国产激情久久久久影院小草_国产91高跟丝袜_99精品视频99_三级真人片在线观看

高中數(shù)學(xué)三角函數(shù)說課稿

時(shí)間:2022-11-25 12:19:43 高中說課稿 我要投稿

高中數(shù)學(xué)三角函數(shù)說課稿(4篇)

  作為一位無私奉獻(xiàn)的人民教師,就有可能用到說課稿,借助說課稿可以更好地提高教師理論素養(yǎng)和駕馭教材的能力。那要怎么寫好說課稿呢?以下是小編精心整理的高中數(shù)學(xué)三角函數(shù)說課稿,供大家參考借鑒,希望可以幫助到有需要的朋友。

高中數(shù)學(xué)三角函數(shù)說課稿(4篇)

高中數(shù)學(xué)三角函數(shù)說課稿1

各位同仁,各位專家:

  我說課的課題是《任意角的三角函數(shù)》,內(nèi)容取自蘇教版高中實(shí)驗(yàn)教科書《數(shù)學(xué)》第四冊(cè) 第1。2節(jié)

  先對(duì)教材進(jìn)行分析

  教學(xué)內(nèi)容:任意角三角函數(shù)的定義、定義域,三角函數(shù)值的符號(hào)。

  地位和作用: 任意角的三角函數(shù)是本章教學(xué)內(nèi)容的基本概念對(duì)三角內(nèi)容的整體學(xué)習(xí)至關(guān)重要。同時(shí)它又為平面向量、解析幾何等內(nèi)容的學(xué)習(xí)作必要的準(zhǔn)備,通過這部分內(nèi)容的學(xué)習(xí),又可以幫助學(xué)生更加深入理解函數(shù)這一基本概念。所以這個(gè)內(nèi)容要認(rèn)真探討教材,精心設(shè)計(jì)過程。

  教學(xué)重點(diǎn):任意角三角函數(shù)的定義

  教學(xué)難點(diǎn):正確理解三角函數(shù)可以看作以實(shí)數(shù)為自變量的函數(shù)、初中用邊長比值來定義轉(zhuǎn)變?yōu)樽鴺?biāo)系下用坐標(biāo)比值定義的觀念的轉(zhuǎn)換以及坐標(biāo)定義的合理性的理解;

  學(xué)情分析:

  學(xué)生已經(jīng)掌握的內(nèi)容,學(xué)生學(xué)習(xí)能力

  1。初中學(xué)生已經(jīng)學(xué)習(xí)了基本的銳角三角函數(shù)的定義,掌握了銳角三角函數(shù)的一些常見的知識(shí)和求法。

  2。我們南山區(qū)經(jīng)過多年的初中課改,學(xué)生已經(jīng)具備較強(qiáng)的自學(xué)能力,多數(shù)同學(xué)對(duì)數(shù)學(xué)的學(xué)習(xí)有相當(dāng)?shù)呐d趣和積極性。

  3。在探究問題的能力,合作交流的意識(shí)等方面發(fā)展不夠均衡,尚有待加強(qiáng)必須在老師一定的指導(dǎo)下才能進(jìn)行

  針對(duì)對(duì)教材內(nèi)容重難點(diǎn)的和學(xué)生實(shí)際情況的分析我們制定教學(xué)目標(biāo)如下

  知識(shí)目標(biāo):

 。1)任意角三角函數(shù)的定義;三角函數(shù)的定義域;三角函數(shù)值的符號(hào),

  能力目標(biāo):

 。1)理解并掌握任意角的三角函數(shù)的定義;

 。2)正確理解三角函數(shù)是以實(shí)數(shù)為自變量的函數(shù);

  (3)通過對(duì)定義域,三角函數(shù)值的符號(hào)的推導(dǎo),提高學(xué)生分析探究解決問題的能力。

  德育目標(biāo):

  (1)學(xué)習(xí)轉(zhuǎn)化的思想,(2)培養(yǎng)學(xué)生嚴(yán)謹(jǐn)治學(xué)、一絲不茍的科學(xué)精神;

  針對(duì)學(xué)生實(shí)際情況為達(dá)到教學(xué)目標(biāo)須精心設(shè)計(jì)教學(xué)方法

  教法學(xué)法:溫故知新,逐步拓展

 。1)在復(fù)習(xí)初中銳角三角函數(shù)的定義的基礎(chǔ)上一步一步擴(kuò)展內(nèi)容,發(fā)展新知識(shí),形成新的概念;

  (2)通過例題講解分析,逐步引出新知識(shí),完善三角定義

  運(yùn)用多媒體工具

 。1)提高直觀性增強(qiáng)趣味性。

  教學(xué)過程分析

  總體來說, 由舊及新,由易及難,

  逐步加強(qiáng),逐步推進(jìn)

  先由初中的直角三角形中銳角三角函數(shù)的定義

  過度到直角坐標(biāo)系中銳角三角函數(shù)的定義

  再發(fā)展到直角坐標(biāo)系中任意角三角函數(shù)的定義

  給定定義后通過應(yīng)用定義又逐步發(fā)現(xiàn)新知識(shí)拓展完善定義。

  具體教學(xué)過程安排

  引入: 復(fù)習(xí)提問:初中直角三角形中銳角的正弦余弦正切是怎樣定義的?

  由學(xué)生回答

  SinA=對(duì)邊/斜邊=BC/AB

  cosA=對(duì)邊/斜邊=AC/AB

  tanA=對(duì)邊/斜邊=BC/AC

  逐步拓展:在高中我們已經(jīng)建立了直角坐標(biāo)系, 把“定義媒介”從直角三角形改為平面直角坐標(biāo)系。

  我們知道,隨著角的概念的推廣,研究角時(shí)多放在直角坐標(biāo)系里, 那么三角函數(shù)的定義能否也放到坐標(biāo)系去研究呢?

  引導(dǎo)學(xué)生發(fā)現(xiàn)B的坐標(biāo)和邊長的關(guān)系。進(jìn)一步啟發(fā)他們發(fā)現(xiàn)由于相似三角形的相似比導(dǎo)致OB上任一P點(diǎn)都可以代換B,把三角函數(shù)的定義發(fā)展到用終邊上任一點(diǎn)的坐標(biāo)來表示, 從而銳角三角函數(shù)可以使用直角坐標(biāo)系來定義,自然地,要想定義任意一個(gè)角三角函數(shù),便考慮放在直角坐標(biāo)中進(jìn)行合理進(jìn)行定義了

  從而得到

  知識(shí)點(diǎn)一:任意一個(gè)角的三角函數(shù)的定義

  提醒學(xué)生思考:由于相似比相等,對(duì)于確定的角A ,這三個(gè)比值的大小和P點(diǎn)在角的終邊上的位置無關(guān)。

  精心設(shè)計(jì)例題,引出新內(nèi)容深化概念,完善定義

  例1已知角A 的終邊經(jīng)過P(2,—3),求角A的三個(gè)三角函數(shù)值

 。ù祟}由學(xué)生自己分析獨(dú)立動(dòng)手完成)

  例題變式1,已知角A 的大小是30度,由定義求角A的三個(gè)三角函數(shù)值

  結(jié)合變式我們發(fā)現(xiàn)三個(gè)三角函數(shù)值的大小與角的大小有關(guān),只會(huì)隨角的大小而變化,符合當(dāng)初函數(shù)的定義,而我們又一直稱呼為三角函數(shù),

  提出問題:這三個(gè)新的定義確實(shí)問是函數(shù)嗎?為什么?

  從而引出函數(shù)極其定義域

  由學(xué)生分析討論,得出結(jié)論

  知識(shí)點(diǎn)二:三個(gè)三角函數(shù)的定義域

  同時(shí)教師強(qiáng)調(diào):由于弧度制使角和實(shí)數(shù)建立了一一對(duì)應(yīng)關(guān)系,所以三角函數(shù)是以實(shí)數(shù)為自變量的函數(shù)

  例題變式2, 已知角A 的終邊經(jīng)過P(—2a,—3a)( a不為0),求角A的三個(gè)三角函數(shù)值

  解答中需要對(duì)變量的正負(fù)即角所在象限進(jìn)行討論, 讓學(xué)生意識(shí)到三角函數(shù)值的正負(fù)與角所在象限有關(guān),從而導(dǎo)出第三個(gè)知識(shí)點(diǎn)

  知識(shí)點(diǎn)三:三角函數(shù)值的正負(fù)與角所在象限的關(guān)系

  由學(xué)生推出結(jié)論,教師總結(jié)符號(hào)記憶方法,便于學(xué)生記憶

  例題2:已知A在第二象限且 sinA=0。2 求cosA,tanA

  求cosA,tanA

  綜合練習(xí)鞏固提高,更為下節(jié)的同角關(guān)系式打下基礎(chǔ)

  拓展,如果不限制A的象限呢,可以留作課外探討

  小結(jié)回顧課堂內(nèi)容

  課堂作業(yè)和課外作業(yè)以加強(qiáng)知識(shí)的記憶和理解

  課堂作業(yè)P16 1,2,4

 。▽W(xué)生演板,后集體討論修訂答案同桌討論,由學(xué)生回答答案)

  課后分層作業(yè)(有利于全體學(xué)生的發(fā)展)

  必作P23 1(2),5(2),6(2)(4) 選作P23 3,4

  板書設(shè)計(jì)(見PPT)

高中數(shù)學(xué)三角函數(shù)說課稿2

  一、教學(xué)目標(biāo)

  1.掌握任意角的正弦、余弦、正切函數(shù)的定義(包括定義域、正負(fù)符號(hào)判斷);了解任意角的余切、正割、余割函數(shù)的定義.

  2.經(jīng)歷從銳角三角函數(shù)定義過度到任意角三角函數(shù)定義的推廣過程,體驗(yàn)三角函數(shù)概念的產(chǎn)生、發(fā)展過程.領(lǐng)悟直角坐標(biāo)系的工具功能,豐富數(shù)形結(jié)合的經(jīng)驗(yàn).

  3.培養(yǎng)學(xué)生通過現(xiàn)象看本質(zhì)的唯物主義認(rèn)識(shí)論觀點(diǎn),滲透事物相互聯(lián)系、相互轉(zhuǎn)化的辯證唯物主義世界觀.

  4.培養(yǎng)學(xué)生求真務(wù)實(shí)、實(shí)事求是的科學(xué)態(tài)度.

  二、重點(diǎn)、難點(diǎn)、關(guān)鍵

  重點(diǎn):任意角的正弦、余弦、正切函數(shù)的定義、定義域、(正負(fù))符號(hào)判斷法.

  難點(diǎn):把三角函數(shù)理解為以實(shí)數(shù)為自變量的函數(shù).

  關(guān)鍵:如何想到建立直角坐標(biāo)系;六個(gè)比值的確定性(α確定,比值也隨之確定)與依賴性(比值隨著α的變化而變化).

  三、教學(xué)理念和方法

  教學(xué)中注意用新課程理念處理傳統(tǒng)教材,學(xué)生的數(shù)學(xué)學(xué)習(xí)活動(dòng)不僅要接受、記憶、模仿和練習(xí),而且要自主探索、動(dòng)手實(shí)踐、合作交流、閱讀自學(xué),師生互動(dòng),教師發(fā)揮組織者、引導(dǎo)者、合作者的作用,引導(dǎo)學(xué)生主體參與、揭示本質(zhì)、經(jīng)歷過程.

  根據(jù)本節(jié)課內(nèi)容、高一學(xué)生認(rèn)知特點(diǎn)和我自己的教學(xué)風(fēng)格,本節(jié)課采用"啟發(fā)探索、講練結(jié)合"的方法組織教學(xué).

  四、教學(xué)過程

  [執(zhí)教線索:

  回想再認(rèn):函數(shù)的概念、銳角三角函數(shù)定義(銳角三角形邊角關(guān)系)--問題情境:能推廣到任意角嗎?--它山之石:建立直角坐標(biāo)系(為何?)--優(yōu)化認(rèn)知:用直角坐標(biāo)系研究銳角三角函數(shù)--探索發(fā)展:對(duì)任意角研究六個(gè)比值(與角之間的關(guān)系:確定性、依賴性,滿足函數(shù)定義嗎?)--自主定義:任意角三角函數(shù)定義--登高望遠(yuǎn):三角函數(shù)的要素分析(對(duì)應(yīng)法則、定義域、值域與正負(fù)符號(hào)判定)--例題與練習(xí)--回顧小結(jié)--布置作業(yè)]

 。ㄒ唬⿵(fù)習(xí)引入、回想再認(rèn)

  開門見山,面對(duì)全體學(xué)生提問:

  在初中我們初步學(xué)習(xí)了銳角三角函數(shù),前幾節(jié)課,我們把銳角推廣到了任意角,學(xué)習(xí)了角度制和弧度制,這節(jié)課該研究什么呢?

  探索任意角的三角函數(shù)(板書課題),請(qǐng)同學(xué)們回想,再明確一下:

 。ㄇ榫1)什么叫函數(shù)?或者說函數(shù)是怎樣定義的?

  讓學(xué)生回想后再點(diǎn)名回答,投影顯示規(guī)范的定義,教師根據(jù)回答情況進(jìn)行修正、強(qiáng)調(diào):

  傳統(tǒng)定義:設(shè)在一個(gè)變化過程中有兩個(gè)變量x與y,如果對(duì)于x的每一個(gè)值,y都有唯一確定的值和它對(duì)應(yīng),那么就說y是x的函數(shù),x叫做自變量,自變量x的取值范圍叫做函數(shù)的定義域.

  現(xiàn)代定義:設(shè)A、B是非空的數(shù)集,如果按某個(gè)確定的對(duì)應(yīng)關(guān)系f,使對(duì)于集合A中的任意一個(gè)數(shù),在集合B中都有唯一確定的數(shù)f(x)和它對(duì)應(yīng),那么就稱映射?:A→B為從集合A到集合B的一個(gè)函數(shù),記作:y=f(x),x∈A,其中x叫自變量,自變量x的取值范圍A叫做函數(shù)的定義域.

  設(shè)計(jì)意圖:

  函數(shù)和三角函數(shù)是一般和特殊的關(guān)系,是共性和個(gè)性的關(guān)系,學(xué)生已經(jīng)學(xué)習(xí)了函數(shù)的概念,因此對(duì)三角函數(shù)的學(xué)習(xí)就是一個(gè)從一般到特殊的演繹的過程,也是以具體函數(shù)豐富函數(shù)概念的過程.教學(xué)經(jīng)驗(yàn)表明:學(xué)生對(duì)函數(shù)兩種定義的記憶是有一定困難的,容易遺忘,此處讓學(xué)生對(duì)函數(shù)概念進(jìn)行回想再認(rèn),目的在于明確函數(shù)概念的本質(zhì),為演繹學(xué)習(xí)任意角三角函數(shù)概念作好知識(shí)和認(rèn)知準(zhǔn)備.

 。ㄇ榫2)我們?cè)诔踔型ㄟ^銳角三角形的邊角關(guān)系,學(xué)習(xí)了銳角的正弦、余弦、正切等三個(gè)三角函數(shù).請(qǐng)回想:這三個(gè)三角函數(shù)分別是怎樣規(guī)定的?

  學(xué)生口述后再投影展示,教師再根據(jù)投影進(jìn)行強(qiáng)調(diào):

  設(shè)計(jì)意圖:

  學(xué)生在初中學(xué)習(xí)了銳角的三角函數(shù)概念,現(xiàn)在學(xué)習(xí)任意角的三角函數(shù),又是一種推廣和拓展的過程(類似于從有理數(shù)到實(shí)數(shù)的擴(kuò)展).溫故知新,要讓學(xué)生體會(huì)知識(shí)的產(chǎn)生、發(fā)展過程,就要從源頭上開始,從學(xué)生現(xiàn)有認(rèn)知狀況開始,對(duì)銳角三角函數(shù)的復(fù)習(xí)就必不可少.

 。ǘ┮熹亯|、創(chuàng)設(shè)情景

  (情景3)我們已經(jīng)把銳角推廣到了任意角,銳角的三角函數(shù)概念也能推廣到任意角嗎?試試看,可以獨(dú)立思考和探索,也可以互相討論!

  留時(shí)間讓學(xué)生獨(dú)立思考或自由討論,教師參與討論或巡回對(duì)學(xué)困生作啟發(fā)引導(dǎo).

  能推廣嗎?怎樣推廣?針對(duì)剛才的問題點(diǎn)名讓學(xué)生回答.用角的對(duì)邊、臨邊、斜邊比值的說法顯然是受到阻礙了,由于4.1節(jié)已經(jīng)以直角坐標(biāo)系為工具來研究任意角了,學(xué)生一般會(huì)想到(否則教師進(jìn)行提示)繼續(xù)用直角坐標(biāo)系來研究任意角的三角函數(shù).

  設(shè)計(jì)意圖:

  從學(xué)生現(xiàn)有知識(shí)水平和認(rèn)知能力出發(fā),創(chuàng)設(shè)問題情景,讓學(xué)生產(chǎn)生認(rèn)知沖突,進(jìn)行必要的啟發(fā),將學(xué)生思維引上自主探索、合作交流的"再創(chuàng)造"征程.

  教師對(duì)學(xué)生回答情況進(jìn)行點(diǎn)評(píng)后布置任務(wù)情景:請(qǐng)同學(xué)們用直角坐標(biāo)系重新研究銳角三角函數(shù)定義!

  師生共做(學(xué)生口述,教師板書圖形和比值):

  把銳角α安裝(如何安裝?角的頂點(diǎn)與原點(diǎn)重合,角的始邊與x軸非負(fù)半軸重合)在直角坐標(biāo)系中,在角α終邊上任取一點(diǎn)P,作Pm⊥x軸于m,構(gòu)造一個(gè)RtΔomP,則∠moP=α(銳角),設(shè)P(x,y)(x>0、y>0),α的臨邊om=x、對(duì)邊mP=y,斜邊長|oP∣=r.

  根據(jù)銳角三角函數(shù)定義用x、y、r列出銳角α的正弦、余弦、正切三個(gè)比值,并補(bǔ)充對(duì)應(yīng)列出三個(gè)倒數(shù)比值:

  設(shè)計(jì)意圖:

  此處做法簡單,思想重要.為了順利實(shí)現(xiàn)推廣,可以構(gòu)建中間橋梁或公共載體,使之既與初中的定義一致,又能自然地遷移到任意角的情形.由于前一節(jié)已經(jīng)以直角坐標(biāo)系為工具來研究任意角了,學(xué)生自然能想到仍然以直角坐標(biāo)系為工具來研究任意角的三角函數(shù).初中以直角三角形邊角關(guān)系來定義銳角三角函數(shù),現(xiàn)在要用坐標(biāo)系來研究,探索的`結(jié)論既要滿足任意角的情形,又要包容初中銳角三角函數(shù)定義.這是一個(gè)認(rèn)識(shí)的飛躍,是理解任意角三角函數(shù)概念的關(guān)鍵之一,也是數(shù)學(xué)發(fā)現(xiàn)的重要思想和方法,屬于策略性知識(shí),能夠形成遷移能力,為學(xué)生在以后學(xué)習(xí)中對(duì)某些知識(shí)進(jìn)行推廣拓展奠定了基礎(chǔ)(譬如從平面向量到空間向量的擴(kuò)展,從實(shí)數(shù)到復(fù)數(shù)的擴(kuò)展等).

  (情景4)各個(gè)比值與角之間有怎樣的關(guān)系?比值是角的函數(shù)嗎?

  追問:銳角α大小發(fā)生變化時(shí),比值會(huì)改變嗎?

  先讓學(xué)生想象思考,作出主觀判斷,再用幾何畫板動(dòng)畫演示,同時(shí)作好解釋說明:保持r不變,讓P繞原點(diǎn)o旋轉(zhuǎn)即α在銳角范圍內(nèi)變化,六個(gè)比值隨之變化的直觀形象。結(jié)論是:比值隨α的變化而變化.

  引導(dǎo)學(xué)生觀察圖3,聯(lián)系相似三角形知識(shí),

  探索發(fā)現(xiàn):

  對(duì)于銳角α的每一個(gè)確定值,六個(gè)比值都是

  確定的,不會(huì)隨P在終邊上的移動(dòng)而變化.

  得出結(jié)論(強(qiáng)調(diào)):當(dāng)α為銳角時(shí),六個(gè)比值隨α的變化而變化;但對(duì)于銳角α的每一個(gè)確定值,六個(gè)比值都是確定的,不會(huì)隨P在終邊上的移動(dòng)而變化.所以,六個(gè)比值分別是以角α為自變量、以比值為函數(shù)值的函數(shù).

  設(shè)計(jì)意圖:

  初中學(xué)生對(duì)函數(shù)理解較膚淺,這里在學(xué)生思維的最近發(fā)展區(qū)進(jìn)一步研究初中學(xué)過的銳角三角函數(shù),在思維上更上了一個(gè)層次,扣準(zhǔn)函數(shù)概念的內(nèi)涵,突出變量之間的依賴關(guān)系或?qū)?yīng)關(guān)系,是從函數(shù)知識(shí)演繹到三角函數(shù)知識(shí)的主要依據(jù),是準(zhǔn)確理解三角函數(shù)概念的關(guān)鍵,也是在認(rèn)知上把三角函數(shù)知識(shí)納入函數(shù)知識(shí)結(jié)構(gòu)的關(guān)鍵.這樣做能夠使學(xué)生有效地增強(qiáng)函數(shù)觀念.

 。ㄈ┓治鰵w納、自主定義

 。ㄇ榫5)能將銳角的比值情形推廣到任意角α嗎?

  水到渠成,師生共同進(jìn)行探索和推廣:

  對(duì)于一個(gè)任意角α,它的終邊所在位置包括下列兩類共八種情形(投影展示并作分析):

  終邊分別在四個(gè)象限的情形:終邊分別在四個(gè)半軸上的情形:

 。

 。ㄖ赋觯翰划嫵鼋堑姆较颍砻鹘蔷哂腥我庑裕

  怎樣刻畫任意角的三角函數(shù)呢?研究它的六個(gè)比值:

  (板書)設(shè)α是一個(gè)任意角,在α終邊上除原點(diǎn)外任意取一點(diǎn)P(x,y),P與原點(diǎn)o之間的距離記作r(r=>0),列出六個(gè)比值:

  α=kππ/2時(shí),x=0,比值y/x、r/x無意義;

  α=kπ時(shí),y=0,比值x/y、r/y無意義.

  追問:α大小發(fā)生變化時(shí),比值會(huì)改變嗎?

  先讓學(xué)生想象思考,作出主觀判斷,再用幾何畫板動(dòng)畫演示,同時(shí)作好解釋說明:使r保持不變,P繞原點(diǎn)o逆時(shí)針、順時(shí)針旋轉(zhuǎn)即角α變化,六個(gè)比值隨之改變的直觀形象。結(jié)論是:各比值隨α的變化而變化.

  再引導(dǎo)學(xué)生利用相似三角形知識(shí),探索發(fā)現(xiàn):對(duì)于任意角α的每一個(gè)確定值,六個(gè)比值都是確定的,不會(huì)隨P在終邊上的移動(dòng)而變化.

  綜上得到(強(qiáng)調(diào)):當(dāng)角α變化時(shí),六個(gè)比值隨之變化;對(duì)于確定的角α,六個(gè)比值(如果存在的話)都不會(huì)隨P在角α終邊上的改變而改變,六個(gè)比值是確定的(對(duì)應(yīng)的多值性即誘導(dǎo)公式一留到下節(jié)課分析).

  因此,六個(gè)比值分別是以角α為自變量、以比值為函數(shù)值的函數(shù).

  根據(jù)歷史上的規(guī)定,對(duì)比值進(jìn)行命名,指出英文記法和讀法,記作(承前作復(fù)合板書):

  =sinα(正弦)=cosα(余弦)=tanα(正切)

  =cscα(余割)=sec(正弦)=cotα(余切)

  教師強(qiáng)調(diào):sinα表示sin與α的乘積嗎?不是,sinα是函數(shù)記號(hào),是一個(gè)整體,相當(dāng)于函數(shù)記號(hào)f(x).其它幾個(gè)三角函數(shù)也如此

  投影顯示圖六,指導(dǎo)學(xué)生分析其對(duì)應(yīng)關(guān)系,進(jìn)一步體會(huì)其函數(shù)內(nèi)涵:

 。▓D六)

  指導(dǎo)學(xué)生識(shí)記六個(gè)比值及函數(shù)名稱.

  教師指出:正弦、余弦、正切、余切、正割、余割六個(gè)函數(shù)統(tǒng)稱為三角函數(shù),三角函數(shù)有非常豐富的知識(shí)和思想方法,我們以后主要學(xué)習(xí)正弦、余弦、正切三個(gè)函數(shù)的相關(guān)知識(shí)和方法,對(duì)于余切、正割、余割,只要同學(xué)們了解它們的定義就夠了(遵循大綱要求).

  引導(dǎo)學(xué)生進(jìn)一步分析理解:

  已知角的集合與實(shí)數(shù)集之間可以建立一一對(duì)應(yīng)關(guān)系,對(duì)于每一個(gè)確定的實(shí)數(shù),把它看成一個(gè)弧度數(shù),就對(duì)應(yīng)著唯一的一個(gè)角,從而分別對(duì)應(yīng)著六個(gè)唯一的三角函數(shù)值.因此,(板書)三角函數(shù)可以看成是以實(shí)數(shù)為自變量的函數(shù),這將為以后的應(yīng)用帶來很多方便.

  設(shè)計(jì)意圖:

  把角的終邊分別在四個(gè)象限、四條半軸上的情形全作出來,有利于對(duì)任意性的全面把握.明確比值存在與否的條件,為確定函數(shù)定義域作準(zhǔn)備.動(dòng)畫演示比值與角之間的依賴性與確定性關(guān)系,深化理解三角函數(shù)內(nèi)涵.引導(dǎo)學(xué)生在理解的基礎(chǔ)上自主地對(duì)三角函數(shù)作出明確定義,是本節(jié)課的中心任務(wù).由于學(xué)生剛學(xué)弧度制,對(duì)弧度制的理解有待于在以后的學(xué)習(xí)應(yīng)用中逐步感悟,因此部分學(xué)生對(duì)"三角函數(shù)可以看成是以實(shí)數(shù)為自變量的函數(shù)"的理解有半信半疑之感,有待通過后續(xù)的應(yīng)用加深理解.

  (四)探索定義域

 。ㄇ榫6)(1)函數(shù)概念的三要素是什么?

  函數(shù)三要素:對(duì)應(yīng)法則、定義域、值域.

  正弦函數(shù)sinα的對(duì)應(yīng)法則是什么?

  正弦函數(shù)sinα的對(duì)應(yīng)法則,實(shí)質(zhì)上就是sinα的定義:對(duì)α的每一個(gè)確定的值,有唯一確定的比值y/r與之對(duì)應(yīng),即α→y/r=sinα.

  (2)布置任務(wù)情景:什么是三角函數(shù)的定義域?請(qǐng)求出六個(gè)三角函數(shù)的定義域,填寫下表:

  三角函數(shù)

  sinα

  cosα

  tanα

  cotα

  cscα

  secα

  定義域

  引導(dǎo)學(xué)生自主探索:

  如果沒有特別說明,那么使解析式有意義的自變量的取值范圍叫做函數(shù)的定義域,三角函數(shù)的定義域自然是指:使比值有意義的角α的取值范圍.

  關(guān)于sinα=y/r、cosα=x/r,對(duì)于任意角α(弧度數(shù)),r>0,y/r、x/r恒有意義,定義域都是實(shí)數(shù)集R.

  對(duì)于tanα=y/x,α=kππ/2時(shí)x=0,y/x無意義,tanα的定義域是:{α|α∈R,且α≠kππ/2}..........

  教師指出:sinα、cosα、tanα的定義域必須緊扣三角函數(shù)定義在理解的基礎(chǔ)上記熟,cotα、cscα、secα的定義域不要求記憶.

  (關(guān)于值域,到后面再學(xué)習(xí)).

  設(shè)計(jì)意圖:

  定義域是函數(shù)三要素之一,研究函數(shù)必須明確定義域.指導(dǎo)學(xué)生根據(jù)定義自主探索確定三角函數(shù)定義域,有利于在理解的基礎(chǔ)上記住它、應(yīng)用它,也增進(jìn)對(duì)三角函數(shù)概念的掌握.

  (五)符號(hào)判斷、形象識(shí)記

 。ㄇ榫7)能判斷三角函數(shù)值的正、負(fù)嗎?試試看!

  引導(dǎo)學(xué)生緊緊抓住三角函數(shù)定義來分析,r>0,三角函數(shù)值的符號(hào)決定于x、y值的正負(fù),根據(jù)終邊所在位置總結(jié)出形象的識(shí)記口訣:

  (同好得正、異號(hào)得負(fù))

  sinα=y/r:上正下負(fù)橫為0cosα=x/r:左負(fù)右正縱為0tanα=y/x:交叉正負(fù)

  設(shè)計(jì)意圖:

  判斷三角函數(shù)值的正負(fù)符號(hào),是本章教材的一項(xiàng)重要的知識(shí)、技能要求.要引導(dǎo)學(xué)生抓住定義、數(shù)形結(jié)合判斷和記憶三角函數(shù)值的正負(fù)符號(hào),并總結(jié)出形象的識(shí)記口訣,這也是理解和記憶的關(guān)鍵.

  (六)練習(xí)鞏固、理解記憶

  1、自學(xué)例1:已知角α的終邊經(jīng)過點(diǎn)P(2,-3),求α的六個(gè)三角函數(shù)值.

  要求:讀完題目,思考:計(jì)算什么?需要準(zhǔn)備什么?閉目心算,對(duì)照解答,模仿書面表達(dá)格式,鞏固定義.

  課堂練習(xí):

  p19題1:已知角α的終邊經(jīng)過點(diǎn)P(-3,-1),求α的六個(gè)三角函數(shù)值.

  要求心算,并提問中下學(xué)生檢驗(yàn),--------

  點(diǎn)評(píng):角α終邊上有無窮多個(gè)點(diǎn),根據(jù)三角函數(shù)的定義,只要知道α終邊上任意一個(gè)點(diǎn)的坐標(biāo),就可以計(jì)算這個(gè)角的三角函數(shù)值(或判斷其無意義).

  補(bǔ)充例題:已知角α的終邊經(jīng)過點(diǎn)P(x,-3),cosα=4/5,求α的其它五個(gè)三角函數(shù)值.

  師生探索:已知y=-3,要求其它五個(gè)三角函數(shù)值,須知r=?,x=?.根據(jù)定義得=(方程思想),x>0,解得x=4,從而--------.解答略.

  2、自學(xué)例2:求下列各角的六個(gè)三角函數(shù)值:(1)0;(2)π/2;(3)3π/2.

  提問,據(jù)反饋信息作點(diǎn)評(píng)、修正.

  師生探索:緊扣三角函數(shù)定義求解,首先要在終邊上取定一點(diǎn)。終邊在哪兒呢?取定哪一點(diǎn)呢?任意點(diǎn)、還是特殊點(diǎn)?要靈活,只要能夠算出三角函數(shù)值,都可以。

  取特殊點(diǎn)能使計(jì)算更簡明。課堂練習(xí):p19題2.(改編)填表:

  角α(角度)

  0°

  90°

  180°

  270°

  360°

  角α(弧度)

  sinα

  cosα

  tanα

  處理:要求取點(diǎn)用定義求解,針對(duì)計(jì)算過程提問、點(diǎn)評(píng),理解鞏固定義.

  強(qiáng)調(diào):終邊在坐標(biāo)軸上的角叫軸線角,如0、π/2、π、3π/2等,今后經(jīng)常用到軸線角的三角函數(shù)值,要結(jié)合三角函數(shù)定義記熟這些值.

  設(shè)計(jì)意圖:

  及時(shí)安排自學(xué)例題、自做教材練習(xí)題,一般性與特殊性相結(jié)合,進(jìn)行適量的變式練習(xí),以鞏固和加深對(duì)三角函數(shù)概念的理解,通過課堂積極主動(dòng)的練習(xí)活動(dòng)進(jìn)行思維訓(xùn)練,把"培養(yǎng)學(xué)生分析解決問題的能力"貫穿在每一節(jié)課的課堂教學(xué)始終.

 。ㄆ撸┗仡櫺〗Y(jié)、建構(gòu)網(wǎng)絡(luò)

  要求全體學(xué)生根據(jù)教師所提問題進(jìn)行總結(jié)識(shí)記,提問檢查并強(qiáng)調(diào):

  1.你是怎樣把銳角三角函數(shù)定義推廣到任意角的?或者說任意角三角函數(shù)具體是怎樣定義的?(建立直角坐標(biāo)系,使角的頂點(diǎn)與坐標(biāo)原點(diǎn)重合,---,在終邊上任意取定一點(diǎn)P,---)

  2.你如何判斷和記憶正弦、余弦、正切函數(shù)的定義域?(根據(jù)定義,------)

  3.你如何記憶正弦、余弦、正切函數(shù)值的符號(hào)?(根據(jù)定義,想象坐標(biāo)位置,-----)

  設(shè)計(jì)意圖:

  遺忘的規(guī)律是先快后慢,回顧再現(xiàn)是記憶的重要途徑,在課堂內(nèi)及時(shí)總結(jié)識(shí)記主要內(nèi)容是上策.此處以問題形式讓學(xué)生自己歸納識(shí)記本節(jié)課的主體內(nèi)容,抓住要害,人人參與,及時(shí)建構(gòu)知識(shí)網(wǎng)絡(luò),優(yōu)化知識(shí)結(jié)構(gòu),培養(yǎng)認(rèn)知能力.

 。ò耍┎贾谜n外作業(yè)

  1.書面作業(yè):習(xí)題4.3第3、4、5題.

  2.認(rèn)真閱讀p22"閱讀材料:三角函數(shù)與歐拉",了解歐拉的生平和貢獻(xiàn),特別學(xué)習(xí)他對(duì)科學(xué)的摯著精神和堅(jiān)忍不拔的頑強(qiáng)毅力!有興趣的同學(xué)可以上網(wǎng)查閱歐拉的相關(guān)情況.

  教學(xué)設(shè)計(jì)說明

  一、對(duì)本節(jié)教材的理解

  三角函數(shù)是描述周期運(yùn)動(dòng)現(xiàn)象的重要的數(shù)學(xué)模型,有非常廣泛的應(yīng)用.

  星星之火,可以燎原.

  直角三角形簡單樸素的邊角關(guān)系,以直角坐標(biāo)系為工具進(jìn)行自然地推廣而得到簡明的任意角的三角函數(shù)定義,緊緊扣住三角函數(shù)定義這個(gè)寶貴的源泉,自然地導(dǎo)出三角函數(shù)線、定義域、符號(hào)判斷、值域、同角三角函數(shù)關(guān)系、多組誘導(dǎo)公式、多組變換公式、輔助角公式、圖象和性質(zhì),本章教材就是這些內(nèi)容的具體安排.定義直接用于解析幾何(如直線斜率公式、極坐標(biāo)、部分曲線的參數(shù)方程等),定義還是直接解決某些問題的工具,三角函數(shù)知識(shí)是物理學(xué)、高等數(shù)學(xué)、測量學(xué)、天文學(xué)的重要基礎(chǔ).

  三角函數(shù)定義必然是學(xué)好全章內(nèi)容的關(guān)鍵,如果學(xué)生掌握不好,將直接影響到后續(xù)內(nèi)容的學(xué)習(xí),由三角函數(shù)定義的基礎(chǔ)性和應(yīng)用的廣泛性決定了本節(jié)教材的重點(diǎn)就是定義本身.

  二、教學(xué)法加工

  數(shù)學(xué)教材通常用抽象概括的形式化的數(shù)學(xué)書面語言闡述其知識(shí)和方法,教師只有通過教學(xué)法加工,始終貫徹"以學(xué)生的發(fā)展為本"的科學(xué)教育觀,"將數(shù)學(xué)的學(xué)術(shù)形態(tài)轉(zhuǎn)化為教育形態(tài)"(張奠宙語),引導(dǎo)學(xué)生積極主動(dòng)地進(jìn)行思考活動(dòng),直接參與體驗(yàn)數(shù)學(xué)知識(shí)產(chǎn)生發(fā)展的背景、過程,返璞歸真,揭示本質(zhì),體會(huì)其中的思想和方法,學(xué)生只有這樣才能真正理解掌握數(shù)學(xué)知識(shí)和方法,有效地發(fā)展智力、培養(yǎng)能力.

  在本節(jié)教材中,三角函數(shù)定義是重點(diǎn),三角函數(shù)線是難點(diǎn),為了較好地突出重點(diǎn)和突破難點(diǎn),分散重點(diǎn)和難點(diǎn),同時(shí)兼顧例題、課堂練習(xí)的協(xié)調(diào)匹配,將不按教材順序來進(jìn)行教學(xué),第一課時(shí)安排三角函數(shù)的定義(突出重點(diǎn))、定義域、符號(hào)判斷、例題1、2及p19課堂練習(xí)1、2、3,第二課時(shí)安排三角函數(shù)線、p15練習(xí)(突破難點(diǎn))、誘導(dǎo)公式一及課本例題3、4和其它練習(xí).本課例屬第一課時(shí).

  教學(xué)經(jīng)驗(yàn)表明,三角函數(shù)定義"簡單易記",學(xué)生很容易輕視它,不少學(xué)生機(jī)械記憶、一知半解.本課例堅(jiān)持"教師主導(dǎo)、學(xué)生主體"的原則,采用"啟發(fā)探索、講練結(jié)合"的常規(guī)教學(xué)方法,在學(xué)生的最近發(fā)展區(qū)圍繞學(xué)生的學(xué)習(xí)目標(biāo)設(shè)計(jì)了一系列符合學(xué)生認(rèn)知規(guī)律的程序,通過多媒體輔助教學(xué)動(dòng)畫演示比值與角之間的依賴關(guān)系,拓展思維活動(dòng)時(shí)空,力求使學(xué)生全員主動(dòng)參與,積極思考,體會(huì)定義產(chǎn)生、發(fā)展的過程,通過思維過程來理解知識(shí)、培養(yǎng)能力.

  將六個(gè)比值放在一起來研究,同時(shí)給出六個(gè)三角函數(shù)的定義,能夠增強(qiáng)對(duì)比感和整體感,至于大綱對(duì)兩組函數(shù)掌握與了解的不同要求,在下一步的教學(xué)中注意區(qū)分就行了.

  教學(xué)中關(guān)于符號(hào)sinα、cosα、tanα的出場安排,教材首先對(duì)比值取名并給出英文記法,再研究它們與α的函數(shù)關(guān)系;另外可以先研究六個(gè)比值與α之間的函數(shù)關(guān)系,然后再對(duì)六個(gè)比值取名給出記法.后者更能突出函數(shù)內(nèi)涵,揭示三角函數(shù)本質(zhì).本課例采用后者組織教學(xué).

  三、教學(xué)過程分析(見穿插在教案中的設(shè)計(jì)意圖).

高中數(shù)學(xué)三角函數(shù)說課稿3

  一、教材分析

  (一)內(nèi)容說明

  函數(shù)是中學(xué)數(shù)學(xué)的重要內(nèi)容,中學(xué)數(shù)學(xué)對(duì)函數(shù)的研究大致分成了三個(gè)階段。

  三角函數(shù)是代表性的一種基本初等函數(shù)。4.8節(jié)是第二章《函數(shù)》學(xué)習(xí)的延伸,也是第四章《三角函數(shù)》的核心內(nèi)容,是在前面已經(jīng)學(xué)習(xí)過正、余弦函數(shù)的圖象、三角函數(shù)的有關(guān)概念和公式基礎(chǔ)上進(jìn)行的,其知識(shí)和方法將為后續(xù)內(nèi)容的學(xué)習(xí)打下基礎(chǔ),有承上啟下的作用。

  本節(jié)課是數(shù)形結(jié)合思想方法的良好素材。數(shù)形結(jié)合是數(shù)學(xué)研究中的重要思想方法和解題方法。

  數(shù)學(xué)家華羅庚先生的詩句:......數(shù)缺形時(shí)少直觀,形少數(shù)時(shí)難入微,數(shù)形結(jié)合百般好,隔裂分家萬事休......可以說精辟地道出了數(shù)形結(jié)合的重要性。

  本節(jié)通過對(duì)數(shù)形結(jié)合的進(jìn)一步認(rèn)識(shí),可以改進(jìn)學(xué)習(xí)方法,增強(qiáng)學(xué)習(xí)數(shù)學(xué)的自信心和興趣。另外,三角函數(shù)的曲線性質(zhì)也體現(xiàn)了數(shù)學(xué)的對(duì)稱之美、和諧之美。

  因此,本節(jié)課在教材中的知識(shí)作用和思想地位是相當(dāng)重要的。

  (二)課時(shí)安排

  4.8節(jié)教材安排為4課時(shí),我計(jì)劃用5課時(shí)

  (三)目標(biāo)和重、難點(diǎn)

  1.教學(xué)目標(biāo)

  教學(xué)目標(biāo)的確定,考慮了以下幾點(diǎn):

  (1)高一學(xué)生有一定的抽象思維能力,而形象思維在學(xué)習(xí)中占有不可替代的地位,所以本節(jié)要緊緊抓住數(shù)形結(jié)合方法進(jìn)行探索;

  (2)本班學(xué)生對(duì)數(shù)學(xué)科特別是函數(shù)內(nèi)容的學(xué)習(xí)有畏難情緒,所以在內(nèi)容上要降低深難度。

  (3)學(xué)會(huì)方法比獲得知識(shí)更重要,本節(jié)課著眼于新知識(shí)的探索過程與方法,鞏固應(yīng)用主要放在后面的三節(jié)課進(jìn)行。

  由此,我確定了以下三個(gè)層面的教學(xué)目標(biāo):

  (1)知識(shí)層面:結(jié)合正弦曲線、余弦曲線,師生共同探索發(fā)現(xiàn)正(余)弦函數(shù)的性質(zhì),讓學(xué)生學(xué)會(huì)正確表述正、余函數(shù)的單調(diào)性和對(duì)稱性,理解體會(huì)周期函數(shù)性質(zhì)的研究過程和數(shù)形結(jié)合的研究方法;

  (2)能力層面:通過在教師引導(dǎo)下探索新知的過程,培養(yǎng)學(xué)生觀察、分析、歸納的自學(xué)能力,為學(xué)生學(xué)習(xí)的可持續(xù)發(fā)展打下基礎(chǔ);

  (3)情感層面:通過運(yùn)用數(shù)形結(jié)合思想方法,讓學(xué)生體會(huì)(數(shù)學(xué))問題從抽象到形象的轉(zhuǎn)化過程,體會(huì)數(shù)學(xué)之美,從而激發(fā)學(xué)習(xí)數(shù)學(xué)的信心和興趣。

  2.重、難點(diǎn)

  由以上教學(xué)目標(biāo)可知,本節(jié)重點(diǎn)是師生共同探索,正、余函數(shù)的性質(zhì),在探索中體會(huì)數(shù)形結(jié)合思想方法。

  難點(diǎn)是:函數(shù)周期定義、正弦函數(shù)的單調(diào)區(qū)間和對(duì)稱性的理解。

  為什么這樣確定呢?

  因?yàn)橹芷诟拍钍菍W(xué)生第一次接觸,理解上易錯(cuò);單調(diào)區(qū)間從圖上容易看出,但用一個(gè)區(qū)間形式表示出來,學(xué)生感到困難。

  如何克服難點(diǎn)呢?

  其一,抓住周期函數(shù)定義中的關(guān)鍵字眼,舉反例說明;

  其二,利用函數(shù)的周期性規(guī)律,抓住“橫向距離”和“k∈Z"的含義,充分結(jié)合圖象來理解單調(diào)性和對(duì)稱性

  二、教法分析

  (一)教法說明教法的確定基于如下考慮:

  (1)心理學(xué)的研究表明:只有內(nèi)化的東西才能充分外顯,只有學(xué)生自己獲取的知識(shí),他才能靈活應(yīng)用,所以要注重學(xué)生的自主探索。

  (2)本節(jié)目的是讓學(xué)生學(xué)會(huì)如何探索、理解正、余弦函數(shù)的性質(zhì)。教師始終要注意的是引導(dǎo)學(xué)生探索,而不是自己探索、學(xué)生觀看,所以教師要引導(dǎo),而且只能引導(dǎo)不能代辦,否則不但沒有教給學(xué)習(xí)方法,而且會(huì)讓學(xué)生產(chǎn)生依賴和倦怠。

  (3)本節(jié)內(nèi)容屬于本源性知識(shí),一般采用觀察、實(shí)驗(yàn)、歸納、總結(jié)為主的方法,以培養(yǎng)學(xué)生自學(xué)能力。

  所以,根據(jù)以人為本,以學(xué)定教的原則,我采取以問題為解決為中心、啟發(fā)為主的教學(xué)方法,形成教師點(diǎn)撥引導(dǎo)、學(xué)生積極參與、師生共同探討的課堂結(jié)構(gòu)形式,營造一種民主和諧的課堂氛圍。

  (二)教學(xué)手段說明:

  為完成本節(jié)課的教學(xué)目標(biāo),突出重點(diǎn)、克服難點(diǎn),我采取了以下三個(gè)教學(xué)手段:

  (1)精心設(shè)計(jì)課堂提問,整個(gè)課堂以問題為線索,帶著問題探索新知,因?yàn)闆]有問題就沒有發(fā)現(xiàn)。

  (2)為便于課堂操作和知識(shí)條理化,事先制作正弦函數(shù)、余弦函數(shù)性質(zhì)表,讓學(xué)生當(dāng)堂完成表格的填寫;

  (3)為節(jié)省課堂時(shí)間,制作幻燈片演示正、余弦函數(shù)圖象和性質(zhì),也可以使教學(xué)更生動(dòng)形象和連貫。

  三、學(xué)法和能力培養(yǎng)

  我發(fā)現(xiàn),許多學(xué)生的學(xué)習(xí)方法是:直接記住函數(shù)性質(zhì),在解題中套用結(jié)論,對(duì)結(jié)論的來源不理解,知其然不知其所以然,應(yīng)用中不能變通和遷移。

  本節(jié)的學(xué)習(xí)方法對(duì)后續(xù)內(nèi)容的學(xué)習(xí)具有指導(dǎo)意義。為了培養(yǎng)學(xué)法,充分關(guān)注學(xué)生的可持續(xù)發(fā)展,教師要轉(zhuǎn)換角色,站在初學(xué)者的位置上,和學(xué)生共同探索新知,共同體驗(yàn)數(shù)形結(jié)合的研究方法,體驗(yàn)周期函數(shù)的研究思路;幫助學(xué)生實(shí)現(xiàn)知識(shí)的意義建構(gòu),幫助學(xué)生發(fā)現(xiàn)和總結(jié)學(xué)習(xí)方法,使教師成為學(xué)生學(xué)習(xí)的高級(jí)合作伙伴。

  教師要做到:

  授之以漁,與之合作而漁,使學(xué)生享受漁之樂趣。因此

  1.本節(jié)要教給學(xué)生看圖象、找規(guī)律、思考提問、交流協(xié)作、探索歸納的學(xué)習(xí)方法。

  2.通過本課的探索過程,培養(yǎng)學(xué)生觀察、分析、交流、合作、類比、歸納的學(xué)習(xí)能力及數(shù)形結(jié)合(看圖說話)的意識(shí)和能力。

  四、教學(xué)程序

  指導(dǎo)思想是:兩條線索、三大特點(diǎn)、四個(gè)環(huán)節(jié)

  (一)導(dǎo)入

  引出數(shù)形結(jié)合思想方法,強(qiáng)調(diào)其含義和重要性,告訴學(xué)生,本節(jié)課將利用數(shù)形結(jié)合方法來研究,會(huì)使學(xué)習(xí)變得輕松有趣。

  采用這樣的引入方法,目的是打消學(xué)生對(duì)函數(shù)學(xué)習(xí)的畏難情緒,引起學(xué)生注意,也激起學(xué)生好奇和興趣。

  (二)新知探索主要環(huán)節(jié),分為兩個(gè)部分

  教學(xué)過程如下:

  第一部分————師生共同研究得出正弦函數(shù)的性質(zhì)

  1.定義域、值域2.周期性

  3.單調(diào)性(重難點(diǎn)內(nèi)容)

  為了突出重點(diǎn)、克服難點(diǎn),采用以下手段和方法:

  (1)利用多媒體動(dòng)態(tài)演示函數(shù)性質(zhì),充分體現(xiàn)數(shù)形結(jié)合的重要作用;

  (2)以層層深入,環(huán)環(huán)相扣的課堂提問,啟發(fā)學(xué)生思維,反饋課堂信息,使問題成為探索新知的線索和動(dòng)力,隨著問題的解決,學(xué)生的積極性將被調(diào)動(dòng)起來。

  (3)單調(diào)區(qū)間的探索過程是:

  先在靠近原點(diǎn)的一個(gè)單調(diào)周期內(nèi)找出正弦函數(shù)的一個(gè)增區(qū)間,由此表示出所有的增區(qū)間,體現(xiàn)從特殊到一般的知識(shí)認(rèn)識(shí)過程。

  XX教師結(jié)合圖象幫助學(xué)生理解并強(qiáng)調(diào)“距離”(“長度”)是周期的多少倍

  為什么要這樣強(qiáng)調(diào)呢?

  因?yàn)檫@是對(duì)知識(shí)的一種意義建構(gòu),有助于以后理解記憶正弦型函數(shù)的相關(guān)性質(zhì)。

  4.對(duì)稱性

  設(shè)計(jì)意圖:

  (1)因?yàn)槠媾夹允翘厥獾膶?duì)稱性,掌握了對(duì)稱性,容易得出奇偶性,所以著重講清對(duì)稱性。體現(xiàn)了從一般到特殊的知識(shí)再現(xiàn)過程。

  (2)從正弦函數(shù)的對(duì)稱性看到了數(shù)學(xué)的對(duì)稱之美、和諧之美,體現(xiàn)了數(shù)學(xué)的審美功能。

  5.最值點(diǎn)和零值點(diǎn)

  有了對(duì)稱性的理解,容易得出此性質(zhì)。

  第二部分————學(xué)習(xí)任務(wù)轉(zhuǎn)移給學(xué)生

  設(shè)計(jì)意圖:

  (1)通過把學(xué)習(xí)任務(wù)轉(zhuǎn)移給學(xué)生,激發(fā)學(xué)生的主體意識(shí)和成就動(dòng)機(jī),利于學(xué)生作自我評(píng)價(jià);

  (2)通過學(xué)生自主探索,給予學(xué)生解決問題的自主權(quán),促進(jìn)生生交流,利于教師作反饋評(píng)價(jià);

  (3)通過課堂教學(xué)結(jié)構(gòu)的改革,提高課堂教學(xué)效率,最終使學(xué)生成為獨(dú)立的學(xué)習(xí)者,這也符合建構(gòu)主義的教學(xué)原則。

  (三)鞏固練習(xí)

  補(bǔ)充和選作題體現(xiàn)了課堂要求的差異性。

  (四)結(jié)課

  五、板書說明既要體現(xiàn)原則性又要考慮靈活性

  1.板書要基本體現(xiàn)整堂課的內(nèi)容與方法,體現(xiàn)課堂進(jìn)程,能簡明扼要反映知識(shí)結(jié)構(gòu)及其相互聯(lián)系;能指導(dǎo)教師的教學(xué)進(jìn)程、引導(dǎo)學(xué)生探索知識(shí);同時(shí)不完全按課本上的呈現(xiàn)方式來編排板書。即體現(xiàn)系統(tǒng)性、程序性、概括性、指導(dǎo)性、啟發(fā)性、創(chuàng)造性的原則;(原則性)

  2.使用幻燈片輔助板書,節(jié)省課堂時(shí)間,使課堂進(jìn)程更加連貫。(靈活性)

  六、效果及評(píng)價(jià)說明

  (一)知識(shí)診斷

  (二)評(píng)價(jià)說明

  1.針對(duì)本班學(xué)生情況對(duì)課本進(jìn)行了適當(dāng)改編、細(xì)化,有利于難點(diǎn)克服和學(xué)生主體性的調(diào)動(dòng)。

  2.根據(jù)課堂上師生的雙邊活動(dòng),作出適時(shí)調(diào)整、補(bǔ)充(反饋評(píng)價(jià));根據(jù)學(xué)生課后作業(yè)、提問等情況,反復(fù)修改并指導(dǎo)下節(jié)課的設(shè)計(jì)(反復(fù)評(píng)價(jià))。

  3.本節(jié)課充分體現(xiàn)了面向全體學(xué)生、以問題解決為中心、注重知識(shí)的建構(gòu)過程與方法、重視學(xué)生思想與情感的設(shè)計(jì)理念,積極地探索和實(shí)踐我校的科研課題——努力推進(jìn)課堂教學(xué)結(jié)構(gòu)改革。

  通過這樣的探索過程,相信學(xué)生能從中有所體會(huì),對(duì)后續(xù)內(nèi)容的學(xué)習(xí)和學(xué)生的可持續(xù)發(fā)展會(huì)有一定的幫助。希望很久以后留在學(xué)生記憶中的不是知識(shí)本身,而是方法與思想,是學(xué)習(xí)的習(xí)慣和熱情,這正是我們教育工作者追求的結(jié)果

高中數(shù)學(xué)三角函數(shù)說課稿4

  1、教學(xué)目標(biāo):

  一、借助單位圓理解任意角的三角函數(shù)的定義。

  二、根據(jù)三角函數(shù)的定義,能夠判斷三角函數(shù)值的符號(hào)。

  三、通過學(xué)生積極參與知識(shí)的"發(fā)現(xiàn)"與"形成"的過程,培養(yǎng)合情猜測的能力,從中感悟數(shù)學(xué)概念的嚴(yán)謹(jǐn)性與科學(xué)性。

  四、讓學(xué)生在任意角三角函數(shù)概念的形成過程中,體會(huì)函數(shù)思想,體會(huì)數(shù)形結(jié)合思想。

  2、教學(xué)重點(diǎn)與難點(diǎn):

  重點(diǎn):任意角的正弦、余弦、正切的定義;三角函數(shù)值的符號(hào)。

  難點(diǎn):任意角的三角函數(shù)概念的建構(gòu)過程。

  授課過程:

  一、引入

  在我們的現(xiàn)實(shí)世界中的許多運(yùn)動(dòng)變化都有循環(huán)往復(fù)、周而復(fù)始的現(xiàn)象,這種變化規(guī)律稱為周期性。如何用數(shù)學(xué)的方法來刻畫這種變化?從這節(jié)課開始,我們要來學(xué)習(xí)刻畫這種規(guī)律的數(shù)學(xué)模型之一――三角函數(shù)。

  二、創(chuàng)設(shè)情境

  三角函數(shù)是與角有關(guān)的函數(shù),在學(xué)習(xí)任意角概念時(shí),我們知道在直角坐標(biāo)系中研究角,可以給學(xué)習(xí)帶來許多方便,比如我們可以根據(jù)角終邊的位置把它們進(jìn)行歸類,現(xiàn)在大家考慮:若在直角坐標(biāo)系中來研究銳角,則銳角三角函數(shù)又可怎樣定義呢?

  學(xué)生情況估計(jì):學(xué)生可能會(huì)提出兩種定義的方式,一種定義為邊之比,另一種定義在比值中引入了終邊上的一點(diǎn)P的坐標(biāo)。

  問題:

  1、銳角三角函數(shù)能否表示成第二種比值方式?

  2、點(diǎn)P能否取在終邊上的其它位置?為什么?

  3、點(diǎn)P在哪個(gè)位置,比值會(huì)更簡潔?(引出單位圓的定義)。指出sina=mP的函數(shù)依舊表示一個(gè)比值,不過其分母為1而已。

  練習(xí):計(jì)算的各三角函數(shù)值。

  三、任意角的三角函數(shù)的定義

  角的概念已經(jīng)推廣道了任意角,那么三角函數(shù)的定義在任意角的范圍里改怎么定義呢?

  嘗試:根據(jù)銳角三角函數(shù)的定義,你能嘗試著給出任意角三角函數(shù)的定義嗎?

  評(píng)價(jià)學(xué)生給出的定義。給出任意角三角函數(shù)的定義。

  四、解析任意角三角函數(shù)的定義

  三角函數(shù)首先是函數(shù)。你能從函數(shù)觀點(diǎn)解析三角函數(shù)嗎?(定義域)

  對(duì)于確定的角a,上面三個(gè)函數(shù)值都是唯一確定的,所以,正弦、余弦、正切都是以角為自變量,以單位圓上點(diǎn)的坐標(biāo)或坐標(biāo)的比值為函數(shù)值的函數(shù),我們將它們統(tǒng)稱為三角函數(shù)。由于角的集合和實(shí)數(shù)集之間可以建立一一對(duì)應(yīng)的關(guān)系,三角函數(shù)可以看成是自變量為實(shí)數(shù)的函數(shù)。

  五、三角函數(shù)的應(yīng)用。

  1、已知角,求a的三角函數(shù)值。

  2、已知角a終邊上的一點(diǎn)P(-3,-4),求各三角函數(shù)值。

  以上兩道書上的例題,讓學(xué)生自習(xí)看書,學(xué)生看書的同時(shí),老師提出問題:

  1、已知角如何求三角函數(shù)值?

  2、利用角a的終邊上任意一點(diǎn)的坐標(biāo)也可以定義三角函數(shù),你能給出這種定義嗎?(這種定義與課本中給出的定義各有什么特點(diǎn)?)

  3、變式:已知角a終邊上點(diǎn)P(-3b,-4b),(b0),求角a的各三角函數(shù)值。

  4、探究:三角函數(shù)的值在各象限的符號(hào)。

  六、小結(jié)及作業(yè)

  教案設(shè)計(jì)說明:

  新教材的教學(xué)理念之一是讓學(xué)生去體驗(yàn)新知識(shí)的發(fā)生過程,這節(jié)《任意角三角函數(shù)》的教案,主要圍繞這一點(diǎn)來設(shè)計(jì)。

  首先,角的概念推廣了,那么銳角三角函數(shù)的定義是否也該推廣到任意角的三角函數(shù)的定義呢?通過這個(gè)問題,讓學(xué)生體會(huì)到新知識(shí)的發(fā)生是可能的,自然的。

  其次,到底應(yīng)該怎樣去合理定義任意角的三角函數(shù)呢?讓學(xué)生提出自己的想法,同時(shí)讓學(xué)生去辨證這個(gè)想法是否是科學(xué)的?因?yàn)橐粋(gè)概念是嚴(yán)謹(jǐn)?shù)模茖W(xué)的,不能隨心所欲地編造,必須去論證它的合理性,至少這種概念不能和銳角三角函數(shù)的定義有所沖突。在這個(gè)立-破的過程中,讓學(xué)生去體驗(yàn)一個(gè)新的數(shù)學(xué)概念可能是如何形成,在形成的過程中可以從哪些角度加以科學(xué)的辯思。這樣也有助于學(xué)生對(duì)任意角三角函數(shù)概念的理解。

  再次,讓學(xué)生充分體會(huì)在任意角三角函數(shù)定義的推廣中,是如何將直角三角形這個(gè)"形"的問題,轉(zhuǎn)換到直角坐標(biāo)系下點(diǎn)的坐標(biāo)這個(gè)"數(shù)"的過程的。培養(yǎng)數(shù)形結(jié)合的思想。

【高中數(shù)學(xué)三角函數(shù)說課稿】相關(guān)文章:

高中數(shù)學(xué)《三角函數(shù)》說課稿09-08

高中數(shù)學(xué)《三角函數(shù)》說課稿范文04-24

高中數(shù)學(xué)三角函數(shù)說課稿04-08

高中數(shù)學(xué)《任意角三角函數(shù)》說課稿09-06

高中數(shù)學(xué)必修4三角函數(shù)說課稿11-16

蘇教版高中數(shù)學(xué)《任意角的三角函數(shù)》說課稿10-28

高中數(shù)學(xué)《任意角的三角函數(shù)》說課稿模板11-24

高中數(shù)學(xué)《任意角三角函數(shù)》說課稿范文11-05

高中數(shù)學(xué)三角函數(shù)說課稿12篇11-15

高中數(shù)學(xué)三角函數(shù)說課稿(12篇)11-15