的計(jì)算和閱讀數(shù)據(jù)的過(guò)程。
、啤刺岢鰡(wèn)題〉根據(jù)樣本的眾數(shù)、中位數(shù)、平均數(shù)估計(jì)總體平均數(shù)的基本數(shù)據(jù),并對(duì)上一節(jié)的探究問(wèn)題制定一個(gè)合理平價(jià)用水量的的標(biāo)準(zhǔn)。
。◣熒ㄟ^(guò)共同交流探討得知僅以平均數(shù)或只使用中位數(shù)或眾數(shù)制定出平價(jià)用水標(biāo)準(zhǔn)都是不合理的,必須綜合考慮才能做出合理的選擇)
「設(shè)計(jì)意圖」使學(xué)生會(huì)依據(jù)眾數(shù)、中位數(shù)、平均數(shù)對(duì)數(shù)據(jù)進(jìn)行綜合判斷,并做出合理選擇。也為接下來(lái)對(duì)他們優(yōu)缺點(diǎn)的總結(jié)打下基礎(chǔ)。
、强偨Y(jié)出眾數(shù)、中位數(shù)、平均數(shù)三種數(shù)字特征的優(yōu)缺點(diǎn)。
。ㄏ扔蓪W(xué)生思考,然后再老師的引導(dǎo)下做出總結(jié))
「設(shè)計(jì)意圖」使學(xué)生能更準(zhǔn)確更全面地依據(jù)樣本的眾數(shù)、中位數(shù)、平均數(shù)對(duì)數(shù)據(jù)進(jìn)行綜合判斷,并做出合理選擇,使實(shí)際問(wèn)題得到正確的解決。
3、反思小結(jié)、培養(yǎng)能力
①學(xué)習(xí)利用頻率直方圖估計(jì)總體的眾數(shù)、中位數(shù)和平均數(shù)的方法。
、诮榻B眾數(shù)、中位數(shù)和平均數(shù)這三個(gè)特征數(shù)的優(yōu)點(diǎn)和缺點(diǎn)。
、蹖W(xué)習(xí)如何利用眾數(shù)、中位數(shù)和平均數(shù)的特征去分析解決實(shí)際問(wèn)題。
「設(shè)計(jì)意圖」小節(jié)是一堂課的概括和總結(jié),有利于優(yōu)化學(xué)生的認(rèn)知結(jié)構(gòu),把課堂教學(xué)傳授的知識(shí)較快轉(zhuǎn)化為學(xué)生的素質(zhì),也更進(jìn)一步培養(yǎng)學(xué)生的歸納概括能力
4、課后作業(yè),自主學(xué)習(xí)
課本練習(xí)
[設(shè)計(jì)意圖]課后作業(yè)的布置是為了檢驗(yàn)學(xué)生對(duì)本節(jié)課內(nèi)容的理解和運(yùn)用程度,并促使學(xué)生進(jìn)一步鞏固和掌握所學(xué)內(nèi)容。
5、板書(shū)設(shè)計(jì)
略
高中數(shù)學(xué)說(shuō)課稿 5
各位老師:
大家好!我叫xx,來(lái)自xx。我說(shuō)課的題目是《概率的基本性質(zhì)》,內(nèi)容選自于高中教材新課程人教A版必修3第三章第一節(jié),課時(shí)安排為三個(gè)課時(shí),本節(jié)課內(nèi)容為第三課時(shí)。下面我將從教材分析、教學(xué)目標(biāo)分析、教法分析、教學(xué)過(guò)程分析四大方面來(lái)闡述我對(duì)這節(jié)課的分析和設(shè)計(jì):
一、教材分析
1、教材所處的地位和作用
本節(jié)課主要包含了兩部分內(nèi)容:一是事件的關(guān)系與運(yùn)算,二是概率的基本性質(zhì),多以基本概念和性質(zhì)為主。它是本冊(cè)第二章統(tǒng)計(jì)的延伸,又是后面"古典概型"及"幾何概型"的基礎(chǔ)。在整個(gè)教學(xué)中起到承上啟下的作用。同時(shí)也是新課改以來(lái)考查的熱點(diǎn)之一。
2、教學(xué)的重點(diǎn)和難點(diǎn)
重點(diǎn):概率的加法公式及其應(yīng)用;事件的關(guān)系與運(yùn)算。
難點(diǎn):互斥事件與對(duì)立事件的區(qū)別與聯(lián)系
二、教學(xué)目標(biāo)分析
1、知識(shí)與技能目標(biāo)
、帕私怆S機(jī)事件間的基本關(guān)系與運(yùn)算;
、普莆崭怕实膸讉(gè)基本性質(zhì),并會(huì)用其解決簡(jiǎn)單的概率問(wèn)題。
2、過(guò)程與方法:
、磐ㄟ^(guò)觀察、類比、歸納培養(yǎng)學(xué)生運(yùn)用數(shù)學(xué)知識(shí)的綜合能力;
、仆ㄟ^(guò)學(xué)生自主探究,合作探究培養(yǎng)學(xué)生的動(dòng)手探索的能力。
3、情感態(tài)度與價(jià)值觀:
通過(guò)數(shù)學(xué)活動(dòng),了解教學(xué)與實(shí)際生活的密切聯(lián)系,感受數(shù)學(xué)知識(shí)應(yīng)用于現(xiàn)實(shí)世界的具體情境,從而激發(fā)學(xué)習(xí)數(shù)學(xué)的'情趣。
三、教法分析
采用實(shí)驗(yàn)觀察、質(zhì)疑啟發(fā)、類比聯(lián)想、探究歸納的教學(xué)方法。
四、教學(xué)過(guò)程分析
1、創(chuàng)設(shè)情境,引入新課
在擲骰子的試驗(yàn)中,我們可以定義許多事件,如:
c1=﹛出現(xiàn)的點(diǎn)數(shù)=1﹜,c2=﹛出現(xiàn)的點(diǎn)數(shù)=2﹜
c3=﹛出現(xiàn)的點(diǎn)數(shù)=3﹜,c4=﹛出現(xiàn)的點(diǎn)數(shù)=4﹜
c5=﹛出現(xiàn)的點(diǎn)數(shù)=5﹜,c6=﹛出現(xiàn)的點(diǎn)數(shù)=6﹜
D1=﹛出現(xiàn)的點(diǎn)數(shù)不大于1﹜D2=﹛出現(xiàn)的點(diǎn)數(shù)大于3﹜
D3=﹛出現(xiàn)的點(diǎn)數(shù)小于5﹜,E=﹛出現(xiàn)的點(diǎn)數(shù)小于7﹜
f=﹛出現(xiàn)的點(diǎn)數(shù)大于6﹜,G=﹛出現(xiàn)的點(diǎn)數(shù)為偶數(shù)﹜
H=﹛出現(xiàn)的點(diǎn)數(shù)為奇數(shù)﹜
、乓砸肜械氖录㧟1和事件H,事件c1和事件D1為例講授事件之的包含關(guān)系和相等關(guān)系。
、茝囊陨蟽蓚(gè)關(guān)系學(xué)生不難發(fā)現(xiàn)事件間的關(guān)系與集合間的關(guān)系相類似。進(jìn)而引導(dǎo)學(xué)生思考,是否可以把事件和集合對(duì)應(yīng)起來(lái)。
「設(shè)計(jì)意圖」引出我們接下來(lái)要學(xué)習(xí)的主要內(nèi)容:事件之間的關(guān)系與運(yùn)算
2、探究新知
㈠事件的關(guān)系與運(yùn)算
、沤(jīng)過(guò)上面的思考,我們得出:
試驗(yàn)的可能結(jié)果的全體←→全集
↓↓
每一個(gè)事件←→子集
這樣我們就把事件和集合對(duì)應(yīng)起來(lái)了,用已有的集合間關(guān)系來(lái)分析事件間的關(guān)系。
集合的并→兩事件的并事件(和事件)
集合的交→兩事件的交事件(積事件)
在此過(guò)程中要注意幫助學(xué)生區(qū)分集合關(guān)系與事件關(guān)系之間的不同。
。ɡ纾簝杉螦∪B,表示此集合中的任意元素或者屬于集合A或者屬于集合B;而兩事件A和B的并事件A∪B發(fā)生,表示或者事件A發(fā)生,或者事件B發(fā)生。)
「設(shè)計(jì)意圖」為更好地理解互斥事件和對(duì)立事件打下基礎(chǔ)
⑵思考:①若只擲一次骰子,則事件c1和事件c2有可能同時(shí)發(fā)生么?
、谠跀S骰子實(shí)驗(yàn)中事件G和事件H是否一定有一個(gè)會(huì)發(fā)生?
「設(shè)計(jì)意圖」這兩道思考題都很容易得到答案,主要目的是為引出接下來(lái)將要學(xué)習(xí)的互斥事件和對(duì)立事件,讓學(xué)生從實(shí)際案例中體驗(yàn)它們各自的特征以及它們之間的區(qū)別與聯(lián)系。
、强偨Y(jié)出互斥事件和對(duì)立事件的概念,并通過(guò)多媒體的圖形演示使學(xué)生們能更好地理解它們的特征以及它們之間的區(qū)別與聯(lián)系。
⑷練習(xí):通過(guò)多媒體顯示兩道練習(xí),目的是讓學(xué)生們能夠及時(shí)鞏固對(duì)互斥事件和對(duì)立事件的學(xué)習(xí),加深理解。
、娓怕实幕拘再|(zhì):
、呕仡櫍侯l率=頻數(shù)/試驗(yàn)的次數(shù)
我們知道當(dāng)試驗(yàn)次數(shù)足夠大時(shí),用頻率來(lái)估計(jì)概率,由于頻率在0~1之間,所以,可以得到概率的基本性質(zhì)、
。ㄍㄟ^(guò)對(duì)頻率的理解并結(jié)合前面投硬幣的實(shí)驗(yàn)來(lái)總結(jié)出概率的基本性質(zhì),師生共同交流得出結(jié)果)
3、典型例題探究
例1一個(gè)射手進(jìn)行一次射擊,試判斷下列事件哪些是互斥事件?哪些是對(duì)立事件?
事件A:命中環(huán)數(shù)大于7環(huán);事件B:命中環(huán)數(shù)為10環(huán);
事件c:命中環(huán)數(shù)小于6環(huán);事件D:命中環(huán)數(shù)為6、7、8、9、10環(huán)
分析:要判斷所給事件是對(duì)立還是互斥,首先將兩個(gè)概念的聯(lián)系與區(qū)別弄清楚
例2如果從不包括大小王的52張撲克牌中隨機(jī)抽取一張,那么取到紅心(事件A)的概率是1/4,取到方塊(事件B)的概率是1/4,問(wèn):
。1)取到紅色牌(事件c)的概率是多少?
。2)取到黑色牌(事件D)的概率是多少?
分析:事件c是事件A與事件B的并,且A與B互斥,因此可用互斥事件的概率和公式求解;事件c與事件D是對(duì)立事件,因此P(D)=1—P(c).
「設(shè)計(jì)意圖」通過(guò)這兩道例題,進(jìn)一步鞏固學(xué)生對(duì)本節(jié)課知識(shí)的掌握,并將所學(xué)知識(shí)應(yīng)用到實(shí)際解決問(wèn)題中去。
4、課堂小結(jié)
、爬斫馐录年P(guān)系和運(yùn)算
、普莆崭怕实幕拘再|(zhì)
「設(shè)計(jì)意圖」小結(jié)是引導(dǎo)學(xué)生對(duì)問(wèn)題進(jìn)行回味與深化,使知識(shí)成為系統(tǒng)。讓學(xué)生嘗試小結(jié),提高學(xué)生的總結(jié)能力和語(yǔ)言表達(dá)能力。教師補(bǔ)充幫助學(xué)生全面地理解,掌握新知識(shí)。
5、布置作業(yè)
習(xí)題3、1A1、3、4
「設(shè)計(jì)意圖」課后作業(yè)的布置是為了檢驗(yàn)學(xué)生對(duì)本節(jié)課內(nèi)容的理解和運(yùn)用程度,并促使學(xué)生進(jìn)一步鞏固和掌握所學(xué)內(nèi)容。
五、板書(shū)設(shè)計(jì)
概率的基本性質(zhì)
一)事件間的關(guān)系和運(yùn)算
二)概率的基本性質(zhì)
三)例1的板書(shū)區(qū)
例2的板書(shū)區(qū)
四)規(guī)律性質(zhì)總結(jié)
高中數(shù)學(xué)說(shuō)課稿 6
一、教材分析
本節(jié)內(nèi)容是等差數(shù)列(第一課時(shí))的內(nèi)容,屬于數(shù)與代數(shù)領(lǐng)域的知識(shí)。本節(jié)是數(shù)列課程的新授課,為后面等比數(shù)列以及數(shù)列求和的知識(shí)點(diǎn)作基礎(chǔ)。數(shù)列是高中數(shù)學(xué)重要內(nèi)容之一,它有著廣泛的實(shí)際應(yīng)用。等差數(shù)列是在學(xué)生學(xué)習(xí)了數(shù)列的有關(guān)概念和給出數(shù)列的兩種方法——通項(xiàng)公式和遞推公式的基礎(chǔ)上,對(duì)數(shù)列的知識(shí)進(jìn)一步深入和拓廣。同時(shí)等差數(shù)列也為今后學(xué)習(xí)等比數(shù)列提供了學(xué)習(xí)對(duì)比的依據(jù)。在數(shù)學(xué)思想的方面,數(shù)列在處理數(shù)與數(shù)之間的關(guān)系中,更多地培養(yǎng)了學(xué)生運(yùn)用函數(shù)與函數(shù)關(guān)系的思想。
二、教學(xué)目標(biāo)
根據(jù)課程標(biāo)準(zhǔn)的要求和學(xué)生的實(shí)際水平,確定了本次課的教學(xué)目標(biāo)
。1)在知識(shí)上:理解并掌握等差數(shù)列的概念;了解等差數(shù)列的通項(xiàng)公式的推導(dǎo)過(guò)程及思想。
。2)在能力上:培養(yǎng)學(xué)生觀察、分析、歸納、推理的能力;以形象的實(shí)際例子作為學(xué)生理解與練習(xí)的模板,使學(xué)生在不斷實(shí)踐中鞏固學(xué)習(xí)到的知識(shí);通過(guò)階梯性練習(xí),提高學(xué)生分析問(wèn)題和解決問(wèn)題的'能力。
。3)在情感上:通過(guò)對(duì)等差數(shù)列在實(shí)際問(wèn)題中的研究,培養(yǎng)學(xué)生主動(dòng)探索、勇于發(fā)現(xiàn)的求知精神;養(yǎng)成細(xì)心觀察、認(rèn)真分析、善于總結(jié)的良好思維習(xí)慣。
3、教學(xué)重點(diǎn)和難點(diǎn)
根據(jù)課程標(biāo)準(zhǔn)的要求我確定本節(jié)課的教學(xué)重點(diǎn)為:
①等差數(shù)列的概念。
②等差數(shù)列的通項(xiàng)公式的推導(dǎo)過(guò)程及應(yīng)用。
三、教學(xué)方法分析:
對(duì)于高中學(xué)生,知識(shí)經(jīng)驗(yàn)比較貧乏,雖然他們的智力發(fā)展已到了形式運(yùn)演階段,但并不具備教強(qiáng)的抽象思維能力和演繹推理能力,所以本堂課將從實(shí)際中的問(wèn)題出發(fā),以學(xué)生日常生活中較易接觸的一些數(shù)學(xué)問(wèn)題,籍此啟發(fā)學(xué)生對(duì)于數(shù)列知識(shí)點(diǎn)的理解。本節(jié)課大多采用啟發(fā)式、討論式的教學(xué)方法,通過(guò)問(wèn)題激發(fā)學(xué)生求知欲,使學(xué)生主動(dòng)參與數(shù)學(xué)實(shí)踐活動(dòng),以獨(dú)立思考和相互交流的形式,在教師的指導(dǎo)下發(fā)現(xiàn)、分析和解決問(wèn)題,并學(xué)會(huì)將數(shù)學(xué)知識(shí)運(yùn)用到實(shí)際問(wèn)題的解決中。
四、教學(xué)過(guò)程
通過(guò)復(fù)習(xí)上節(jié)課數(shù)列的定義來(lái)引入幾個(gè)數(shù)列
1)0,5,10,15,20,25.....
2)18,15.5,13,10.5,8,4.5
3)48,53,58,63,68.....
通過(guò)這3個(gè)數(shù)列,初步認(rèn)識(shí)等差數(shù)列的特征,為后面的概念學(xué)習(xí)建立基礎(chǔ)。由學(xué)生觀察第一個(gè)數(shù)列與第三個(gè)數(shù)列的特點(diǎn),并與第二個(gè)做對(duì)比,引出等差數(shù)列的概念。
新課探究
1、由引入自然的給出等差數(shù)列的概念:
定義:如果一個(gè)數(shù)列,從第二項(xiàng)開(kāi)始它的每一項(xiàng)與前一項(xiàng)之差都等于同一常數(shù),這個(gè)數(shù)列就叫等差數(shù)列,這個(gè)常數(shù)叫做等差數(shù)列的公差,通常用字母d來(lái)表示。強(qiáng)調(diào):
、佟皬牡诙(xiàng)起”滿足條件;
②公差d一定是由后項(xiàng)減前項(xiàng)所得;
③每一項(xiàng)與它的前一項(xiàng)的差必須是同一個(gè)常數(shù);
在理解概念的基礎(chǔ)上,由學(xué)生將等差數(shù)列的文字語(yǔ)言轉(zhuǎn)化為數(shù)學(xué)語(yǔ)言,歸納出數(shù)學(xué)表達(dá)式:
an+1-an=d(n≥1)
同時(shí)為了配合概念的理解,引導(dǎo)學(xué)生講本不是等差數(shù)列的第二組數(shù)列修改成等差數(shù)列。并由觀察三組數(shù)列的不同特點(diǎn),由此強(qiáng)調(diào):公差可以是正數(shù)、負(fù)數(shù),并再舉出特例數(shù)列1,1,1,1,1,1,1......說(shuō)明公差也可以是0。
2、第二個(gè)重點(diǎn)部分為等差數(shù)列的通項(xiàng)公式
在歸納等差數(shù)列通項(xiàng)公式中,我采用討論式的教學(xué)方法。給出等差數(shù)列的首項(xiàng),公差d,運(yùn)用求數(shù)列通項(xiàng)公式的辦法------迭加法:整個(gè)過(guò)程通過(guò)互相討論的方式既培養(yǎng)了學(xué)生的協(xié)作意識(shí)又化解了教學(xué)難點(diǎn)。
若一等差數(shù)列{an}的首項(xiàng)是a1,公差是d,則據(jù)其定義可得:
a2–a1=da3–a2=da4–a3=d……an–an-1=d將這(n-1)個(gè)等式左右兩邊分別相加,就可以得到an–a1=(n-1)d即an=a1+(n-1)d(1)
當(dāng)n=1時(shí),(1)也成立,所以對(duì)一切n∈N﹡,上面的公式都成立
因此它就是等差數(shù)列{an}的通項(xiàng)公式。對(duì)照已歸納出的通項(xiàng)公式啟發(fā)學(xué)生想出將n-1個(gè)等式相加。證出通項(xiàng)公式。
在這里通過(guò)運(yùn)用迭加法這一數(shù)學(xué)思想,便于學(xué)生從概念理解的過(guò)程過(guò)渡到運(yùn)用概念的過(guò)程。
接著舉例說(shuō)明:若一個(gè)等差數(shù)列{an}的首項(xiàng)是1,公差是2,得出這個(gè)數(shù)列的通項(xiàng)公式是:an=1+(n-1)x2,即an=2n-1以此來(lái)鞏固等差數(shù)列通項(xiàng)公式運(yùn)用。
應(yīng)用舉例
現(xiàn)實(shí)生活中,以學(xué)生較為熟悉的iphone手機(jī)的數(shù)據(jù)作為例子。觀察Iphone手機(jī)的發(fā)布時(shí)間,iphone第一代發(fā)布于20xx年,第二代發(fā)布于20xx年,第三代發(fā)布于20xx年,第四代發(fā)布于20xx年。現(xiàn)在第六代發(fā)布于今年20xx年。首先,讓學(xué)生觀察從04年到10年每?jī)纱鷌phone發(fā)布的間隔時(shí)間,讓學(xué)生自行尋找規(guī)律,并在此基礎(chǔ)上讓學(xué)生估測(cè)第五代iphone的發(fā)布時(shí)間,并驗(yàn)證第五代iphone發(fā)布于20xx年。同時(shí),再讓學(xué)生預(yù)測(cè)在未來(lái),下一部iphone發(fā)布的時(shí)間,是學(xué)生體驗(yàn)到將數(shù)學(xué)知識(shí)運(yùn)用到實(shí)際中的方法與步驟。為了加深聯(lián)系,再給出了每代iphone的價(jià)格:iphone14299;iphone24800;iphone35299;iphone45988;iphone56300。在給出的數(shù)據(jù)上,將價(jià)格隨時(shí)間的變化以坐標(biāo)軸的形式作圖表示出來(lái),讓學(xué)生觀察到雖然這些數(shù)據(jù)非等差,但是可以大致變?yōu)榈炔畹闹本圖像,讓學(xué)生體會(huì)到“擬合數(shù)據(jù)”的思想。在此基礎(chǔ)上,讓學(xué)生進(jìn)行練習(xí),預(yù)測(cè)14年如今iphone6的上市價(jià)格為6888元,并與學(xué)生通過(guò)數(shù)列進(jìn)行推理的價(jià)格進(jìn)行對(duì)比,讓學(xué)生對(duì)自己在實(shí)踐中解決問(wèn)題的過(guò)程中找到一定的認(rèn)同感。
五、歸納小結(jié)
提問(wèn)學(xué)生,總結(jié)這節(jié)課的收獲
1、等差數(shù)列的概念及數(shù)學(xué)表達(dá)式,并強(qiáng)調(diào)關(guān)鍵字:從第二項(xiàng)開(kāi)始,它的每一項(xiàng)與前一項(xiàng)之差都等于同一常數(shù)。
2、等差數(shù)列的通項(xiàng)公式an=a1+(n-1)d
3、將讓學(xué)生在實(shí)踐中了解,將數(shù)列知識(shí)點(diǎn)運(yùn)用到實(shí)際中的方法。
4、在課末提出啟發(fā)性問(wèn)題,若是有人將每一部iphone都買(mǎi)入,那他一共花費(fèi)了多少錢(qián)?借此引出了下一節(jié),等差數(shù)列求和的知識(shí)點(diǎn)。讓學(xué)生嘗試自行去思考這樣的問(wèn)題。
5、布置作業(yè)
略
高中數(shù)學(xué)說(shuō)課稿 7
一、地位作用
數(shù)列是高中數(shù)學(xué)重要的內(nèi)容之一,等比數(shù)列是在學(xué)習(xí)了等差數(shù)列后新的一種特殊數(shù)列,在生活中如儲(chǔ)蓄、分期付款等應(yīng)用較為廣泛,在整個(gè)高中數(shù)學(xué)內(nèi)容中數(shù)列與已學(xué)過(guò)的函數(shù)及后面的數(shù)列極限有密切聯(lián)系,它也是培養(yǎng)學(xué)生數(shù)學(xué)能力的良好題材,它可以培養(yǎng)學(xué)生的.觀察、分析、歸納、猜想及綜合解決問(wèn)題的能力。
基于此,設(shè)計(jì)本節(jié)的數(shù)學(xué)思路上:
利用類比的思想,聯(lián)系等差數(shù)列的概念及通項(xiàng)公式的學(xué)習(xí)方法,采取自學(xué)、引導(dǎo)、歸納、猜想、類比總結(jié)的教學(xué)思路,充分發(fā)揮學(xué)生主觀能動(dòng)性,調(diào)動(dòng)學(xué)生的主體地位,充分體現(xiàn)教為主導(dǎo)、學(xué)為主體、練為主線的教學(xué)思想。
二、教學(xué)目標(biāo)
知識(shí)目標(biāo):
1)理解等比數(shù)列的概念
2)掌握等比數(shù)列的通項(xiàng)公式
3)并能用公式解決一些實(shí)際問(wèn)題
能力目標(biāo):培養(yǎng)學(xué)生觀察能力及發(fā)現(xiàn)意識(shí),培養(yǎng)學(xué)生運(yùn)用類比思想、解決分析問(wèn)題的能力。
三、教學(xué)重點(diǎn)
1)等比數(shù)列概念的理解與掌握關(guān)鍵:是讓學(xué)生理解“等比”的特點(diǎn)
2)等比數(shù)列的通項(xiàng)公式的推導(dǎo)及應(yīng)用
四、教學(xué)難點(diǎn)
“等比”的理解及利用通項(xiàng)公式解決一些問(wèn)題。
五、教學(xué)過(guò)程設(shè)計(jì)
。ㄒ唬╊A(yù)習(xí)自學(xué)環(huán)節(jié)。(8分鐘)
首先讓學(xué)生重新閱讀課本105頁(yè)國(guó)際象棋發(fā)明者的故事,并出示預(yù)習(xí)提綱,要求學(xué)生閱讀課本P122至P123例1上面。
回答下列問(wèn)題
1)課本中前3個(gè)實(shí)例有什么特點(diǎn)?能否舉出其它例子,并給出等比數(shù)列的定義。
2)觀察以下幾個(gè)數(shù)列,回答下面問(wèn)題:
1……
。1,-2,-4,-8……
1,2,-4,8……
。1,-1,-1,-1,……
1,0,1,0……
、儆心膸讉(gè)是等比數(shù)列?若是公比是什么?
、诠萹為什么不能等于零?首項(xiàng)能為零嗎?
、酃萹=1時(shí)是什么數(shù)列?
、躴>0時(shí)數(shù)列遞增嗎?q<0時(shí)遞減嗎?
3)怎樣推導(dǎo)等比數(shù)列通項(xiàng)公式?課本中采取了什么方法?還可以怎樣推導(dǎo)?
4)等比數(shù)列通項(xiàng)公式與函數(shù)關(guān)系怎樣?
。ǘw納主導(dǎo)與總結(jié)環(huán)節(jié)(15分鐘)
這一環(huán)節(jié)主要是通過(guò)學(xué)生回答為主體,教師引導(dǎo)總結(jié)為主線解決本節(jié)兩個(gè)重點(diǎn)內(nèi)容。
通過(guò)回答問(wèn)題(1)(2)給出等比數(shù)列的定義并強(qiáng)調(diào)以下幾點(diǎn):
、俣x關(guān)鍵字“第二項(xiàng)起”“常數(shù)”;
、谝龑(dǎo)學(xué)生用數(shù)學(xué)語(yǔ)言表達(dá)定義:=q(n≥2);
、踧=1時(shí)為非零常數(shù)數(shù)列,既是等差數(shù)列又是等比數(shù)列。引申:若數(shù)列公比為字母,分q=1和q≠1兩種情況;引入分類討論的思想。
、躴>0時(shí)等比數(shù)列單調(diào)性不定,q<0為擺動(dòng)數(shù)列,類比等差數(shù)列d>0為遞增數(shù)列,d<0為遞減數(shù)列。
通過(guò)回答問(wèn)題(3)回憶等差數(shù)列的推導(dǎo)方法,比較兩個(gè)數(shù)列定義的不同,引導(dǎo)推出等比數(shù)列通項(xiàng)公式。
法一:歸納法,學(xué)會(huì)從特殊到一般的方法,并從次數(shù)中發(fā)現(xiàn)規(guī)律,培養(yǎng)觀察力。
法二:迭乘法,聯(lián)系等差數(shù)列“迭加法”,培養(yǎng)學(xué)生類比能力及新舊知識(shí)轉(zhuǎn)化能力。
高中數(shù)學(xué)說(shuō)課稿 8
一、教學(xué)內(nèi)容分析
圓錐曲線的定義反映了圓錐曲線的本質(zhì)屬性,它是無(wú)數(shù)次實(shí)踐后的高度抽象,恰當(dāng)?shù)乩枚x解題,許多時(shí)候能以簡(jiǎn)馭繁,因此,在學(xué)習(xí)了橢圓、雙曲線、拋物線的定義及標(biāo)準(zhǔn)方程、幾何性質(zhì)后,再一次強(qiáng)調(diào)定義,學(xué)會(huì)利用圓錐曲線定義來(lái)熟練的解題”。
二、學(xué)生學(xué)習(xí)情況分析
我所任教班級(jí)的學(xué)生參與課堂教學(xué)活動(dòng)的積極性強(qiáng),思維活躍,但計(jì)算能力較差,推理能力較弱,使用數(shù)學(xué)語(yǔ)言的表達(dá)能力也略顯不足。
三、設(shè)計(jì)思想
由于這部分知識(shí)較為抽象,如果離開(kāi)感性認(rèn)識(shí),容易使學(xué)生陷入困境,降低學(xué)習(xí)熱情,在教學(xué)時(shí),借助多媒體動(dòng)畫(huà),引導(dǎo)學(xué)生主動(dòng)發(fā)現(xiàn)問(wèn)題、解決問(wèn)題,主動(dòng)參與教學(xué),在輕松愉快的環(huán)境中發(fā)現(xiàn)、獲取新知,提高教學(xué)效率。
四、教學(xué)目標(biāo)
1.深刻理解并熟練掌握?qǐng)A錐曲線的定義,能靈活應(yīng)用定義解決問(wèn)題;熟練掌握焦點(diǎn)坐標(biāo)、頂點(diǎn)坐標(biāo)、焦距、離心率、準(zhǔn)線方程、漸近線、焦半徑等概念和求法;能結(jié)合平面幾何的基本知識(shí)求解圓錐曲線的方程。
2.通過(guò)對(duì)練習(xí),強(qiáng)化對(duì)圓錐曲線定義的理解,提高分析、解決問(wèn)題的能力;通過(guò)對(duì)問(wèn)題的不斷引申,精心設(shè)問(wèn),引導(dǎo)學(xué)生學(xué)習(xí)解題的一般方法。
3.借助多媒體輔助教學(xué),激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣。
五、教學(xué)重點(diǎn)與難點(diǎn):
教學(xué)重點(diǎn)
1.對(duì)圓錐曲線定義的理解
2.利用圓錐曲線的`定義求“最值”
3.“定義法”求軌跡方程
教學(xué)難點(diǎn):
巧用圓錐曲線定義解題
六、教學(xué)過(guò)程設(shè)計(jì)
【設(shè)計(jì)思路】
(一)開(kāi)門(mén)見(jiàn)山,提出問(wèn)題
一上課,我就直截了當(dāng)?shù)亟o出——
例題1:(1)已知A(-2,0),B(2,0)動(dòng)點(diǎn)M滿足|MA|+|MB|=2,則點(diǎn)M的軌跡是()。
(A)橢圓(B)雙曲線(C)線段(D)不存在
(2)已知?jiǎng)狱c(diǎn)M(x,y)滿足(x1)2(y2)2|3x4y|,則點(diǎn)M的軌跡是()。
(A)橢圓(B)雙曲線(C)拋物線(D)兩條相交直線
【設(shè)計(jì)意圖】
定義是揭示概念內(nèi)涵的邏輯方法,熟悉不同概念的不同定義方式,是學(xué)習(xí)和研究數(shù)學(xué)的一個(gè)必備條件,而通過(guò)一個(gè)階段的學(xué)習(xí)之后,學(xué)生們對(duì)圓錐曲線的定義已有了一定的認(rèn)識(shí),他們是否能真正掌握它們的本質(zhì),是我本節(jié)課首先要弄清楚的問(wèn)題。
為了加深學(xué)生對(duì)圓錐曲線定義理解,我以圓錐曲線的定義的運(yùn)用為主線,精心準(zhǔn)備了兩道練習(xí)題。
【學(xué)情預(yù)設(shè)】
估計(jì)多數(shù)學(xué)生能夠很快回答出正確答案,但是部分學(xué)生對(duì)于圓錐曲線的定義可能并未真正理解,因此,在學(xué)生們回答后,我將要求學(xué)生接著說(shuō)出:若想答案是其他選項(xiàng)的話,條件要怎么改?這對(duì)于已學(xué)完圓錐曲線這部分知識(shí)的學(xué)生來(lái)說(shuō),并不是什么難事。但問(wèn)題(2)就可能讓學(xué)生們費(fèi)一番周折——如果有學(xué)生提出:可以利用變形來(lái)解決問(wèn)題,那么我就可以循著他的思路,先對(duì)原等式做變形:(x1)2(y2)25這樣,很快就能得出正確結(jié)果。如若不然,我將啟發(fā)他們從等式兩端的式子|3x4y|5入手,考慮通過(guò)適當(dāng)?shù)淖冃,轉(zhuǎn)化為學(xué)生們熟知的兩個(gè)距離公式。
在對(duì)學(xué)生們的解答做出判斷后,我將把問(wèn)題引申為:該雙曲線的中心坐標(biāo)是,實(shí)軸長(zhǎng)為,焦距為。以深化對(duì)概念的理解。
(二)理解定義、解決問(wèn)題
例2(1)已知?jiǎng)訄AA過(guò)定圓B:x2y26x70的圓心,且與定圓C:xy6x910相內(nèi)切,求△ABC面積的最大值。
(2)在(1)的條件下,給定點(diǎn)P(-2,2),求|PA|
七、教學(xué)反思
1.本課將借助于xx,將使全體學(xué)生參與活動(dòng)成為可能,使原來(lái)令人難以理解的抽象的數(shù)學(xué)理論變得形象,生動(dòng)且通俗易懂,同時(shí),運(yùn)用“多媒體課件”輔助教學(xué),節(jié)省了板演的時(shí)間,從而給學(xué)生留出更多的時(shí)間自悟、自練、自查,充分發(fā)揮學(xué)生的主體作用,這充分顯示出“多媒體課件”與探究合作式教學(xué)理念的有機(jī)結(jié)合的教學(xué)優(yōu)勢(shì)。
2.利用兩個(gè)例題及其引申,通過(guò)一題多變,層層深入的探索,以及對(duì)猜測(cè)結(jié)果的檢測(cè)研究,培養(yǎng)學(xué)生思維能力,使學(xué)生從學(xué)會(huì)一個(gè)問(wèn)題的求解到掌握一類問(wèn)題的解決方法.循序漸進(jìn)的讓學(xué)生把握這類問(wèn)題的解法;將學(xué)生容易混淆的兩類求“最值問(wèn)題”并為一道題,方便學(xué)生進(jìn)行比較、分析。雖然從表面上看,我這一堂課的教學(xué)容量不大,但事實(shí)上,學(xué)生們的思維運(yùn)動(dòng)量并不會(huì)小。
總之,如何更好地選擇符合學(xué)生具體情況,滿足教學(xué)目標(biāo)的例題與練習(xí)、靈活把握課堂教學(xué)節(jié)奏仍是我今后工作中的一個(gè)重要研究課題.而要能真正進(jìn)行素質(zhì)教育,培養(yǎng)學(xué)生的創(chuàng)新意識(shí),自己首先必須更新觀念——在教學(xué)中適度使用多媒體技術(shù),讓學(xué)生有參與教學(xué)實(shí)踐的機(jī)會(huì),能夠使學(xué)生在學(xué)習(xí)新知識(shí)的同時(shí),激發(fā)起求知的欲望,在尋求解決問(wèn)題的辦法的過(guò)程中獲得自信和成功的體驗(yàn),于不知不覺(jué)中改善了他們的思維品質(zhì),提高了數(shù)學(xué)思維能力。
高中數(shù)學(xué)說(shuō)課稿 9
各位老師:
大家好!
我叫xx,來(lái)自xx。我說(shuō)課的題目是《簡(jiǎn)單隨機(jī)抽樣》,內(nèi)容選自于新課程人教A版必修3第二章第一節(jié),課時(shí)安排為一個(gè)課時(shí)。下面我將從教材分析、教學(xué)目標(biāo)分析、教學(xué)方法與手段分析、和教學(xué)過(guò)程分析等四大方面來(lái)闡述我對(duì)這節(jié)課的分析和設(shè)計(jì):
一、教材分析
1.教材所處的地位和作用
"簡(jiǎn)單隨機(jī)抽樣"是"隨機(jī)抽樣"的基礎(chǔ),"隨機(jī)抽樣"又是"統(tǒng)計(jì)學(xué)"的基礎(chǔ),因此,在"統(tǒng)計(jì)學(xué)"中,"簡(jiǎn)單隨機(jī)抽樣"是基礎(chǔ)的基礎(chǔ)。在初中學(xué)生已學(xué)過(guò)相關(guān)概念,如"抽樣""總體"、"個(gè)體"、"樣本"、"樣本容量"等,具有一定基礎(chǔ),新教材把"統(tǒng)計(jì)"這部分內(nèi)容編入必修部分,突出了統(tǒng)計(jì)在日常生活中的應(yīng)用,體現(xiàn)它在中學(xué)數(shù)學(xué)中的地位,但同時(shí)也給學(xué)生學(xué)習(xí)增加了難度。
2.教學(xué)的重點(diǎn)和難點(diǎn)
重點(diǎn):掌握簡(jiǎn)單隨機(jī)抽樣常見(jiàn)的兩種方法(抽簽法、隨機(jī)數(shù)表法)
難點(diǎn):理解簡(jiǎn)單隨機(jī)抽樣的科學(xué)性,以及由此推斷結(jié)論的可靠性
二、教學(xué)目標(biāo)分析
1.知識(shí)與技能目標(biāo):
正確理解隨機(jī)抽樣的概念,掌握抽簽法、隨機(jī)數(shù)表法的一般步驟;
2.過(guò)程與方法目標(biāo):
(1)能夠從現(xiàn)實(shí)生活或其他學(xué)科中提出具有一定價(jià)值的統(tǒng)計(jì)問(wèn)題;
。2)在解決統(tǒng)計(jì)問(wèn)題的過(guò)程中,學(xué)會(huì)用簡(jiǎn)單隨機(jī)抽樣的方法從總體中抽取樣本。
3.情感,態(tài)度和價(jià)值觀目標(biāo)
通過(guò)對(duì)現(xiàn)實(shí)生活和其他學(xué)科中統(tǒng)計(jì)問(wèn)題的提出,體會(huì)數(shù)學(xué)知識(shí)與現(xiàn)實(shí)世界及各學(xué)科知識(shí)之間的聯(lián)系,認(rèn)識(shí)數(shù)學(xué)的重要性
三、教學(xué)方法與手段分析
為了充分讓學(xué)生自己分析、判斷、自主學(xué)習(xí)、合作交流。因此,我采用討論發(fā)現(xiàn)法教學(xué),并對(duì)學(xué)生滲透"從特殊到一般"的學(xué)習(xí)方法,由于本節(jié)課內(nèi)容實(shí)例多,信息容量大,文字多,我采用多媒體輔助教學(xué),節(jié)省時(shí)間,提高教學(xué)效率,另外采用這種形式也可強(qiáng)化學(xué)生感觀刺激,也能大大提高學(xué)生的學(xué)習(xí)興趣。
四、教學(xué)過(guò)程分析
。ㄒ唬┰O(shè)置情境,提出問(wèn)題
例1:請(qǐng)問(wèn)下列調(diào)查是"普查"還是"抽樣"調(diào)查?
A、一鍋水餃的味道B、旅客上飛機(jī)前的安全檢查
c、一批炮彈的殺傷半徑D、一批彩電的質(zhì)量情況
E、美國(guó)總統(tǒng)的民意支持率
學(xué)生討論后,教師指出生活中處處有"抽樣"
「設(shè)計(jì)意圖」生活中處處有"抽樣"調(diào)查,明確學(xué)習(xí)"抽樣"的必要性。
。ǘ┲鲃(dòng)探究,構(gòu)建新知
例2:語(yǔ)文老師為了了解某班同學(xué)對(duì)某首詩(shī)的.背誦情況,應(yīng)采用下列哪種抽查方式?為什么?
A、在班級(jí)12名班委名單中逐個(gè)抽查5位同學(xué)進(jìn)行背誦
B、在班級(jí)45名同學(xué)中逐一抽查10位同學(xué)進(jìn)行背誦
先讓學(xué)生分析、選擇B后,師生一起歸納其特征:
。1)不放回逐一抽樣,
(2)抽樣有代表性(個(gè)體被抽到可能性相等),學(xué)生體驗(yàn)B種抽樣的科學(xué)性后,教師指出這是簡(jiǎn)單隨機(jī)抽樣,并復(fù)習(xí)初中講過(guò)的有關(guān)概念,最后教師補(bǔ)充板書(shū)課題--(簡(jiǎn)單隨機(jī))抽樣及其定義。
「設(shè)計(jì)意圖」例2從正面分析簡(jiǎn)單隨機(jī)抽樣的科學(xué)性、公平性,突出"等可能性"特征。這是突破教學(xué)難點(diǎn)的重要環(huán)節(jié)之一。
例3:我們班有44名學(xué)生,現(xiàn)從中抽出5名學(xué)生去參加學(xué)生座談會(huì),要使每名學(xué)生的機(jī)會(huì)均等,我們應(yīng)該怎么做?談?wù)勀愕南敕ā?/p>
先讓學(xué)生獨(dú)立思考,然后分小組合作學(xué)習(xí),最后各小組推薦一位同學(xué)發(fā)言,最后師生一起歸納"抽簽法"步驟:
。1)編號(hào)制簽
(2)攪拌均勻
。3)逐個(gè)不放回抽取n次。教師板書(shū)上面步驟。
「設(shè)計(jì)意圖」在自主探究,合作交流中構(gòu)建新知,體驗(yàn)"抽簽法"的公平性,從而突破難點(diǎn),突出重點(diǎn)。
請(qǐng)一位同學(xué)說(shuō)說(shuō)例2采用"抽簽法"的實(shí)施步驟。
「設(shè)計(jì)意圖」
1、反饋練習(xí),落實(shí)知識(shí)點(diǎn),突出重點(diǎn)。
2、體會(huì)"抽簽法"具有"簡(jiǎn)單、易行"的優(yōu)點(diǎn)。
〈屏幕出示〉
例4:假設(shè)我們要考察某公司生產(chǎn)的500克袋裝牛奶的質(zhì)量是否達(dá)標(biāo),現(xiàn)從800袋牛奶中抽取60袋進(jìn)行檢驗(yàn)
提問(wèn):這道題適合用抽簽法嗎?
讓學(xué)生進(jìn)行思考,分析抽簽法的局限性,從而引入隨機(jī)數(shù)表法。教師出示一份隨機(jī)數(shù)表,并介紹隨機(jī)數(shù)表,強(qiáng)調(diào)數(shù)表上的數(shù)字都是隨機(jī)的,各個(gè)數(shù)字出現(xiàn)的可能性均等,結(jié)合上例讓學(xué)生討論隨機(jī)數(shù)表法的步驟,最后師生一起歸納步驟:
(1)編號(hào)
。2)在隨機(jī)數(shù)表上確定起始位置
。3)取數(shù)。教師板書(shū)上面步驟。
請(qǐng)一位同學(xué)說(shuō)說(shuō)例2采用"隨機(jī)數(shù)表法"的實(shí)施步驟。
「設(shè)計(jì)意圖」
1、體會(huì)隨機(jī)數(shù)表法的科學(xué)性
2、體會(huì)隨機(jī)數(shù)表法的優(yōu)越性:避免制簽、攪拌。
3、反饋練習(xí),落實(shí)知識(shí)點(diǎn),突出重點(diǎn)。
(三)課堂小結(jié):
1.簡(jiǎn)單隨機(jī)抽樣及其兩種方法
2.兩種方法的操作步驟
。ú捎脝(wèn)答形式)
「設(shè)計(jì)意圖」通過(guò)小結(jié)使學(xué)生們對(duì)知識(shí)有一個(gè)系統(tǒng)的認(rèn)識(shí),突出重點(diǎn),抓住關(guān)鍵,培養(yǎng)概括能力。
。ㄋ模┎贾米鳂I(yè)
課本練習(xí)2、3
[設(shè)計(jì)意圖]課后作業(yè)的布置是為了檢驗(yàn)學(xué)生對(duì)本節(jié)課內(nèi)容的理解和運(yùn)用程度以及實(shí)際接受情況,并促使學(xué)生進(jìn)一步鞏固和掌握所學(xué)內(nèi)容。
高中數(shù)學(xué)說(shuō)課稿 10
一、教材分析:
1.教材所處的地位和作用:
本節(jié)內(nèi)容在全書(shū)和章節(jié)中的作用是:《1.3.1柱體、錐體、臺(tái)體的表面積》是高中數(shù)學(xué)教材數(shù)學(xué)2第一章空間幾何體3節(jié)內(nèi)容。在此之前學(xué)生已學(xué)習(xí)了空間幾何體的結(jié)構(gòu)、三視圖和直觀圖為基礎(chǔ),這為過(guò)渡到本節(jié)的學(xué)習(xí)起著鋪墊作用。本節(jié)內(nèi)容是在空間幾何中,占據(jù)重要的地位。以及為其他學(xué)科和今后的學(xué)習(xí)打下基礎(chǔ)。
2.教育教學(xué)目標(biāo):
根據(jù)上述教材分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征,制定如下教學(xué)目標(biāo):
知識(shí)與能力:
(1)了解柱體、錐體、臺(tái)體的表面積.
。2)能用公式求柱體、錐體、臺(tái)體的表面積。
(3)培養(yǎng)學(xué)生空間想象能力和思維能力
過(guò)程與方法:
讓學(xué)生經(jīng)歷幾何體的表面積的實(shí)際求法,感知幾何體的形狀,培養(yǎng)學(xué)生對(duì)數(shù)學(xué)問(wèn)題的轉(zhuǎn)化化歸能力。
情感、態(tài)度與價(jià)值觀:
通過(guò)學(xué)習(xí),是學(xué)生感受到幾何體表面積的求解過(guò)程,激發(fā)學(xué)生探索、創(chuàng)新意識(shí),增強(qiáng)學(xué)習(xí)積極性。
3.重點(diǎn),難點(diǎn)以及確定依據(jù):
本著新課程標(biāo)準(zhǔn),在吃透教材基礎(chǔ)上,我確立了如下的教學(xué)重點(diǎn)、難點(diǎn)
教學(xué)重點(diǎn):柱,錐,臺(tái)的表面積公式的推導(dǎo)
教學(xué)難點(diǎn):柱,錐,臺(tái)展開(kāi)圖與空間幾何體的.轉(zhuǎn)化
二、教法分析
1.教學(xué)手段:
如何突出重點(diǎn),突破難點(diǎn),從而實(shí)現(xiàn)教學(xué)目標(biāo)。在教學(xué)過(guò)程中擬計(jì)劃進(jìn)行如下操作:教學(xué)方法;诒竟(jié)課的特點(diǎn):應(yīng)著重采用合作探究、小組討論的教學(xué)方法。
2.教學(xué)方法及其理論依據(jù):堅(jiān)持“以學(xué)生為主體,以教師為主導(dǎo)”的原則,根據(jù)學(xué)生的心理發(fā)展規(guī)律,采用學(xué)生參與程度高的探究式討論教學(xué)法。在學(xué)生親自動(dòng)手去給出各種幾何體的表面積的計(jì)算方法,特別注重不同解決問(wèn)題的方法,提問(wèn)不同層次的學(xué)生,面向全體,使基礎(chǔ)差的學(xué)生也能有表現(xiàn)機(jī)會(huì),培養(yǎng)其自信心,激發(fā)其學(xué)習(xí)熱情。有效的開(kāi)發(fā)各層次學(xué)生的潛在智能,力求使學(xué)生能在原有的基礎(chǔ)上得到發(fā)展。啟發(fā)學(xué)生從書(shū)本知識(shí)回到社會(huì)實(shí)踐。提供給學(xué)生與其生活和周圍世界密切相關(guān)的數(shù)學(xué)知識(shí),學(xué)習(xí)基礎(chǔ)性的知識(shí)和技能,在教學(xué)中積極培養(yǎng)學(xué)生學(xué)習(xí)興趣和動(dòng)機(jī),明確的學(xué)習(xí)目的,老師應(yīng)在課堂上充分調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性,激發(fā)來(lái)自學(xué)生主體的最有力的動(dòng)力。
三.學(xué)情分析
我們常說(shuō):“現(xiàn)代的文盲不是不識(shí)字的人,而是沒(méi)有掌握學(xué)習(xí)方法的人”,因而在教學(xué)中要特別重視學(xué)法的指導(dǎo)。
。1)學(xué)生特點(diǎn)分析:中學(xué)生心理學(xué)研究指出,高中階段是(查同中學(xué)生心發(fā)展情況)抓住學(xué)生特點(diǎn),積極采用形象生動(dòng),形式多樣的教學(xué)方法和學(xué)生廣泛的積極主動(dòng)參與的學(xué)習(xí)方式,定能激發(fā)學(xué)生興趣,有效地培養(yǎng)學(xué)生能力,促進(jìn)學(xué)生個(gè)性發(fā)展。生理上表少年好動(dòng),注意力易分散
。2)動(dòng)機(jī)和興趣上:明確的學(xué)習(xí)目的,老師應(yīng)在課堂上充分調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性,激發(fā)來(lái)自學(xué)生主體的最有力的動(dòng)力
最后我來(lái)具體談?wù)勥@一堂課的教學(xué)過(guò)程:
四、教學(xué)過(guò)程分析
(1)由一段動(dòng)畫(huà)視頻引入:豐富生動(dòng)的吸引學(xué)生的注意力,調(diào)動(dòng)學(xué)生學(xué)習(xí)積極性
(2)由引入得出本課新的所要探討的問(wèn)題——幾何體的表面積的計(jì)算。
(3)探究問(wèn)題。完全將主動(dòng)權(quán)教給學(xué)生,讓學(xué)生主動(dòng)去探究,得到解決問(wèn)題的思路,鍛煉學(xué)生動(dòng)手能力,解決實(shí)際問(wèn)題能力。
(4)總結(jié)結(jié)論,強(qiáng)化認(rèn)識(shí)。知識(shí)性的內(nèi)容小結(jié),可把課堂教學(xué)傳授的知識(shí)盡快化為學(xué)生的素質(zhì),數(shù)學(xué)思想方法的小結(jié),可使學(xué)生更深刻地理解數(shù)學(xué)思想方法在解題中的地位和應(yīng)用,并且逐步培養(yǎng)學(xué)生良好的個(gè)性品質(zhì)目標(biāo)。
。5)例題及練習(xí),見(jiàn)學(xué)案。
(6)布置作業(yè)。
針對(duì)學(xué)生素質(zhì)的差異進(jìn)行分層訓(xùn)練,既使學(xué)生掌握基礎(chǔ)知識(shí),又使學(xué)有余力的學(xué)生有所提高,
(7)小結(jié)。讓學(xué)生總結(jié)本節(jié)課的收獲。老師適時(shí)總結(jié)歸納。
高中數(shù)學(xué)說(shuō)課稿 11
教學(xué)目標(biāo):
一、借助單位圓理解任意角的三角函數(shù)的定義。
二、根據(jù)三角函數(shù)的定義,能夠判斷三角函數(shù)值的符號(hào)。
三、通過(guò)學(xué)生積極參與知識(shí)的"發(fā)現(xiàn)"與"形成"的過(guò)程,培養(yǎng)合情猜測(cè)的能力,從中感悟數(shù)學(xué)概念的嚴(yán)謹(jǐn)性與科學(xué)性。
四、讓學(xué)生在任意角三角函數(shù)概念的形成過(guò)程中,體會(huì)函數(shù)思想,體會(huì)數(shù)形結(jié)合思想。
教學(xué)重點(diǎn)與難點(diǎn):
重點(diǎn):任意角的正弦、余弦、正切的定義;三角函數(shù)值的符號(hào)。
難點(diǎn):任意角的三角函數(shù)概念的建構(gòu)過(guò)程。
授課過(guò)程:
一、引入
在我們的現(xiàn)實(shí)世界中的許多運(yùn)動(dòng)變化都有循環(huán)往復(fù)、周而復(fù)始的現(xiàn)象,這種變化規(guī)律稱為周期性。如何用數(shù)學(xué)的方法來(lái)刻畫(huà)這種變化?從這節(jié)課開(kāi)始,我們要來(lái)學(xué)習(xí)刻畫(huà)這種規(guī)律的數(shù)學(xué)模型之一――三角函數(shù)。
二、創(chuàng)設(shè)情境
三角函數(shù)是與角有關(guān)的函數(shù),在學(xué)習(xí)任意角概念時(shí),我們知道在直角坐標(biāo)系中研究角,可以給學(xué)習(xí)帶來(lái)許多方便,比如我們可以根據(jù)角終邊的位置把它們進(jìn)行歸類,現(xiàn)在大家考慮:若在直角坐標(biāo)系中來(lái)研究銳角,則銳角三角函數(shù)又可怎樣定義呢?
學(xué)生情況估計(jì):學(xué)生可能會(huì)提出兩種定義的方式,一種定義為邊之比,另一種定義在比值中引入了終邊上的一點(diǎn)P的坐標(biāo)。
問(wèn)題:
1、銳角三角函數(shù)能否表示成第二種比值方式?
2、點(diǎn)P能否取在終邊上的其它位置?為什么?
3、點(diǎn)P在哪個(gè)位置,比值會(huì)更簡(jiǎn)潔?(引出單位圓的定義)。指出sina=mP的函數(shù)依舊表示一個(gè)比值,不過(guò)其分母為1而已。
練習(xí):計(jì)算的各三角函數(shù)值。
三、任意角的三角函數(shù)的定義
角的概念已經(jīng)推廣道了任意角,那么三角函數(shù)的定義在任意角的`范圍里改怎么定義呢?
嘗試:根據(jù)銳角三角函數(shù)的定義,你能嘗試著給出任意角三角函數(shù)的定義嗎?
評(píng)價(jià)學(xué)生給出的定義。給出任意角三角函數(shù)的定義。
四、解析任意角三角函數(shù)的定義
三角函數(shù)首先是函數(shù)。你能從函數(shù)觀點(diǎn)解析三角函數(shù)嗎?(定義域)
對(duì)于確定的角a,上面三個(gè)函數(shù)值都是唯一確定的,所以,正弦、余弦、正切都是以角為自變量,以單位圓上點(diǎn)的坐標(biāo)或坐標(biāo)的比值為函數(shù)值的函數(shù),我們將它們統(tǒng)稱為三角函數(shù)。由于角的集合和實(shí)數(shù)集之間可以建立一一對(duì)應(yīng)的關(guān)系,三角函數(shù)可以看成是自變量為實(shí)數(shù)的函數(shù)。
五、三角函數(shù)的應(yīng)用。
1、已知角,求a的三角函數(shù)值。
2、已知角a終邊上的一點(diǎn)P(-3,-4),求各三角函數(shù)值。
以上兩道書(shū)上的例題,讓學(xué)生自習(xí)看書(shū),學(xué)生看書(shū)的同時(shí),老師提出問(wèn)題:
1、已知角如何求三角函數(shù)值?
2、利用角a的終邊上任意一點(diǎn)的坐標(biāo)也可以定義三角函數(shù),你能給出這種定義嗎?(這種定義與課本中給出的定義各有什么特點(diǎn)?)
3、變式:已知角a終邊上點(diǎn)P(-3b,-4b),(b0),求角a的各三角函數(shù)值。
4、探究:三角函數(shù)的值在各象限的符號(hào)。
六、小結(jié)及作業(yè)
教案設(shè)計(jì)說(shuō)明:
新教材的教學(xué)理念之一是讓學(xué)生去體驗(yàn)新知識(shí)的發(fā)生過(guò)程,這節(jié)《任意角三角函數(shù)》的教案,主要圍繞這一點(diǎn)來(lái)設(shè)計(jì)。
首先,角的概念推廣了,那么銳角三角函數(shù)的定義是否也該推廣到任意角的三角函數(shù)的定義呢?通過(guò)這個(gè)問(wèn)題,讓學(xué)生體會(huì)到新知識(shí)的發(fā)生是可能的,自然的。
其次,到底應(yīng)該怎樣去合理定義任意角的三角函數(shù)呢?讓學(xué)生提出自己的想法,同時(shí)讓學(xué)生去辨證這個(gè)想法是否是科學(xué)的?因?yàn)橐粋(gè)概念是嚴(yán)謹(jǐn)?shù),科學(xué)的,不能隨心所欲地編造,必須去論證它的合理性,至少這種概念不能和銳角三角函數(shù)的定義有所沖突。在這個(gè)立-破的過(guò)程中,讓學(xué)生去體驗(yàn)一個(gè)新的數(shù)學(xué)概念可能是如何形成,在形成的過(guò)程中可以從哪些角度加以科學(xué)的辯思。這樣也有助于學(xué)生對(duì)任意角三角函數(shù)概念的理解。
再次,讓學(xué)生充分體會(huì)在任意角三角函數(shù)定義的推廣中,是如何將直角三角形這個(gè)"形"的問(wèn)題,轉(zhuǎn)換到直角坐標(biāo)系下點(diǎn)的坐標(biāo)這個(gè)"數(shù)"的過(guò)程的。培養(yǎng)數(shù)形結(jié)合的思想。
高中數(shù)學(xué)說(shuō)課稿 12
一、說(shuō)設(shè)計(jì)理念
《數(shù)學(xué)課程標(biāo)準(zhǔn)》指出要讓學(xué)生感受生活中處處有數(shù)學(xué),用數(shù)學(xué)知識(shí)解決生活中的實(shí)際問(wèn)題。
基于這一理念,我在教學(xué)過(guò)程中力求聯(lián)系學(xué)生生活實(shí)際和已有的知識(shí)經(jīng)驗(yàn),從學(xué)生感興趣的素材,設(shè)計(jì)新穎的導(dǎo)入與例題教學(xué),給數(shù)學(xué)課富予新的生命力。課堂中力求構(gòu)建一種自主探究、和諧合作的教學(xué)氛圍,讓學(xué)生經(jīng)歷知識(shí)的探究過(guò)程,培養(yǎng)學(xué)生感受生活中的數(shù)學(xué)和用數(shù)學(xué)知識(shí)解決生活問(wèn)題的能力,體驗(yàn)數(shù)學(xué)的應(yīng)用價(jià)值。
二、教材分析:
。ㄒ唬┙滩牡牡匚缓妥饔
有關(guān)統(tǒng)計(jì)圖的認(rèn)識(shí),小學(xué)階段主要認(rèn)識(shí)條形統(tǒng)計(jì)圖、折線統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖?紤]到扇形統(tǒng)計(jì)圖在日常生活中的廣泛應(yīng)用,《標(biāo)準(zhǔn)》把它作為必學(xué)內(nèi)容安排在本單元。本單元是在前面學(xué)習(xí)了條形統(tǒng)計(jì)圖和折線統(tǒng)計(jì)圖的特點(diǎn)和作用的基礎(chǔ)上進(jìn)行教學(xué)的。主要通過(guò)熟悉的事例使學(xué)生體會(huì)到扇形統(tǒng)計(jì)圖的實(shí)用價(jià)值。
。ǘ┙虒W(xué)目標(biāo)
1、聯(lián)系生活情境了解扇形統(tǒng)計(jì)圖的特點(diǎn)和作用
2、能讀懂扇形統(tǒng)計(jì)圖,從中獲取有效的信息。
3、讓學(xué)生在觀察、比較、討論和交流中體會(huì)扇形統(tǒng)計(jì)圖反映的是整體和部分的關(guān)系。
。ㄈ┙虒W(xué)重點(diǎn):
1、能讀懂扇形統(tǒng)計(jì)圖,理解扇形統(tǒng)計(jì)圖的特點(diǎn)和作用,并能從中獲取有效信息。
2、認(rèn)識(shí)折線統(tǒng)計(jì)圖,了解折線統(tǒng)計(jì)圖的特點(diǎn)。
。ㄋ模┙虒W(xué)難點(diǎn):
1、能從扇形統(tǒng)計(jì)圖中獲得有用信息,并做出合理推斷。
2、能根據(jù)統(tǒng)計(jì)圖和數(shù)據(jù)進(jìn)行數(shù)據(jù)變化趨勢(shì)的分析。
三、學(xué)情分析
本單元的教學(xué)是在學(xué)生已有統(tǒng)計(jì)經(jīng)驗(yàn)的基礎(chǔ)上,學(xué)習(xí)新知的。六年級(jí)的'學(xué)生已經(jīng)學(xué)習(xí)了條形統(tǒng)計(jì)圖和折線統(tǒng)計(jì)圖,知道他們的特點(diǎn),并具有一定的概括、分析能力,在此基礎(chǔ)上,通過(guò)新舊知識(shí)對(duì)比,自然生成新知識(shí)點(diǎn)。
四、設(shè)計(jì)理念和教法分析
1、本堂課力爭(zhēng)做到由“關(guān)注知識(shí)”轉(zhuǎn)向“關(guān)注學(xué)生”,由“傳授知識(shí)”轉(zhuǎn)向“引導(dǎo)探索”,“教師是組織者、領(lǐng)導(dǎo)者。”將課堂設(shè)置問(wèn)題給學(xué)生,讓學(xué)生自己獲取信息、分析信息,自主探索、合作交流,參與知識(shí)的構(gòu)建。
2、運(yùn)用探究法。探究學(xué)習(xí)的內(nèi)容以問(wèn)題的形式出現(xiàn)在教師的引導(dǎo)下,學(xué)生自主探究,讓學(xué)生在課堂上多活動(dòng)、多思考,自主構(gòu)建知識(shí)體系。引導(dǎo)學(xué)生獲取信息并合作交流。
五、說(shuō)學(xué)法
《數(shù)學(xué)課程標(biāo)準(zhǔn)》指出有效的數(shù)學(xué)學(xué)習(xí)不能單純的依賴模仿和記憶,動(dòng)手操作、自主探索與合作交流是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式。教學(xué)時(shí),我通過(guò)學(xué)生感興趣的話題引入,引導(dǎo)學(xué)生關(guān)注身邊的數(shù)學(xué),使學(xué)生體會(huì)到觀察、概括、想象、遷移等數(shù)學(xué)學(xué)習(xí)方法,在師生互動(dòng)中讓每個(gè)學(xué)生都動(dòng)口,動(dòng)手,動(dòng)腦。培養(yǎng)學(xué)生學(xué)習(xí)的主動(dòng)性和積極性。
六、說(shuō)教學(xué)程序
本課分成創(chuàng)設(shè)情境,感知特點(diǎn)——分析數(shù)據(jù),理解特征——嘗試制圖,看圖分析——實(shí)踐應(yīng)用,全課總結(jié)四環(huán)節(jié)。
七、說(shuō)教學(xué)過(guò)程
。ㄒ唬⿵(fù)習(xí)引新
1、復(fù)習(xí)舊知
提問(wèn):我們學(xué)習(xí)過(guò)哪些統(tǒng)計(jì)方法?其中條形統(tǒng)計(jì)圖和折線統(tǒng)計(jì)圖各有什么特點(diǎn)?
2、引入新課
(二)自主探索,學(xué)習(xí)新知
新知識(shí)教學(xué)分二步教學(xué):
第一步整體感知,看懂統(tǒng)計(jì)圖,理解特征,這是本節(jié)課的重點(diǎn)。在教學(xué)中,以知識(shí)遷移的方式建立新舊知識(shí)之間的聯(lián)系,放手讓學(xué)生獨(dú)立思考,互相合作,進(jìn)一步了解統(tǒng)計(jì)圖的特征。
第二步實(shí)踐應(yīng)用環(huán)節(jié)。在教學(xué)中,精心地選取了大量的生活素材,使統(tǒng)計(jì)知識(shí)與生活建立緊密的聯(lián)系。根據(jù)統(tǒng)計(jì)圖回答問(wèn)題,是讓學(xué)生運(yùn)用到剛才學(xué)習(xí)到的知識(shí)來(lái)解決生活中的一些問(wèn)題,并鞏固剛才所學(xué)的知識(shí),為學(xué)生自己發(fā)現(xiàn)問(wèn)題、提出問(wèn)題及自己解決問(wèn)題提供了較大的空間。同時(shí),讓學(xué)生感悟由于數(shù)據(jù)變化帶來(lái)的啟示,并能合理地進(jìn)行推理與判斷。
高中數(shù)學(xué)說(shuō)課稿 13
今天我說(shuō)課的題目是《函數(shù)的單調(diào)性》,下面我將圍繞本節(jié)課“教什么?”、“怎樣教?”以及“為什么這樣教?”三個(gè)問(wèn)題,從教材分析、教學(xué)目標(biāo)分析、教學(xué)重難點(diǎn)分析、教法與學(xué)法、教學(xué)過(guò)程五方面逐一加以分析和說(shuō)明。
一、說(shuō)教材
1、教材的地位和作用
本節(jié)內(nèi)容選自北師大版高中數(shù)學(xué)必修1,第二章第3節(jié)。函數(shù)是高中數(shù)學(xué)的課程,它是描述事物運(yùn)動(dòng)變化的模型,而函數(shù)的單調(diào)性是函數(shù)的一大特征,它為我們之后的學(xué)習(xí)奠定重要基礎(chǔ)。
2、學(xué)情分析
本節(jié)課的學(xué)生是高一學(xué)生,他們?cè)诔踔须A段,通過(guò)一次函數(shù)、二次函數(shù)、反比例函數(shù)的學(xué)習(xí)已經(jīng)對(duì)函數(shù)的增減性有了初步的感性認(rèn)識(shí)。在高中階段,用符號(hào)語(yǔ)言刻畫(huà)圖形語(yǔ)言,用定量分析解釋定性結(jié)果,有利于培養(yǎng)學(xué)生的理性思維,為后續(xù)函數(shù)的學(xué)習(xí)作準(zhǔn)備,也為利用倒數(shù)研究單調(diào)性的相關(guān)知識(shí)奠定了基礎(chǔ)。
教學(xué)目標(biāo)分析
基于以上對(duì)教材和學(xué)情的分析以及新課標(biāo)教學(xué)理念,我將教學(xué)目標(biāo)分為以下三個(gè)部分:
1、知識(shí)與技能
。1)理解函數(shù)的單調(diào)性和單調(diào)函數(shù)的意義;
(2)會(huì)判斷和證明簡(jiǎn)單函數(shù)的單調(diào)性。
2、過(guò)程與方法
。1)培養(yǎng)從概念出發(fā),進(jìn)一步研究性質(zhì)的意識(shí)及能力;
。2)體會(huì)數(shù)形結(jié)合、分類討論的數(shù)學(xué)思想。
3、情感態(tài)度與價(jià)值觀
由合適的例子引發(fā)學(xué)生探求數(shù)學(xué)知識(shí)的欲望,突出學(xué)生的主觀能動(dòng)性,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
三、教學(xué)重難點(diǎn)分析
通過(guò)以上對(duì)教材和學(xué)生的分析以及教學(xué)目標(biāo),我將本節(jié)課的重難點(diǎn)
重點(diǎn):
函數(shù)單調(diào)性的概念,判斷和證明簡(jiǎn)單函數(shù)的單調(diào)性。
難點(diǎn):
1、函數(shù)單調(diào)性概念的認(rèn)知
(1)自然語(yǔ)言到符號(hào)語(yǔ)言的轉(zhuǎn)化;
(2)常量到變量的轉(zhuǎn)化。
2、應(yīng)用定義證明單調(diào)性的代數(shù)推理論證。
四、教法與學(xué)法分析
1、教法分析
基于以上對(duì)教材、學(xué)情的分析以及新課標(biāo)的教學(xué)理念,本節(jié)課我采用啟發(fā)式教學(xué)、多媒體輔助教學(xué)和討論法。學(xué)生可以在多媒體中感受到數(shù)學(xué)在生活中的應(yīng)用,啟發(fā)式教學(xué)和討論法發(fā)散學(xué)生思維,培養(yǎng)學(xué)生善于思考的能力。
2、學(xué)法分析
新課改理念告訴我們,學(xué)生不僅要學(xué)知識(shí),更重要的是要學(xué)會(huì)怎樣學(xué)習(xí),為終生學(xué)習(xí)奠定扎實(shí)的基礎(chǔ)。所以本節(jié)課我將引導(dǎo)學(xué)生通過(guò)合作交流、自主探索的方法理解函數(shù)的單調(diào)性及特征。
五、教學(xué)過(guò)程
為了更好的實(shí)現(xiàn)本課的三維目標(biāo),并突破重難點(diǎn),我設(shè)計(jì)以下五個(gè)環(huán)節(jié)來(lái)進(jìn)行我的教學(xué)。
。ㄒ唬┲R(shí)導(dǎo)入
溫故而知新,我將先從之前學(xué)習(xí)的知識(shí)引入,給出一些函數(shù),比如y=x、y=-x、y=|x|,讓學(xué)生作出這些函數(shù)的圖像,然后讓學(xué)生討論這些函數(shù)圖像是上升的還是下降的,由此引入到我的新課。在這個(gè)過(guò)程中不僅可以檢查學(xué)生掌握基本初等函數(shù)圖像的情況,而且符合學(xué)生的認(rèn)知結(jié)構(gòu),通過(guò)學(xué)生自主探究,從知識(shí)產(chǎn)生、發(fā)展的過(guò)程中構(gòu)建新概念,有利于激發(fā)學(xué)生的思維和學(xué)習(xí)的`積極主動(dòng)性。
(二)講授新課
1、問(wèn)題:分別做出函數(shù)y=x2,y=x+2的圖像,指出上面的函數(shù)圖象在哪個(gè)區(qū)間是上升的,在哪個(gè)區(qū)間是下降的?
通過(guò)學(xué)生熟悉的圖像,及時(shí)引導(dǎo)學(xué)生觀察,函數(shù)圖像上A點(diǎn)的運(yùn)動(dòng)情況,引導(dǎo)學(xué)生能用自然語(yǔ)言描述出,隨著x增大時(shí)圖像變化規(guī)律。讓學(xué)生大膽的去說(shuō),老師逐步修正、完善學(xué)生的說(shuō)法,最后給出正確答案。
2、觀察函數(shù)y=x2隨自變量x變化的情況,設(shè)置啟發(fā)式問(wèn)題:
。1)在y軸的右側(cè)部分圖象具有什么特點(diǎn)?
。2)如果在y軸右側(cè)部分取兩個(gè)點(diǎn)(x1,y1),(x2,y2),當(dāng)x1
。3)如何用數(shù)學(xué)符號(hào)語(yǔ)言來(lái)描述這個(gè)規(guī)律?
教師補(bǔ)充:這時(shí)我們就說(shuō)函數(shù)y=x2在(0,+∞)上是增函數(shù)。
。4)反過(guò)來(lái),如果y=f(x)在(0,+∞)上是增函數(shù),我們能不能得到自變量與函數(shù)值的變化規(guī)律呢?
類似地分析圖象在y軸的左側(cè)部分。
通過(guò)對(duì)以上問(wèn)題的分析,從正、反兩方面領(lǐng)會(huì)函數(shù)單調(diào)性。師生共同總結(jié)出單調(diào)增函數(shù)的定義,并解讀定義中的關(guān)鍵詞。
仿照單調(diào)增函數(shù)定義,由學(xué)生說(shuō)出單調(diào)減函數(shù)的定義。
教師總結(jié)歸納單調(diào)性和單調(diào)區(qū)間的定義。注意強(qiáng)調(diào):函數(shù)的單調(diào)性是函數(shù)在定義域某個(gè)區(qū)間上的局部性質(zhì),也就是說(shuō),一個(gè)函數(shù)在不同的區(qū)間上可以有不同的單調(diào)性。
(我將給出函數(shù)y=x2,并畫(huà)出這個(gè)函數(shù)的圖像,讓學(xué)生觀察函數(shù)圖像的特點(diǎn),讓他們描述函數(shù)圖像的增減性,慢慢得到函數(shù)單調(diào)性的概念。在這個(gè)過(guò)程中,學(xué)生把對(duì)圖像的感性認(rèn)識(shí)轉(zhuǎn)化為了數(shù)學(xué)關(guān)系,這種從特殊到一般的學(xué)習(xí)過(guò)程有利于學(xué)生對(duì)概念的理解)
。ㄈ╈柟叹毩(xí)
練習(xí)1:說(shuō)出函數(shù)f(x)=的單調(diào)區(qū)間,并指明在該區(qū)間上的單調(diào)性。
練習(xí)2:練習(xí)2:判斷下列說(shuō)法是否正確
、俣x在R上的函數(shù)f(x)滿足f(2)>f(1),則函數(shù)是R上的增函數(shù)。
、诙x在R上的函數(shù)f(x)滿足f(2)>f(1),則函數(shù)是R上不是減函數(shù)。
③已知函數(shù)y=,因?yàn)閒(-1)
我將給出一些具體的函數(shù),如y=,f(x)=3x+2讓學(xué)生說(shuō)出函數(shù)的單調(diào)區(qū)間,并指明在該區(qū)間x上的單調(diào)性。通過(guò)這種練習(xí)的方式,幫助學(xué)生鞏固對(duì)知識(shí)的掌握。
。ㄋ模w納總結(jié)
我先讓學(xué)生進(jìn)行小結(jié),函數(shù)單調(diào)性定義,判斷函數(shù)單調(diào)性的方法(圖像、定義),然后教師進(jìn)行補(bǔ)充,在這樣一個(gè)過(guò)程中既有利于學(xué)生鞏固知識(shí),也有利于教師對(duì)學(xué)生的學(xué)習(xí)情況有一定的了解,為下一節(jié)課的教學(xué)過(guò)程做好準(zhǔn)備。
(五)布置作業(yè)
必做題:習(xí)題2-3A組第2,4,5題。
選做題:習(xí)題2-3B組第2題。
新課程理念告訴我們,不同的人在數(shù)學(xué)上可以獲得不同的發(fā)展,因此要設(shè)計(jì)不同程度要求的習(xí)題。
高中數(shù)學(xué)說(shuō)課稿 14
各位專家、評(píng)委:
大家好!
今天我說(shuō)課的題目是xx。下面我將從教材分析、教法分析、學(xué)法分析、過(guò)程分析四個(gè)方面來(lái)匯報(bào)我對(duì)這節(jié)課的教學(xué)設(shè)想。
一、教材分析
(一)教材地位與作用
略
(二)教學(xué)目標(biāo)
1.知識(shí)與技能目標(biāo):掌握xx方法,能較熟練應(yīng)用xx解決xx問(wèn)題。
2.能力與方法目標(biāo):在對(duì)xx的探究和應(yīng)用中,使學(xué)生體會(huì)數(shù)形結(jié)合的數(shù)學(xué)方法,體驗(yàn)從特殊到一般的研究方法,培養(yǎng)學(xué)生類比思維能力,提高學(xué)生分析問(wèn)題和解決問(wèn)題的能力。
3.情感態(tài)度與價(jià)值觀目標(biāo):
通過(guò)xx,激發(fā)學(xué)生探究的興趣和欲望,增強(qiáng)學(xué)生學(xué)習(xí)數(shù)學(xué)的自信心,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)、科學(xué)的態(tài)度和勇于提出問(wèn)題、分析問(wèn)題的習(xí)慣。
二、教法分析
“數(shù)學(xué)是思維的體操”。培養(yǎng)學(xué)生的思維能力,一直都是數(shù)學(xué)教學(xué)的基本要求。知識(shí)的傳授雖然重要,但學(xué)生掌握知識(shí)發(fā)生和深化的思維過(guò)程更加重要。所以在教學(xué)過(guò)程中,為了更有效地把握重點(diǎn),更到位的突破難點(diǎn),我決心在教學(xué)中落實(shí)“生本教育”理念,以學(xué)生獨(dú)立自主和合作交流為前提,恰到好處的利用多媒體,注重啟迪學(xué)生思維,引導(dǎo)學(xué)生嘗試,確保學(xué)生在求知中不但要學(xué)有所得,更要學(xué)有所悟。
特別的`,為了讓學(xué)生xx,我采用了設(shè)計(jì)了變式題組,通過(guò)xx來(lái)促進(jìn)學(xué)生新的認(rèn)知結(jié)構(gòu)的形成。
三、學(xué)法分析
我們常說(shuō):“現(xiàn)代的文盲不是不識(shí)字的人,而是沒(méi)有掌握學(xué)習(xí)方法的人”,因而在教學(xué)中要特別重視學(xué)法的指導(dǎo),F(xiàn)在,新課改已形成由點(diǎn)到面,逐步鋪開(kāi)的良好態(tài)勢(shì)。其中,新課改的重點(diǎn)之一就是轉(zhuǎn)變學(xué)生的學(xué)習(xí)方式,具體目標(biāo)之一是“改變課程實(shí)施過(guò)于強(qiáng)調(diào)接受學(xué)習(xí)、死記硬背、機(jī)械訓(xùn)練的現(xiàn)狀,倡導(dǎo)學(xué)生主動(dòng)參與、樂(lè)于探究、勤于動(dòng)手,培養(yǎng)學(xué)生搜集和處理信息的能力、獲取新知識(shí)的能力、分析和解決問(wèn)題的能力以及交流與合作的能力”。因此,一定要落實(shí)“生本教育”理念,在課堂上通過(guò)小組討論、展示,促使學(xué)生真正做到了動(dòng)手、動(dòng)腦、動(dòng)口,積極參與教學(xué)的全過(guò)程,充分發(fā)揮了他們的思維能力和創(chuàng)造能力,充分發(fā)揮了學(xué)生在學(xué)習(xí)過(guò)程中的主體作用,讓學(xué)生真正成為學(xué)習(xí)的主人。
四、過(guò)程分析
(一)創(chuàng)設(shè)情景
設(shè)計(jì)意圖:從學(xué)生的生活經(jīng)驗(yàn)(鮮活、實(shí)際的知識(shí)背景)出發(fā),運(yùn)用多媒體創(chuàng)設(shè)情境,激發(fā)學(xué)生的學(xué)習(xí)興趣,誘發(fā)學(xué)生的求知欲,點(diǎn)燃了學(xué)生思維的火花,形成良好的學(xué)習(xí)氛圍,將有效地提高接下來(lái)的學(xué)習(xí)效率。
(二)回顧舊知
設(shè)計(jì)意圖:為隨后的學(xué)習(xí)清除障礙,促使舊知識(shí)向新知識(shí)順暢、有效的過(guò)度。
(三)嘗試學(xué)習(xí)。
設(shè)計(jì)意圖:通過(guò)問(wèn)題的提出激發(fā)學(xué)生的思維,做到師生互動(dòng),生生互助,讓他們用心去觀察、討論、嘗試解決問(wèn)題,培養(yǎng)學(xué)生的觀察能力、邏輯思維能力、歸納分析能力等,同時(shí)也能使學(xué)生在積極的狀態(tài)中接受了新的知識(shí)。
(四)應(yīng)用提高
設(shè)計(jì)意圖:通過(guò)對(duì)例題的分析與研究,尤其是xx。讓學(xué)生體會(huì)到xx規(guī)律(方法、思想),使學(xué)生深刻領(lǐng)悟到分析、解決此類問(wèn)題的一般途徑和常規(guī)方法。
設(shè)計(jì)意圖:通過(guò)有層次性的、有針對(duì)性的題目設(shè)置,將所學(xué)內(nèi)容有機(jī)的融合成一個(gè)整體,使所有學(xué)生均有收獲,人人都能掌握最基本的內(nèi)容,基礎(chǔ)扎實(shí)、能力較強(qiáng)的學(xué)生也有了充分發(fā)展和進(jìn)行創(chuàng)新思維的空間。
(五)課堂小結(jié)
略
(六)作業(yè)布置
略
高中數(shù)學(xué)說(shuō)課稿 15
今天我說(shuō)課的內(nèi)容是高二立體幾何(人教版)第九章第二章節(jié)第八小節(jié)《棱錐》的第一課時(shí):《棱錐的概念和性質(zhì)》。下面我就從教材分析、教法、學(xué)法和教學(xué)程序四個(gè)方面對(duì)本課的教學(xué)設(shè)計(jì)進(jìn)行說(shuō)明。
一、說(shuō)教材
1、本節(jié)在教材中的地位和作用:
本節(jié)是棱柱的后續(xù)內(nèi)容,又是學(xué)習(xí)球的必要基礎(chǔ)。第一課時(shí)的教學(xué)目的是讓學(xué)生掌握棱錐的一些必要的基礎(chǔ)知識(shí),同時(shí)培養(yǎng)學(xué)生猜想、類比、比較、轉(zhuǎn)化的能力。著名的生物學(xué)家達(dá)爾文說(shuō):“最有價(jià)值的知識(shí)是關(guān)于方法和能力的知識(shí)”,因此,應(yīng)該利用這節(jié)課培養(yǎng)學(xué)生學(xué)習(xí)方法、提高學(xué)習(xí)能力。
2、教學(xué)目標(biāo)確定:
(1)能力訓(xùn)練要求
、偈箤W(xué)生了解棱錐及其底面、側(cè)面、側(cè)棱、頂點(diǎn)、高的概念。
、谑箤W(xué)生掌握截面的性質(zhì)定理,正棱錐的性質(zhì)及各元素間的關(guān)系式。
(2)德育滲透目標(biāo)
①培養(yǎng)學(xué)生善于通過(guò)觀察分析實(shí)物形狀到歸納其性質(zhì)的能力。
、谔岣邔W(xué)生對(duì)事物的感性認(rèn)識(shí)到理性認(rèn)識(shí)的能力。
、叟囵B(yǎng)學(xué)生“理論源于實(shí)踐,用于實(shí)踐”的觀點(diǎn)。
3、教學(xué)重點(diǎn)、難點(diǎn)確定:
重點(diǎn):
1.棱錐的截面性質(zhì)定理
2.正棱錐的性質(zhì)。
難點(diǎn):培養(yǎng)學(xué)生善于比較,從比較中發(fā)現(xiàn)事物與事物的區(qū)別。
二、說(shuō)教學(xué)方法和手段
1、教法:
“以學(xué)生參與為標(biāo)志,以啟迪學(xué)生思維,培養(yǎng)學(xué)生創(chuàng)新能力為核心”。
在教學(xué)中根據(jù)高中生心理特點(diǎn)和教學(xué)進(jìn)度需要,設(shè)置一些啟發(fā)性題目,采用啟發(fā)式誘導(dǎo)法,講練結(jié)合,發(fā)揮教師主導(dǎo)作用,體現(xiàn)學(xué)生主體地位。
2、教學(xué)手段:
根據(jù)《教學(xué)大綱》中“堅(jiān)持啟發(fā)式,反對(duì)注入式”的教學(xué)要求,針對(duì)本節(jié)課概念性強(qiáng),思維量大,整節(jié)課以啟發(fā)學(xué)生觀察思考、分析討論為主,采用“多媒體引導(dǎo)點(diǎn)撥”的教學(xué)方法以多媒體演示為載體,以“引導(dǎo)思考”為核心,設(shè)計(jì)課件展示,并引導(dǎo)學(xué)生沿著積極的思維方向,逐步達(dá)到即定的教學(xué)目標(biāo),發(fā)展學(xué)生的邏輯思維能力;學(xué)生在教師營(yíng)造的“可探索”的環(huán)境里,積極參與,生動(dòng)活潑地獲取知識(shí),掌握規(guī)律、主動(dòng)發(fā)現(xiàn)、積極探索。
三、說(shuō)學(xué)法:
這節(jié)課的核心是棱錐的截面性質(zhì)定理,.正棱錐的性質(zhì)。教學(xué)的指導(dǎo)思想是:遵循由已知(棱柱)探究未知(棱錐)、由一般(棱錐)到特殊(正棱錐)的認(rèn)識(shí)規(guī)律,啟發(fā)學(xué)生反復(fù)思考,不斷內(nèi)化成為自己的認(rèn)知結(jié)構(gòu)。
四、學(xué)程序:
[復(fù)習(xí)引入新課]
1.棱柱的性質(zhì):
。1)側(cè)棱都相等,側(cè)面是平行四邊形
。2)兩個(gè)底面與平行于底面的截面是全等的多邊形
。3)過(guò)不相鄰的兩條側(cè)棱的截面是平行四邊形
2.幾個(gè)重要的四棱柱:
平行六面體、直平行六面體、長(zhǎng)方體、正方體
思考:如果將棱柱的.上底面給縮小成一個(gè)點(diǎn),那么我們得到的將會(huì)是什么樣的體呢?
[講授新課]
1、棱錐的基本概念
(1)棱錐及其底面、側(cè)面、側(cè)棱、頂點(diǎn)、高、對(duì)角面的概念
(2)棱錐的表示方法、分類
2、棱錐的性質(zhì)
(1)截面性質(zhì)定理:
如果棱錐被平行于底面的平面所截,那么截面和底面相似,并且它們面積的比等于截得的棱錐的高與已知棱錐的高的平方比
引申:如果棱錐被平行于底面的平面所截,則截得的小棱錐與已知棱錐的側(cè)面積比也等于它們對(duì)應(yīng)高的平方比、等于它們的底面積之比。
。2)正棱錐的定義及基本性質(zhì):
正棱錐的定義:
、俚酌媸钦噙呅
、陧旤c(diǎn)在底面的射影是底面的中心
、俑鱾(cè)棱相等,各側(cè)面是全等的等腰三角形;各等腰三角形底邊上的高相等,它們叫做正棱錐的斜高;
、诶忮F的高、斜高和斜高在底面內(nèi)的射影組成一個(gè)直角三角形;
棱錐的高、側(cè)棱和側(cè)棱在底面內(nèi)的射影也組成一個(gè)直角三角形
引申:
①正棱錐的側(cè)棱與底面所成的角都相等;
、谡忮F的側(cè)面與底面所成的二面角相等;
(3)正棱錐的各元素間的關(guān)系
下面我們結(jié)合圖形,進(jìn)一步探討正棱錐中各元素間的關(guān)系,為研究方便將課本圖9-74(略)正棱錐中的棱錐S-OBM從整個(gè)圖中拿出來(lái)研究。
引申:
、儆^察圖中三棱錐S-OBM的側(cè)面三角形狀有何特點(diǎn)?
。ǹ勺C得∠SOM=∠SOB=∠SMB=∠OMB=900,所以側(cè)面全是直角三角形。)
②若分別假設(shè)正棱錐的高SO=h,斜高SM=h’,底面邊長(zhǎng)的一半BM=a/2,底面正多邊形外接圓半徑OB=R,內(nèi)切圓半徑OM=r,側(cè)棱SB=L,側(cè)面與底面的二面角∠SMO=α,側(cè)棱與底面組成的角∠SBO=β,∠BOM=1800/n(n為底面正多邊形的邊數(shù))請(qǐng)?jiān)囃ㄟ^(guò)三角形得出以上各元素間的關(guān)系式。
(課后思考題)
[課堂練習(xí)]
1、知一個(gè)正六棱錐的高為h,側(cè)棱為L(zhǎng),求它的底面邊長(zhǎng)和斜高。
﹙解析及圖略﹚
2、錐被平行與底面的平面所截,若截面面積與底面面積之比為1∶2,求此棱錐的高被分成的兩段(從頂點(diǎn)到截面和從截面到底面)之比。
﹙解析及圖略﹚
[課堂小結(jié)]
一:棱錐的基本概念及表示、分類
二:棱錐的性質(zhì)
截面性質(zhì)定理:如果棱錐被平行于底面的平面所截,那么截面和底面相似,并且它們面積的比等于截得的棱錐的高與已知棱錐的高的平方比
引申:如果棱錐被平行于底面的平面所截,則截得的小棱錐與已知棱錐的側(cè)面積比也等于它們對(duì)應(yīng)高的平方比、等于它們的底面積之比。
正棱錐的定義及基本性質(zhì)
正棱錐的定義:
、俚酌媸钦噙呅
、陧旤c(diǎn)在底面的射影是底面的中心
(1)各側(cè)棱相等,各側(cè)面是全等的等腰三角形;各等腰三角形底邊上的高相等,它們叫做正棱錐的斜高;
(2)棱錐的高、斜高和斜高在底面內(nèi)的射影組成一個(gè)直角三角形;棱錐的高、側(cè)棱和側(cè)棱在底面內(nèi)的射影也組成一個(gè)直角三角形
引申:①正棱錐的側(cè)棱與底面所成的角都相等;
、谡忮F的側(cè)面與底面所成的二面角相等;
、壅忮F中各元素間的關(guān)系
[課后作業(yè)]
1:課本P52習(xí)題9.8:2、4
2:課時(shí)訓(xùn)練:訓(xùn)練一
高中數(shù)學(xué)說(shuō)課稿 16
一、說(shuō)教材
1、從在教材中的地位與作用來(lái)看
《等比數(shù)列的前n項(xiàng)和》是數(shù)列這一章中的一個(gè)重要資料,它不僅僅在現(xiàn)實(shí)生活中有著廣泛的實(shí)際應(yīng)用,如儲(chǔ)蓄、分期付款的有關(guān)計(jì)算等等,并且公式推導(dǎo)過(guò)程中所滲透的類比、化歸、分類討論、整體變換和方程等思想方法,都是學(xué)生今后學(xué)習(xí)和工作中必備的數(shù)學(xué)素養(yǎng)。
2、從學(xué)生認(rèn)知角度看
從學(xué)生的思維特點(diǎn)看,很容易把本節(jié)資料與等差數(shù)列前n項(xiàng)和從公式的構(gòu)成、特點(diǎn)等方面進(jìn)行類比,這是進(jìn)取因素,應(yīng)因勢(shì)利導(dǎo)。不利因素是:本節(jié)公式的推導(dǎo)與等差數(shù)列前n項(xiàng)和公式的推導(dǎo)有著本質(zhì)的不一樣,這對(duì)學(xué)生的思維是一個(gè)突破,另外,對(duì)于q=1這一特殊情景,學(xué)生往往容易忽視,尤其是在后面使用的過(guò)程中容易出錯(cuò)。
3、學(xué)情分析
教學(xué)對(duì)象是剛進(jìn)入高中的學(xué)生,雖然具有必須的分析問(wèn)題和解決問(wèn)題的能力,邏輯思維能力也初步構(gòu)成,但由于年齡的原因,思維盡管活躍、敏捷,卻缺乏冷靜、深刻,所以片面、不嚴(yán)謹(jǐn)。
4、重點(diǎn)、難點(diǎn)
教學(xué)重點(diǎn):公式的推導(dǎo)、公式的特點(diǎn)和公式的運(yùn)用。
教學(xué)難點(diǎn):公式的推導(dǎo)方法和公式的靈活運(yùn)用。
公式推導(dǎo)所使用的“錯(cuò)位相減法”是高中數(shù)學(xué)數(shù)列求和方法中最常用的方法之一,它蘊(yùn)含了重要的數(shù)學(xué)思想,所以既是重點(diǎn)也是難點(diǎn)。
二、說(shuō)目標(biāo)
知識(shí)與技能目標(biāo):
理解并掌握等比數(shù)列前n項(xiàng)和公式的推導(dǎo)過(guò)程、公式的特點(diǎn),在此基礎(chǔ)上能初步應(yīng)用公式解決與之有關(guān)的問(wèn)題。
過(guò)程與方法目標(biāo):
經(jīng)過(guò)對(duì)公式推導(dǎo)方法的探索與發(fā)現(xiàn),向?qū)W生滲透特殊到一般、類比與轉(zhuǎn)化、分類討論等數(shù)學(xué)思想,培養(yǎng)學(xué)生觀察、比較、抽象、概括等邏輯思維能力和逆向思維的能力。
情感與態(tài)度價(jià)值觀:
經(jīng)過(guò)對(duì)公式推導(dǎo)方法的探索與發(fā)現(xiàn),優(yōu)化學(xué)生的思維品質(zhì),滲透事物之間等價(jià)轉(zhuǎn)化和理論聯(lián)系實(shí)際的辯證唯物主義觀點(diǎn)。
三、說(shuō)過(guò)程
學(xué)生是認(rèn)知的主體,設(shè)計(jì)教學(xué)過(guò)程必須遵循學(xué)生的認(rèn)知規(guī)律,盡可能地讓學(xué)生去經(jīng)歷知識(shí)的構(gòu)成與發(fā)展過(guò)程,結(jié)合本節(jié)課的特點(diǎn),我設(shè)計(jì)了如下的教學(xué)過(guò)程:
1、創(chuàng)設(shè)情境,提出問(wèn)題
在古印度,有個(gè)名叫西薩的人,發(fā)明了國(guó)際象棋,當(dāng)時(shí)的印度國(guó)王大為贊賞,對(duì)他說(shuō):我能夠滿足你的任何要求。西薩說(shuō):請(qǐng)給我棋盤(pán)的64個(gè)方格上,第一格放1粒小麥,第二格放2粒,第三格放4粒,往后每一格都是前一格的兩倍,直至第64格。國(guó)王令宮廷數(shù)學(xué)家計(jì)算,結(jié)果出來(lái)后,國(guó)王大吃一驚。為什么呢?
設(shè)計(jì)意圖:設(shè)計(jì)這個(gè)情境目的是在引入課題的同時(shí)激發(fā)學(xué)生的興趣,調(diào)動(dòng)學(xué)習(xí)的積極性。故事資料緊扣本節(jié)課的'主題與重點(diǎn)。
此時(shí)我問(wèn):同學(xué)們,你們明白西薩要的是多少粒小麥嗎引導(dǎo)學(xué)生寫(xiě)出麥?倲(shù)。帶著這樣的問(wèn)題,學(xué)生會(huì)動(dòng)手算了起來(lái),他們想到用計(jì)算器依次算出各項(xiàng)的值,然后再求和。這時(shí)我對(duì)他們的這種思路給予肯定。
設(shè)計(jì)意圖:在實(shí)際教學(xué)中,由于受課堂時(shí)間限制,教師舍不得花時(shí)間讓學(xué)生去做所謂的“無(wú)用功”,急急忙忙地拋出“錯(cuò)位相減法”,這樣做有悖學(xué)生的認(rèn)知規(guī)律:求和就想到相加,這是合乎邏輯順理成章的事,教師為什么不相加而立刻相減呢在整個(gè)教學(xué)關(guān)鍵處學(xué)生難以轉(zhuǎn)過(guò)彎來(lái),因而在教學(xué)中應(yīng)舍得花時(shí)間營(yíng)造知識(shí)構(gòu)成過(guò)程的氛圍,突破學(xué)生學(xué)習(xí)的障礙。同時(shí),構(gòu)成繁難的情境激起了學(xué)生的求知欲,迫使學(xué)生急于尋求解決問(wèn)題的新方法,為后面的教學(xué)埋下伏筆。
2、師生互動(dòng),探究問(wèn)題
在肯定他們的思路后,我之后問(wèn):1,2,22…263是什么數(shù)列有何特征應(yīng)歸結(jié)為什么數(shù)學(xué)問(wèn)題呢:
探討1:記為(1)式,注意觀察每一項(xiàng)的特征,有何聯(lián)系(學(xué)生會(huì)發(fā)現(xiàn),后一項(xiàng)都是前一項(xiàng)的2倍)
探討2:如果我們把每一項(xiàng)都乘以2,就變成了它的后一項(xiàng),(1)式兩邊同乘以2則有,記為(2)式。比較(1)(2)兩式,你有什么發(fā)現(xiàn)
設(shè)計(jì)意圖:留出時(shí)間讓學(xué)生充分地比較,等比數(shù)列前n項(xiàng)和的公式推導(dǎo)關(guān)鍵是變“加”為“減”,在教師看來(lái)這是“天經(jīng)地義”的,但在學(xué)生看來(lái)卻是“不可思議”的,所以教學(xué)中應(yīng)著力在這兒做文章,從而抓住培養(yǎng)學(xué)生的辯證思維能力的良好契機(jī)。
經(jīng)過(guò)比較、研究,學(xué)生發(fā)現(xiàn):(1)、(2)兩式有許多相同的項(xiàng),把兩式相減,相同的項(xiàng)就消去了,得到:。教師指出:這就是錯(cuò)位相減法,并要求學(xué)生縱觀全過(guò)程,反思:為什么(1)式兩邊要同乘以2呢
設(shè)計(jì)意圖:經(jīng)過(guò)繁難的計(jì)算之苦后,突然發(fā)現(xiàn)上述解法,不禁驚呼:真是太簡(jiǎn)潔了!讓學(xué)生在探索過(guò)程中,充分感受到成功的情感體驗(yàn),從而增強(qiáng)學(xué)習(xí)數(shù)學(xué)的興趣和學(xué)好數(shù)學(xué)的信心。
3、類比聯(lián)想,解決問(wèn)題
這時(shí)我再順勢(shì)引導(dǎo)學(xué)生將結(jié)論一般化,
那里,讓學(xué)生自主完成,并喊一名學(xué)生上黑板,然后對(duì)個(gè)別學(xué)生進(jìn)行指導(dǎo)。
設(shè)計(jì)意圖:在教師的指導(dǎo)下,讓學(xué)生從特殊到一般,從已知到未知,步步深入,讓學(xué)生自我探究公式,從而體驗(yàn)到學(xué)習(xí)的愉快和成就感。
對(duì)不對(duì)那里的q能不能等于1等比數(shù)列中的公比能不能為1q=1時(shí)是什么數(shù)列此時(shí)sn=(那里引導(dǎo)學(xué)生對(duì)q進(jìn)行分類討論,得出公式,同時(shí)為后面的例題教學(xué)打下基礎(chǔ)。)
再次追問(wèn):結(jié)合等比數(shù)列的通項(xiàng)公式an=a1qn—1,如何把sn用a1、an、q表示出來(lái)(引導(dǎo)學(xué)生得出公式的另一形式)
設(shè)計(jì)意圖:經(jīng)過(guò)反問(wèn)精講,一方面使學(xué)生加深對(duì)知識(shí)的認(rèn)識(shí),完善知識(shí)結(jié)構(gòu),另一方面使學(xué)生由簡(jiǎn)單地模仿和理解,變?yōu)閷?duì)知識(shí)的主動(dòng)認(rèn)識(shí),從而進(jìn)一步提高分析、類比和綜合的能力。這一環(huán)節(jié)十分重要,盡管時(shí)間有時(shí)比較少,甚至僅僅幾句話,然而卻有畫(huà)龍點(diǎn)睛之妙用。
4、討論交流,延伸拓展
。裕
高中數(shù)學(xué)說(shuō)課稿 17
尊敬的各位評(píng)委、各位老師:
大家好!我說(shuō)課的題目是《函數(shù)的單調(diào)性》,我將從四個(gè)方面來(lái)闡述我對(duì)這節(jié)課的設(shè)計(jì)。
一、教材分析
1、教材的地位和作用
。1)本節(jié)課主要對(duì)函數(shù)單調(diào)性的學(xué)習(xí);
。2)它是在學(xué)習(xí)函數(shù)概念的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,同時(shí)又為基本初等函數(shù)的學(xué)習(xí)奠定了基礎(chǔ),所以他在教材中起著承前啟后的重要作用;(可以看看這一課題的前后章節(jié)來(lái)寫(xiě))
。3)它是歷年高考的熱點(diǎn)、難點(diǎn)問(wèn)題
。ǜ鶕(jù)具體的課題改變就行了,如果不是熱點(diǎn)難點(diǎn)問(wèn)題就刪掉)
2、教材重、難點(diǎn)
重點(diǎn):函數(shù)單調(diào)性的`定義
難點(diǎn):函數(shù)單調(diào)性的證明
重難點(diǎn)突破:在學(xué)生已有知識(shí)的基礎(chǔ)上,通過(guò)認(rèn)真觀察思考,并通過(guò)小組合作探究的辦法來(lái)實(shí)現(xiàn)重難點(diǎn)突破。(這個(gè)必須要有)
二、教學(xué)目標(biāo)
知識(shí)目標(biāo):(1)函數(shù)單調(diào)性的定義
(2)函數(shù)單調(diào)性的證明
能力目標(biāo):培養(yǎng)學(xué)生全面分析、抽象和概括的能力,以及了解由簡(jiǎn)單到復(fù)雜,由特殊到一般的化歸思想
情感目標(biāo):培養(yǎng)學(xué)生勇于探索的精神和善于合作的意識(shí)
。ㄟ@樣的教學(xué)目標(biāo)設(shè)計(jì)更注重教學(xué)過(guò)程和情感體驗(yàn),立足教學(xué)目標(biāo)多元化)
三、教法學(xué)法分析
1、教法分析
“教必有法而教無(wú)定法”,只有方法得當(dāng)才會(huì)有效。新課程標(biāo)準(zhǔn)之處教師是教學(xué)的組織者、引導(dǎo)者、合作者,在教學(xué)過(guò)程要充分調(diào)動(dòng)學(xué)生的積極性、主動(dòng)性。本著這一原則,在教學(xué)過(guò)程中我主要采用以下教學(xué)方法:開(kāi)放式探究法、啟發(fā)式引導(dǎo)法、小組合作討論法、反饋式評(píng)價(jià)法
2、學(xué)法分析
“授人以魚(yú),不如授人以漁”,最有價(jià)值的知識(shí)是關(guān)于方法的只是。學(xué)生作為教學(xué)活動(dòng)的主題,在學(xué)習(xí)過(guò)程中的參與狀態(tài)和參與度是影響教學(xué)效果最重要的因素。在學(xué)法選擇上,我主要采用:自主探究法、觀察發(fā)現(xiàn)法、合作交流法、歸納總結(jié)法。
。ㄇ叭糠钟脮r(shí)控制在三分鐘以內(nèi),可適當(dāng)刪減)
四、教學(xué)過(guò)程
1、以舊引新,導(dǎo)入新知
通過(guò)課前小研究讓學(xué)生自行繪制出一次函數(shù)f(x)=x和二次函數(shù)f(x)=x^2的圖像,并觀察函數(shù)圖象的特點(diǎn),總結(jié)歸納。通過(guò)課上小組討論歸納,引導(dǎo)學(xué)生發(fā)現(xiàn),教師總結(jié):一次函數(shù)f(x)=x的圖像在定義域是直線上升的,而二次函數(shù)f(x)=x^2的圖像是一個(gè)曲線,在(-∞,0)上是下降的,而在(0,+∞)上是上升的。(適當(dāng)添加手勢(shì),這樣看起來(lái)更自然)
2、創(chuàng)設(shè)問(wèn)題,探索新知
緊接著提出問(wèn)題,你能用二次函數(shù)f(x)=x^2表達(dá)式來(lái)描述函數(shù)在(-∞,0)的圖像?教師總結(jié),并板書(shū),揭示函數(shù)單調(diào)性的定義,并注意強(qiáng)調(diào)可以利用作差法來(lái)判斷這個(gè)函數(shù)的單調(diào)性。
讓學(xué)生模仿剛才的表述法來(lái)描述二次函數(shù)f(x)=x^2在(0,+∞)的圖像,并找個(gè)別同學(xué)起來(lái)作答,規(guī)范學(xué)生的數(shù)學(xué)用語(yǔ)。
讓學(xué)生自主學(xué)習(xí)函數(shù)單調(diào)區(qū)間的定義,為接下來(lái)例題學(xué)習(xí)打好基礎(chǔ)。
3、例題講解,學(xué)以致用
例1主要是對(duì)函數(shù)單調(diào)區(qū)間的鞏固運(yùn)用,通過(guò)觀察函數(shù)定義在(—5,5)的圖像來(lái)找出函數(shù)的單調(diào)區(qū)間。這一例題主要以學(xué)生個(gè)別回答為主,學(xué)生回答之后通過(guò)互評(píng)來(lái)糾正答案,檢查學(xué)生對(duì)函數(shù)單調(diào)區(qū)間的掌握。強(qiáng)調(diào)單調(diào)區(qū)間一般寫(xiě)成半開(kāi)半閉的形式
例題講解之后可讓學(xué)生自行完成課后練習(xí)4,以學(xué)生集體回答的方式檢驗(yàn)學(xué)生的學(xué)習(xí)效果。
例2是將函數(shù)單調(diào)性運(yùn)用到其他領(lǐng)域,通過(guò)函數(shù)單調(diào)性來(lái)證明物理學(xué)的波意爾定理。這是歷年高考的熱點(diǎn)跟難點(diǎn)問(wèn)題,這一例題要采用教師板演的方式,來(lái)對(duì)例題進(jìn)行證明,以規(guī)范總結(jié)證明步驟。一設(shè)二差三化簡(jiǎn)四比較,注意要把f(x1)-f(x2)化簡(jiǎn)成和差積商的形式,再比較與0的大小。
學(xué)生在熟悉證明步驟之后,做課后練習(xí)3,并以小組為單位找部分同學(xué)上臺(tái)板演,其他同學(xué)在下面自行完成,并通過(guò)自評(píng)、互評(píng)檢查證明步驟。
4、歸納小結(jié)
本節(jié)課我們主要學(xué)習(xí)了函數(shù)單調(diào)性的定義及證明過(guò)程,并在教學(xué)過(guò)程中注重培養(yǎng)學(xué)生勇于探索的精神和善于合作的意識(shí)。
5、作業(yè)布置
為了讓學(xué)生學(xué)習(xí)不同的數(shù)學(xué),我將采用分層布置作業(yè)的方式:一組習(xí)題1.3A組1、2、3,二組習(xí)題1.3A組2、3、B組1、2
6、板書(shū)設(shè)計(jì)
我力求簡(jiǎn)潔明了地概括本節(jié)課的學(xué)習(xí)要點(diǎn),讓學(xué)生一目了然。
。ㄟ@部分最重要用時(shí)六到七分鐘,其中定義講解跟例題講解一定要說(shuō)明學(xué)生的活動(dòng))
五、教學(xué)評(píng)價(jià)
本節(jié)課是在學(xué)生已有知識(shí)的基礎(chǔ)上學(xué)習(xí)的,在教學(xué)過(guò)程中通過(guò)自主探究、合作交流,充分調(diào)動(dòng)學(xué)生的積極性跟主動(dòng)性,及時(shí)吸收反饋信息,并通過(guò)學(xué)生的自評(píng)、互評(píng),讓內(nèi)部動(dòng)機(jī)和外界刺激協(xié)調(diào)作用,促進(jìn)其數(shù)學(xué)素養(yǎng)不斷提高。
高中數(shù)學(xué)說(shuō)課稿 18
一、教材分析:
集合概念及其基本理論,稱為集合論,是近、現(xiàn)代數(shù)學(xué)的一個(gè)重要的基礎(chǔ),一方面,許多重要的數(shù)學(xué)分支,都建立在集合理論的基礎(chǔ)上。另一方面,集合論及其所反映的數(shù)學(xué)思想,在越來(lái)越廣泛的領(lǐng)域種得到應(yīng)用。
二、目標(biāo)分析:
教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn):集合的含義與表示方法。
難點(diǎn):表示法的恰當(dāng)選擇。
教學(xué)目標(biāo)
1.知識(shí)與技能
(1)通過(guò)實(shí)例,了解集合的含義,體會(huì)元素與集合的屬于關(guān)系;
(2)知道常用數(shù)集及其專用記號(hào);
。3)了解集合中元素的確定性;ギ愋。無(wú)序性;
。4)會(huì)用集合語(yǔ)言表示有關(guān)數(shù)學(xué)對(duì)象;
2.過(guò)程與方法
。1)讓學(xué)生經(jīng)歷從集合實(shí)例中抽象概括出集合共同特征的過(guò)程,感知集合的含義。
(2)讓學(xué)生歸納整理本節(jié)所學(xué)知識(shí)。
3.情感、態(tài)度與價(jià)值觀
使學(xué)生感受到學(xué)習(xí)集合的必要性,增強(qiáng)學(xué)習(xí)的積極性。
三、教法分析
1.教學(xué)方法:學(xué)生通過(guò)閱讀教材,自主學(xué)習(xí)。思考。交流。討論和概括,從而更好地完成本節(jié)課的教學(xué)目標(biāo)。
2.教學(xué)手段:在教學(xué)中使用投影儀來(lái)輔助教學(xué)。
四、過(guò)程分析
。ㄒ唬﹦(chuàng)設(shè)情景,揭示課題
1、教師首先提出問(wèn)題:
(1)介紹自己的家庭、原來(lái)就讀的學(xué)校、現(xiàn)在的班級(jí)。
。2)問(wèn)題:像"家庭"、"學(xué)校"、"班級(jí)"等,有什么共同特征?
引導(dǎo)學(xué)生互相交流。與此同時(shí),教師對(duì)學(xué)生的活動(dòng)給予評(píng)價(jià)。
2.活動(dòng):
(1)列舉生活中的集合的例子;
(2)分析、概括各實(shí)例的共同特征
由此引出這節(jié)要學(xué)的內(nèi)容。
設(shè)計(jì)意圖:既激發(fā)了學(xué)生濃厚的學(xué)習(xí)興趣,又為新知作好鋪墊
(二)研探新知,建構(gòu)概念
1.教師利用多媒體設(shè)備向?qū)W生投影出下面7個(gè)實(shí)例:
(1)1-20以內(nèi)的所有質(zhì)數(shù);
。2)我國(guó)古代的四大發(fā)明;
。3)所有的安理會(huì)常任理事國(guó);
。4)所有的正方形;
。5)海南省在2004年9月之前建成的所有立交橋;
(6)到一個(gè)角的兩邊距離相等的所有的點(diǎn);
(7)國(guó)興中學(xué)2004年9月入學(xué)的高一學(xué)生的全體。
2.教師組織學(xué)生分組討論:這7個(gè)實(shí)例的共同特征是什么?
3.每個(gè)小組選出--位同學(xué)發(fā)表本組的討論結(jié)果,在此基礎(chǔ)上,師生共同概括出7個(gè)實(shí)例的特征,并給出集合的含義。
一般地,指定的某些對(duì)象的全體稱為集合(簡(jiǎn)稱為集)。集合中的每個(gè)對(duì)象叫作這個(gè)集合的元素。
4.教師指出:集合常用大寫(xiě)字母A,B,C,D,…表示,元素常用小寫(xiě)字母…表示。
設(shè)計(jì)意圖:通過(guò)實(shí)例讓學(xué)生感受集合的概念,激發(fā)學(xué)習(xí)的興趣,培養(yǎng)學(xué)生樂(lè)于求索的精神
。ㄈ┵|(zhì)疑答辯,發(fā)展思維
1.教師引導(dǎo)學(xué)生閱讀教材中的相關(guān)內(nèi)容,思考:集合中元素有什么特點(diǎn)?并注意個(gè)別輔導(dǎo),解答學(xué)生疑難。使學(xué)生明確集合元素的三大特性,即:確定性;ギ愋院蜔o(wú)序性。只要構(gòu)成兩個(gè)集合的元素是一樣的,我們就稱這兩個(gè)集合相等。
2.教師組織引導(dǎo)學(xué)生思考以下問(wèn)題:
判斷以下元素的全體是否組成集合,并說(shuō)明理由:
。1)大于3小于11的偶數(shù);
(2)我國(guó)的小河流。
讓學(xué)生充分發(fā)表自己的`建解。
3.讓學(xué)生自己舉出一些能夠構(gòu)成集合的例子以及不能構(gòu)成集合的例子,并說(shuō)明理由。教師對(duì)學(xué)生的學(xué)習(xí)活動(dòng)給予及時(shí)的評(píng)價(jià)。
4.教師提出問(wèn)題,讓學(xué)生思考
。1)如果用A表示高-(3)班全體學(xué)生組成的集合,用表示高一(3)班的一位同學(xué),是高一(4)班的一位同學(xué),那么與集合A分別有什么關(guān)系?由此引導(dǎo)學(xué)生得出元素與集合的關(guān)系有兩種:屬于和不屬于。
如果是集合A的元素,就說(shuō)屬于集合A,記作。
如果不是集合A的元素,就說(shuō)不屬于集合A,記作。
。2)如果用A表示"所有的安理會(huì)常任理事國(guó)"組成的集合,則中國(guó)。日本與集合A的關(guān)系分別是什么?請(qǐng)用數(shù)學(xué)符號(hào)分別表示。
。3)讓學(xué)生完成教材第6頁(yè)練習(xí)第1題。
5.教師引導(dǎo)學(xué)生回憶數(shù)集擴(kuò)充過(guò)程,然后閱讀教材中的相交內(nèi)容,寫(xiě)出常用數(shù)集的記號(hào)。并讓學(xué)生完成習(xí)題1.1A組第1題。
6.教師引導(dǎo)學(xué)生閱讀教材中的相關(guān)內(nèi)容,并思考。討論下列問(wèn)題:
。1)要表示一個(gè)集合共有幾種方式?
。2)試比較自然語(yǔ)言。列舉法和描述法在表示集合時(shí),各自有什么特點(diǎn)?適用的對(duì)象是什么?
。3)如何根據(jù)問(wèn)題選擇適當(dāng)?shù)募媳硎痉ǎ?/p>
使學(xué)生弄清楚三種表示方式的優(yōu)缺點(diǎn)和體會(huì)它們存在的必要性和適用對(duì)象。
設(shè)計(jì)意圖:明確集合元素的三大特性,使學(xué)生弄清楚三種表示方式的優(yōu)缺點(diǎn),從而突破難點(diǎn)。
。ㄋ模╈柟躺罨,反饋矯正
教師投影學(xué)習(xí):
(1)用自然語(yǔ)言描述集合{1,3,5,7,9};
。2)用例舉法表示集合
。3)試選擇適當(dāng)?shù)姆椒ū硎鞠铝屑希航滩牡?頁(yè)練習(xí)第2題。
設(shè)計(jì)意圖:使學(xué)生及時(shí)鞏固所學(xué)新知,體會(huì)三種表示方式存在的必要性和適用對(duì)象
。ㄎ澹w納小結(jié),布置作業(yè)
小結(jié):在師生互動(dòng)中,讓學(xué)生了解或體會(huì)下例問(wèn)題:
1.本節(jié)課我們學(xué)習(xí)了哪些知識(shí)內(nèi)容?
2.你認(rèn)為學(xué)習(xí)集合有什么意義?
3.選擇集合的表示法時(shí)應(yīng)注意些什么?
設(shè)計(jì)意圖:通過(guò)回顧,對(duì)概念的發(fā)生與發(fā)展過(guò)程有清晰的認(rèn)識(shí),回顧集合元素的三大特性及集合的三種表示方式。
作業(yè):
1.課后書(shū)面作業(yè):第13頁(yè)習(xí)題1.1A組第4題。
2.元素與集合的關(guān)系有多少種?如何表示?類似地集合與集合間的關(guān)系又有多少種呢?如何表示?請(qǐng)同學(xué)們通過(guò)預(yù)習(xí)教材。
高中數(shù)學(xué)說(shuō)課稿 19
一、教材分析
本課時(shí)的內(nèi)容是數(shù)列的定義,通項(xiàng)公式及運(yùn)用;本課是在學(xué)習(xí)映射、函數(shù)知識(shí)基礎(chǔ)上研究數(shù)列,既對(duì)進(jìn)一步理解數(shù)列,又為今后研究等差、等比數(shù)列打下基礎(chǔ),起著承前啟后的重要作用。
首先,數(shù)列,特別是等差數(shù)列與等比數(shù)列,有著較為廣泛的應(yīng)用。值得一提的是,數(shù)列在產(chǎn)品尺寸標(biāo)準(zhǔn)化方面有著重要作用。例如在我國(guó)已頒布的供各種生產(chǎn)部門(mén)設(shè)計(jì)產(chǎn)品尺寸用的國(guó)家標(biāo)準(zhǔn),就是按等比數(shù)列對(duì)產(chǎn)品尺寸進(jìn)行分級(jí)的。
其次,數(shù)列在整個(gè)中學(xué)數(shù)學(xué)教學(xué)內(nèi)容中,處于一個(gè)知識(shí)匯合點(diǎn)的地位,很多知識(shí)都與數(shù)列有著密切聯(lián)系,過(guò)去學(xué)過(guò)的數(shù)、式、方程、函數(shù)、簡(jiǎn)易邏輯等知識(shí)在這一章均得到了較為充分的應(yīng)用,而學(xué)習(xí)數(shù)列又為后面學(xué)習(xí)數(shù)列與函數(shù)的極限等內(nèi)容作了鋪墊。應(yīng)該說(shuō):新課本采取將代數(shù)、幾何打通的混編體系的主要目的是強(qiáng)化數(shù)學(xué)知識(shí)的內(nèi)在聯(lián)系,而數(shù)列正是將各知識(shí)勾通方面發(fā)揮了重要作用。
最后,由于不少關(guān)系恒等變形、解方程(組)以及一些帶有綜合性的數(shù)學(xué)問(wèn)題都與等差數(shù)列、等比數(shù)列有關(guān),從而有助于培養(yǎng)學(xué)生綜合運(yùn)用知識(shí)解決問(wèn)題的能力。因此本節(jié)內(nèi)容起到一個(gè)鞏固舊知,熟練方法,拓展新知的承接作用。
二、學(xué)生情況分析
學(xué)習(xí)障礙:
本節(jié)課是學(xué)習(xí)數(shù)列的起始課,在學(xué)習(xí)中會(huì)遇到下列障礙:
1.對(duì)數(shù)列定義中的關(guān)鍵詞"按一定次序"的理解有些模糊。
2.對(duì)數(shù)列與函數(shù)的關(guān)系認(rèn)識(shí)不清。
3.對(duì)數(shù)列的表示,特別是通項(xiàng)公式an=f(n)感到困惑,對(duì)數(shù)列的通項(xiàng)公式可以不只一個(gè)覺(jué)得不可思議。
4.由數(shù)列的前幾項(xiàng)寫(xiě)不出數(shù)列的通項(xiàng)公式。
學(xué)習(xí)策略:
。1)為激發(fā)學(xué)生學(xué)習(xí)數(shù)列的興趣,體會(huì)數(shù)列知識(shí)在實(shí)際生活中的作用,可由實(shí)際問(wèn)題引入,從中抽象出數(shù)列要研究的問(wèn)題,使學(xué)生對(duì)所要研究的內(nèi)容心中有數(shù),如書(shū)中所給的例子等。
。2)數(shù)列中蘊(yùn)含的`函數(shù)思想是研究數(shù)列的指導(dǎo)思想,應(yīng)及早引導(dǎo)學(xué)生發(fā)現(xiàn)數(shù)列與函數(shù)的關(guān)系,在教學(xué)中強(qiáng)調(diào)數(shù)列的項(xiàng)是按一定順序排列的,"次序"便是函數(shù)的自變量,相同的數(shù)組成的數(shù)列,次序不同則就是不同的數(shù)列,函數(shù)表示法有列表法、圖象法、解析式法,類似地,數(shù)列就有列舉法、圖示法、通項(xiàng)公式法。
。3)由數(shù)列的通項(xiàng)公式寫(xiě)出數(shù)列的前幾項(xiàng)是簡(jiǎn)單的代入法,這一例題為寫(xiě)通項(xiàng)公式作一些準(zhǔn)備,尤其是對(duì)程度差的學(xué)生,可多舉幾個(gè)例子,讓學(xué)生觀察歸納通項(xiàng)公式與各項(xiàng)的結(jié)構(gòu)關(guān)系,盡量為寫(xiě)通項(xiàng)公式提供幫助。
。4)由數(shù)列的前幾項(xiàng)寫(xiě)出數(shù)列的一個(gè)通項(xiàng)公式是學(xué)生學(xué)習(xí)中的一個(gè)難點(diǎn),要幫助學(xué)生分析各項(xiàng)中的結(jié)構(gòu)特征,讓學(xué)生依據(jù)前幾項(xiàng)的規(guī)律,猜想該數(shù)列的下一項(xiàng)或下幾項(xiàng)的值,以便尋求項(xiàng)與項(xiàng)數(shù)的關(guān)系。最后老師與學(xué)生共同歸納一些規(guī)律性的結(jié)論。
1、并非所有數(shù)列都能寫(xiě)出它的通項(xiàng)公式;
2、有些數(shù)列的通項(xiàng)公式在形式上不一定是唯一的。如數(shù)列1,-1,1,-1,1,-1...的通項(xiàng)可寫(xiě)成或或等
3、當(dāng)一個(gè)數(shù)列出現(xiàn)""、"-"相間時(shí),應(yīng)先把符號(hào)分離出來(lái),用等來(lái)控制;
4、有些數(shù)列的通項(xiàng)公式可以用分段的形式來(lái)表示;
5、熟悉常見(jiàn)數(shù)列的通項(xiàng):
三、教學(xué)方法及教學(xué)手段分析
考慮到學(xué)生已學(xué)過(guò)映射、函數(shù)的特點(diǎn),為突破難點(diǎn),在教學(xué)上,我著重從以下幾個(gè)方面:
。1)數(shù)列的定義,通項(xiàng)公式;
(2)歸納通項(xiàng)公式;
(3)畫(huà)出數(shù)列的圖像;
。4)把數(shù)列的通項(xiàng)公式理解為一種特殊函數(shù),采取了講解、引導(dǎo)、探索式相結(jié)合的教學(xué)方法啟發(fā)學(xué)生積極思考、勇于創(chuàng)新。
。ㄒ唬﹩l(fā)誘導(dǎo)式:舉實(shí)例讓學(xué)生找規(guī)律,得到數(shù)列的基本知識(shí)。
。ǘ┳灾鲗W(xué)習(xí)式:根據(jù)數(shù)列的定義和前面所學(xué)的函數(shù)關(guān)系,由學(xué)生自己通過(guò)聯(lián)想、類比、對(duì)比、歸納的方法遷移到新情境中,將新的知識(shí)內(nèi)化到學(xué)生原有的認(rèn)知結(jié)構(gòu)中去。
(三)問(wèn)題解決式:設(shè)計(jì)的每一個(gè)探究問(wèn)題的解答過(guò)程。
(四)利用多媒體教學(xué)手段,引入課題,能激發(fā)學(xué)生學(xué)習(xí)興趣,增加數(shù)學(xué)人文色彩,同時(shí)也闡述了數(shù)列來(lái)源于實(shí)際,化抽象為具體,增強(qiáng)動(dòng)感與直觀性,同時(shí)也提高教學(xué)效果和教學(xué)質(zhì)量
總之:
1、本節(jié)課是數(shù)列的起始課,設(shè)置情景、激發(fā)興趣有利于學(xué)生學(xué)好本章知識(shí);
2、把數(shù)列與集合、函數(shù)對(duì)比學(xué)習(xí),有利于鞏固舊知識(shí),掌握新知識(shí),使所學(xué)知識(shí)形成系統(tǒng)化;
3、教法和學(xué)法上突出教材重點(diǎn)、力求突破難點(diǎn),加深學(xué)生對(duì)知識(shí)的理解。較多地采用提問(wèn)(包括設(shè)問(wèn));在教學(xué)材料呈現(xiàn)上以多媒體形式給出。例題的配備由淺入深、滲透了思維活動(dòng)組織上由此及彼的類比推理概括的方法。貫徹"教師為主導(dǎo)、學(xué)生為主體、探究為主線、思維為主攻"的教學(xué)思想,采取"精講、善導(dǎo)、激趣、引思"的八字方針。
高中數(shù)學(xué)說(shuō)課稿 20
尊敬的評(píng)委老師、各位同仁:
大家好!今天,我將為大家展示的是高中數(shù)學(xué)必修一中的《函數(shù)的概念及其表示方法》這一章節(jié)的教學(xué)設(shè)計(jì)。本節(jié)課旨在通過(guò)理論講解與實(shí)例分析,使學(xué)生深刻理解函數(shù)的基本概念,掌握函數(shù)的多種表示方法,并能夠初步運(yùn)用函數(shù)概念解決實(shí)際問(wèn)題。
一、教材分析
教學(xué)內(nèi)容:本節(jié)課主要包括函數(shù)的概念、函數(shù)的三種基本表示方法(解析法、列表法、圖像法)以及函數(shù)值域和定義域的確定。
教材地位:函數(shù)是高中數(shù)學(xué)的核心內(nèi)容之一,是后續(xù)學(xué)習(xí)導(dǎo)數(shù)、微積分等高等數(shù)學(xué)知識(shí)的基礎(chǔ),也是解決實(shí)際問(wèn)題的重要工具。
教學(xué)目標(biāo):
知識(shí)與技能:理解函數(shù)的概念,掌握函數(shù)的三種表示方法,能準(zhǔn)確確定函數(shù)的定義域和值域。
過(guò)程與方法:通過(guò)實(shí)例分析,培養(yǎng)學(xué)生抽象思維能力和邏輯推理能力。
情感態(tài)度價(jià)值觀:激發(fā)學(xué)生對(duì)數(shù)學(xué)的興趣,培養(yǎng)嚴(yán)謹(jǐn)?shù)臄?shù)學(xué)態(tài)度和解決問(wèn)題的能力。
二、學(xué)情分析
學(xué)生已經(jīng)學(xué)習(xí)了初中數(shù)學(xué)中的變量關(guān)系,對(duì)函數(shù)有初步的認(rèn)識(shí),但缺乏系統(tǒng)的理解和深入的應(yīng)用。
學(xué)生思維活躍,喜歡通過(guò)實(shí)例學(xué)習(xí)新知識(shí),但抽象思維能力有待提高。
三、教學(xué)重點(diǎn)與難點(diǎn)
教學(xué)重點(diǎn):函數(shù)的概念,函數(shù)的三種表示方法。
教學(xué)難點(diǎn):理解函數(shù)定義中的“對(duì)應(yīng)法則”,準(zhǔn)確確定函數(shù)的定義域和值域。
四、教學(xué)方法
講授法:通過(guò)教師的系統(tǒng)講解,幫助學(xué)生建立函數(shù)的基本概念。
討論法:組織小組討論,引導(dǎo)學(xué)生分析函數(shù)實(shí)例,加深對(duì)函數(shù)表示方法的理解。
練習(xí)法:設(shè)計(jì)多種形式的練習(xí)題,讓學(xué)生在實(shí)踐中掌握函數(shù)的應(yīng)用。
五、教學(xué)過(guò)程
1、導(dǎo)入新課:
通過(guò)生活中的實(shí)例(如氣溫隨時(shí)間的變化、汽車行駛距離與時(shí)間的關(guān)系)引出函數(shù)的概念,激發(fā)學(xué)生的學(xué)習(xí)興趣。
2、新知講授:
詳細(xì)講解函數(shù)的概念,強(qiáng)調(diào)“自變量”、“因變量”、“定義域”、“值域”和“對(duì)應(yīng)法則”的含義。
介紹函數(shù)的三種表示方法:解析法、列表法、圖像法,并通過(guò)實(shí)例展示每種方法的應(yīng)用。
3、鞏固練習(xí):
設(shè)計(jì)一系列練習(xí)題,包括確定函數(shù)的'定義域和值域、根據(jù)解析式繪制函數(shù)圖像、根據(jù)圖像寫(xiě)出函數(shù)解析式等,讓學(xué)生在實(shí)踐中加深對(duì)知識(shí)的理解。
4、總結(jié)提升:
引導(dǎo)學(xué)生總結(jié)本節(jié)課所學(xué)內(nèi)容,強(qiáng)調(diào)函數(shù)概念的重要性及其在實(shí)際問(wèn)題中的應(yīng)用。
鼓勵(lì)學(xué)生提出疑問(wèn),進(jìn)行師生互動(dòng),解決學(xué)習(xí)中的困惑。
5、布置作業(yè):
設(shè)計(jì)一些具有挑戰(zhàn)性的作業(yè),如尋找生活中的函數(shù)實(shí)例、分析函數(shù)的性質(zhì)等,以鞏固和拓展所學(xué)知識(shí)。
六、教學(xué)反思
本節(jié)課注重理論與實(shí)踐相結(jié)合,通過(guò)實(shí)例分析幫助學(xué)生理解函數(shù)的概念和表示方法。
在教學(xué)過(guò)程中,應(yīng)關(guān)注學(xué)生的個(gè)體差異,適時(shí)調(diào)整教學(xué)策略,以滿足不同層次學(xué)生的學(xué)習(xí)需求。
課后應(yīng)及時(shí)收集學(xué)生反饋,反思教學(xué)效果,不斷優(yōu)化教學(xué)設(shè)計(jì)。
【高中數(shù)學(xué)說(shuō)課稿】相關(guān)文章:
高中數(shù)學(xué)經(jīng)典說(shuō)課稿11-25
高中數(shù)學(xué)數(shù)列說(shuō)課稿06-07
高中數(shù)學(xué)優(yōu)秀說(shuō)課稿03-08
高中數(shù)學(xué)《數(shù)列》說(shuō)課稿01-18