国产激情久久久久影院小草_国产91高跟丝袜_99精品视频99_三级真人片在线观看

高中數(shù)學(xué)說(shuō)課稿

時(shí)間:2022-11-22 13:20:04 高中說(shuō)課稿 我要投稿

【薦】高中數(shù)學(xué)說(shuō)課稿

  作為一名優(yōu)秀的教育工作者,可能需要進(jìn)行說(shuō)課稿編寫(xiě)工作,借助說(shuō)課稿可以有效提高教學(xué)效率。我們?cè)撛趺慈?xiě)說(shuō)課稿呢?下面是小編為大家整理的高中數(shù)學(xué)說(shuō)課稿,希望對(duì)大家有所幫助。

【薦】高中數(shù)學(xué)說(shuō)課稿

高中數(shù)學(xué)說(shuō)課稿1

  一、教材分析:

  1、教材的地位與作用。

  本節(jié)資料是在學(xué)生學(xué)習(xí)了"事件的可能性的基礎(chǔ)上來(lái)學(xué)習(xí)如何預(yù)測(cè)不確定事件(隨機(jī)事件)發(fā)生的可能性的大小。"用概率預(yù)測(cè)隨機(jī)發(fā)生的可能性大小,在日常生活、自然、科技領(lǐng)域有著廣泛的應(yīng)用,學(xué)習(xí)本單元知識(shí),無(wú)論是今后繼續(xù)深造(高中學(xué)習(xí)概率的乘法定理)還是參加社會(huì)實(shí)踐活動(dòng)都是十分必要的。概率的概念比較抽象,概率的定義學(xué)生較難理解。

  在教材的處理上,采取小單元教學(xué),本節(jié)課安排讓學(xué)生了解求隨機(jī)事件概率的兩種方法,目的是讓學(xué)生能夠比較系統(tǒng)地理解概率的意義及求概率的方法,為下頭學(xué)習(xí)求比較復(fù)雜的情景的概率打下基礎(chǔ)。

  2、重點(diǎn)與難點(diǎn)。

  重點(diǎn):對(duì)概率意義的理解,經(jīng)過(guò)多次重復(fù)實(shí)驗(yàn),用頻率預(yù)測(cè)概率的方法,以及用列舉法求概率的方法。

  難點(diǎn):對(duì)概率意義的理解和用列舉法求概率過(guò)程中在各種可能性相同條件下某一事件可能發(fā)生的總數(shù)及總的結(jié)果數(shù)的分析。

  二、目的分析:

  知識(shí)與技能:掌握用頻率預(yù)測(cè)概率和用列舉法求概率方法。

  過(guò)程與方法:組織學(xué)生自主探究,合作交流,引導(dǎo)學(xué)生觀察試驗(yàn)和統(tǒng)計(jì)的結(jié)果,進(jìn)而進(jìn)行分析、歸納、總結(jié),了解并感受概率的定義的過(guò)程,引導(dǎo)學(xué)生從數(shù)學(xué)的視角觀察客觀世界,用數(shù)學(xué)的思維思考客觀世界,以數(shù)學(xué)的語(yǔ)言描述客觀世界。

  情感態(tài)度價(jià)值觀:學(xué)生經(jīng)歷觀察、分析、歸納、確認(rèn)等數(shù)學(xué)活動(dòng),感受數(shù)學(xué)活動(dòng)充滿了探索性與創(chuàng)造性,感受量變與質(zhì)變的對(duì)立統(tǒng)一規(guī)律,同時(shí)為概率的精準(zhǔn)、新穎、獨(dú)特的思維方法所震撼,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情,增強(qiáng)對(duì)數(shù)學(xué)價(jià)值觀的認(rèn)識(shí)。

  三、教法、學(xué)法分析:

  引導(dǎo)學(xué)生自主探究、合作交流、觀察分析、歸納總結(jié),讓學(xué)生經(jīng)歷知識(shí)(概率定義計(jì)算公式)的產(chǎn)生和發(fā)展過(guò)程,讓學(xué)生在數(shù)學(xué)活動(dòng)中學(xué)習(xí)數(shù)學(xué)、掌握數(shù)學(xué),并能應(yīng)用數(shù)學(xué)解決現(xiàn)實(shí)生活中的實(shí)際問(wèn)題,教師是學(xué)生學(xué)習(xí)的組織者、合作者和指導(dǎo)者,精心設(shè)計(jì)教學(xué)情境,有序組織學(xué)生活動(dòng),讓課堂充滿生機(jī)活力,體現(xiàn)"教"為"學(xué)"服務(wù)這一宗旨。

  四、教學(xué)過(guò)程分析:

  1、引導(dǎo)學(xué)生探究

  精心設(shè)計(jì)問(wèn)題一,學(xué)生經(jīng)過(guò)對(duì)問(wèn)題一的探究,一方面復(fù)習(xí)前面學(xué)過(guò)的"確定事件和不確定事件"的知識(shí),為學(xué)好本節(jié)資料理清知識(shí)障礙,二是讓學(xué)生明確為什么要學(xué)習(xí)概率(如何預(yù)測(cè)隨機(jī)事件可能性發(fā)生大。。引導(dǎo)學(xué)生對(duì)問(wèn)題二的探究與觀察實(shí)驗(yàn)數(shù)據(jù),使學(xué)生了解概率這一重要概念的實(shí)際背景,感受并相信隨機(jī)事件的發(fā)生中存在著統(tǒng)計(jì)規(guī)律性,感受數(shù)學(xué)規(guī)律的真實(shí)的發(fā)現(xiàn)過(guò)程。

  2、歸納概括

  學(xué)生從試驗(yàn)中得到的統(tǒng)計(jì)數(shù)字及概率呈現(xiàn)穩(wěn)定在某一數(shù)值附近這一規(guī)律,讓學(xué)生明確概率定義的由來(lái)。

  引導(dǎo)學(xué)生重新對(duì)問(wèn)題一和問(wèn)題二的探究,分析某事件發(fā)生的各種可能性在全部可能發(fā)生結(jié)果中所占比例,得到用列舉法求概率的公式,引導(dǎo)學(xué)生進(jìn)行理性思維,邏輯分析,既培養(yǎng)學(xué)生的分析問(wèn)題本事,又讓學(xué)生明確用列舉法求概率這一簡(jiǎn)便快捷方法的合理性。

  3、舉例應(yīng)用

  ⑴引導(dǎo)學(xué)生對(duì)教材書(shū)例題、問(wèn)題一、問(wèn)題二中問(wèn)題的進(jìn)一步分析與探究,讓學(xué)生掌握用列舉法求概率的方法。

 、埔龑(dǎo)學(xué)生對(duì)練習(xí)中的問(wèn)題思考與探究,鞏固對(duì)概率公式的應(yīng)用及加深對(duì)概率意義的理解。

  4、深化發(fā)展

 、旁O(shè)置3個(gè)小題目,引導(dǎo)學(xué)生歸納、分析、總結(jié),加深對(duì)知識(shí)與方法的理解,并學(xué)會(huì)靈活運(yùn)用。

 、谱寣W(xué)生設(shè)計(jì)活動(dòng)資料,對(duì)知識(shí)進(jìn)行升華和拓展,引導(dǎo)學(xué)生創(chuàng)造性地運(yùn)用知識(shí)思考問(wèn)題和解決問(wèn)題,從而培養(yǎng)學(xué)生的創(chuàng)新意識(shí)和創(chuàng)新本事。

高中數(shù)學(xué)說(shuō)課稿2

  【一】教學(xué)背景分析

  1、教材結(jié)構(gòu)分析

  《圓的方程》安排在高中數(shù)學(xué)第二冊(cè)(上)第七章第六節(jié)。圓作為常見(jiàn)的簡(jiǎn)單幾何圖形,在實(shí)際生活和生產(chǎn)實(shí)踐中有著廣泛的應(yīng)用。圓的方程屬于解析幾何學(xué)的基礎(chǔ)知識(shí),是研究二次曲線的開(kāi)始,對(duì)后續(xù)直線與圓的位置關(guān)系、圓錐曲線等內(nèi)容的學(xué)習(xí),無(wú)論在知識(shí)上還是方法上都有著積極的意義,所以本節(jié)內(nèi)容在整個(gè)解析幾何中起著承前啟后的作用。

  2、學(xué)情分析

  圓的方程是學(xué)生在初中學(xué)習(xí)了圓的概念和基本性質(zhì)后,又掌握了求曲線方程的一般方法的基礎(chǔ)上進(jìn)行研究的。但由于學(xué)生學(xué)習(xí)解析幾何的時(shí)間還不長(zhǎng)、學(xué)習(xí)程度較淺,且對(duì)坐標(biāo)法的運(yùn)用還不夠熟練,在學(xué)習(xí)過(guò)程中難免會(huì)出現(xiàn)困難。另外學(xué)生在探究問(wèn)題的能力,合作交流的意識(shí)等方面有待加強(qiáng)。

  根據(jù)上述教材結(jié)構(gòu)與內(nèi)容分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)和心理特征,我制定如下教學(xué)目標(biāo):

  3、教學(xué)目標(biāo)

  (1)知識(shí)目標(biāo):

 、僬莆?qǐng)A的標(biāo)準(zhǔn)方程;

 、跁(huì)由圓的標(biāo)準(zhǔn)方程寫(xiě)出圓的半徑和圓心坐標(biāo),能根據(jù)條件寫(xiě)出圓的標(biāo)準(zhǔn)方程;

 、劾脠A的標(biāo)準(zhǔn)方程解決簡(jiǎn)單的實(shí)際問(wèn)題。

  (2)能力目標(biāo):

 、龠M(jìn)一步培養(yǎng)學(xué)生用代數(shù)方法研究幾何問(wèn)題的能力;

 、诩由顚(duì)數(shù)形結(jié)合思想的理解和加強(qiáng)對(duì)待定系數(shù)法的運(yùn)用;

  ③增強(qiáng)學(xué)生用數(shù)學(xué)的意識(shí)。

  (3)情感目標(biāo):

  ①培養(yǎng)學(xué)生主動(dòng)探究知識(shí)、合作交流的意識(shí);

 、谠隗w驗(yàn)數(shù)學(xué)美的過(guò)程中激發(fā)學(xué)生的學(xué)習(xí)興趣。

  根據(jù)以上對(duì)教材、教學(xué)目標(biāo)及學(xué)情的分析,我確定如下的教學(xué)重點(diǎn)和難點(diǎn):

  4、教學(xué)重點(diǎn)與難點(diǎn)

  (1)重點(diǎn):圓的標(biāo)準(zhǔn)方程的求法及其應(yīng)用。

  (2)難點(diǎn):

 、贂(huì)根據(jù)不同的已知條件求圓的標(biāo)準(zhǔn)方程;

 、谶x擇恰當(dāng)?shù)淖鴺?biāo)系解決與圓有關(guān)的實(shí)際問(wèn)題。

  為使學(xué)生能達(dá)到本節(jié)設(shè)定的教學(xué)目標(biāo),我再?gòu)慕谭ê蛯W(xué)法上進(jìn)行分析:

  【二】教法學(xué)法分析

  1、教法分析為了充分調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性,本節(jié)課采用“啟發(fā)式”問(wèn)題教學(xué)法,用環(huán)環(huán)相扣的問(wèn)題將探究活動(dòng)層層深入,使教師總是站在學(xué)生思維的最近發(fā)展區(qū)上。另外我恰當(dāng)?shù)睦枚嗝襟w課件進(jìn)行輔助教學(xué),借助信息技術(shù)創(chuàng)設(shè)實(shí)際問(wèn)題的情境既能激發(fā)學(xué)生的學(xué)習(xí)興趣,又直觀的引導(dǎo)了學(xué)生建模的過(guò)程。

  2、學(xué)法分析通過(guò)推導(dǎo)圓的標(biāo)準(zhǔn)方程,加深對(duì)用坐標(biāo)法求軌跡方程的理解。通過(guò)求圓的標(biāo)準(zhǔn)方程,理解必須具備三個(gè)獨(dú)立的條件才可以確定一個(gè)圓。通過(guò)應(yīng)用圓的標(biāo)準(zhǔn)方程,熟悉用待定系數(shù)法求的過(guò)程。

  下面我就對(duì)具體的教學(xué)過(guò)程和設(shè)計(jì)加以說(shuō)明:

  【三】教學(xué)過(guò)程與設(shè)計(jì)

  整個(gè)教學(xué)過(guò)程是由七個(gè)問(wèn)題組成的問(wèn)題鏈驅(qū)動(dòng)的,共分為五個(gè)環(huán)節(jié):

  創(chuàng)設(shè)情境啟迪思維深入探究獲得新知應(yīng)用舉例鞏固提高反饋訓(xùn)練形成方法小結(jié)反思拓展引申下面我從縱橫兩方面敘述我的教學(xué)程序與設(shè)計(jì)意圖。

  首先:縱向敘述教學(xué)過(guò)程

  (一)創(chuàng)設(shè)情境——啟迪思維

  問(wèn)題一已知隧道的截面是半徑為4m的半圓,車輛只能在道路中心線一側(cè)行駛,一輛寬為2。7m,高為3m的貨車能不能駛?cè)脒@個(gè)隧道?

  通過(guò)對(duì)這個(gè)實(shí)際問(wèn)題的探究,把學(xué)生的思維由用勾股定理求線段CD的長(zhǎng)度轉(zhuǎn)移為用曲線的方程來(lái)解決。一方面幫助學(xué)生回顧了舊知——求軌跡方程的一般方法,另一方面,在得到汽車不能通過(guò)的結(jié)論的同時(shí)學(xué)生自己推導(dǎo)出了圓心在原點(diǎn),半徑為4的圓的標(biāo)準(zhǔn)方程,從而很自然的進(jìn)入了本課的主題。用實(shí)際問(wèn)題創(chuàng)設(shè)問(wèn)題情境,讓學(xué)生感受到問(wèn)題來(lái)源于實(shí)際,應(yīng)用于實(shí)際,激發(fā)了學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)欲望。這樣獲取的知識(shí),不但易于保持,而且易于遷移。

  通過(guò)對(duì)問(wèn)題一的探究,抓住了學(xué)生的注意力,把學(xué)生的思維引到用坐標(biāo)法研究圓的方程上來(lái),此時(shí)再把問(wèn)題深入,進(jìn)入第二環(huán)節(jié)。

  (二)深入探究——獲得新知

  問(wèn)題二

  1、根據(jù)問(wèn)題一的探究能不能得到圓心在原點(diǎn),半徑為的圓的方程?

  2、如果圓心在,半徑為時(shí)又如何呢?

  這一環(huán)節(jié)我首先讓學(xué)生對(duì)問(wèn)題一進(jìn)行歸納,得到圓心在原點(diǎn),半徑為4的圓的標(biāo)準(zhǔn)方程后,引導(dǎo)學(xué)生歸納出圓心在原點(diǎn),半徑為r的圓的標(biāo)準(zhǔn)方程。然后再讓學(xué)生對(duì)圓心不在原點(diǎn)的情況進(jìn)行探究。我預(yù)設(shè)了三種方法等待著學(xué)生的探究結(jié)果,分別是:坐標(biāo)法、圖形變換法、向量平移法。

  得到圓的標(biāo)準(zhǔn)方程后,我設(shè)計(jì)了由淺入深的三個(gè)應(yīng)用平臺(tái),進(jìn)入第三環(huán)節(jié)。

  (三)應(yīng)用舉例——鞏固提高

  I。直接應(yīng)用內(nèi)化新知

  問(wèn)題三

  1、寫(xiě)出下列各圓的標(biāo)準(zhǔn)方程:

  (1)圓心在原點(diǎn),半徑為3;

  (2)經(jīng)過(guò)點(diǎn),圓心在點(diǎn)。

  2、寫(xiě)出圓的圓心坐標(biāo)和半徑。

  我設(shè)計(jì)了兩個(gè)小問(wèn)題,第一題是直接或間接的給出圓心坐標(biāo)和半徑求圓的標(biāo)準(zhǔn)方程,第二題是給出圓的標(biāo)準(zhǔn)方程求圓心坐標(biāo)和半徑,這兩題比較簡(jiǎn)單,可以安排學(xué)生口答完成,目的是先讓學(xué)生熟練掌握?qǐng)A心坐標(biāo)、半徑與圓的標(biāo)準(zhǔn)方程之間的關(guān)系,為后面探究圓的切線問(wèn)題作準(zhǔn)備。

  II。靈活應(yīng)用提升能力

  問(wèn)題四

  1、求以點(diǎn)為圓心,并且和直線相切的圓的方程。

  2、求過(guò)點(diǎn),圓心在直線上且與軸相切的圓的方程。

  3、已知圓的方程為,求過(guò)圓上一點(diǎn)的切線方程。

  你能歸納出具有一般性的結(jié)論嗎?

  已知圓的方程是,經(jīng)過(guò)圓上一點(diǎn)的切線的方程是什么?

  我設(shè)計(jì)了三個(gè)小問(wèn)題,第一個(gè)小題有了剛剛解決問(wèn)題三的基礎(chǔ),學(xué)生會(huì)很快求出半徑,根據(jù)圓心坐標(biāo)寫(xiě)出圓的標(biāo)準(zhǔn)方程。第二個(gè)小題有些困難,需要引導(dǎo)學(xué)生應(yīng)用待定系數(shù)法確定圓心坐標(biāo)和半徑再求解,從而理解必須具備三個(gè)獨(dú)立的條件才可以確定一個(gè)圓。第三個(gè)小題解決方法較多,我預(yù)設(shè)了四種方法再一次為學(xué)生的發(fā)散思維創(chuàng)設(shè)了空間。最后我讓學(xué)生由第三小題的結(jié)論進(jìn)行歸納、猜想,在論證經(jīng)過(guò)圓上一點(diǎn)圓的切線方程的過(guò)程中,又一次模擬了真理發(fā)現(xiàn)的過(guò)程,使探究氣氛達(dá)到高潮。

  III。實(shí)際應(yīng)用回歸自然

  問(wèn)題五如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度AB=20m,拱高OP=4m,在建造時(shí)每隔4m需用一個(gè)支柱支撐,求支柱的長(zhǎng)度(精確到0。01m)。

  我選用了教材的例3,它是待定系數(shù)法求出圓的三個(gè)參數(shù)的又一次應(yīng)用,同時(shí)也與引例相呼應(yīng),使學(xué)生形成解決實(shí)際問(wèn)題的一般方法,培養(yǎng)了學(xué)生建模的習(xí)慣和用數(shù)學(xué)的意識(shí)。

  (四)反饋訓(xùn)練——形成方法

  問(wèn)題六

  1、求過(guò)原點(diǎn)和點(diǎn),且圓心在直線上的圓的標(biāo)準(zhǔn)方程。

  2、求圓過(guò)點(diǎn)的切線方程。

  3、求圓過(guò)點(diǎn)的切線方程。

  接下來(lái)是第四環(huán)節(jié)——反饋訓(xùn)練。這一環(huán)節(jié)中,我設(shè)計(jì)三個(gè)小題作為鞏固性訓(xùn)練,給學(xué)生一塊“用武”之地,讓每一位同學(xué)體驗(yàn)學(xué)習(xí)數(shù)學(xué)的樂(lè)趣,成功的喜悅,找到自信,增強(qiáng)學(xué)習(xí)數(shù)學(xué)的愿望與信心。另外第3題是我特意安排的一道求過(guò)圓外一點(diǎn)的圓的切線方程,由于學(xué)生剛剛歸納了過(guò)圓上一點(diǎn)圓的切線方程,因此很容易產(chǎn)生思維的負(fù)遷移,另外這道題目有兩解,學(xué)生容易漏掉斜率不存在的情況,這時(shí)引導(dǎo)學(xué)生用數(shù)形結(jié)合的思想,結(jié)合初中已有的圓的知識(shí)進(jìn)行判斷,這樣的設(shè)計(jì)對(duì)培養(yǎng)學(xué)生思維的嚴(yán)謹(jǐn)性具有良好的效果。

  (五)小結(jié)反思——拓展引申

  1。課堂小結(jié)

  把圓的標(biāo)準(zhǔn)方程與過(guò)圓上一點(diǎn)圓的切線方程加以小結(jié),提煉數(shù)形結(jié)合的思想和待定系數(shù)的方法

  ①圓心為,半徑為r的圓的標(biāo)準(zhǔn)方程為:

  圓心在原點(diǎn)時(shí),半徑為r的圓的標(biāo)準(zhǔn)方程為:。

 、谝阎獔A的方程是,經(jīng)過(guò)圓上一點(diǎn)的切線的方程是:。

  2、分層作業(yè)

  (A)鞏固型作業(yè):教材P81-82:(習(xí)題7.6)1,2,4。(B)思維拓展型作業(yè):試推導(dǎo)過(guò)圓上一點(diǎn)的切線方程。

  3、激發(fā)新疑

  問(wèn)題七1。把圓的標(biāo)準(zhǔn)方程展開(kāi)后是什么形式?

  2、方程表示什么圖形?

  在本課的結(jié)尾設(shè)計(jì)這兩個(gè)問(wèn)題,作為對(duì)這節(jié)課內(nèi)容的鞏固與延伸,讓學(xué)生體會(huì)知識(shí)的起點(diǎn)與終點(diǎn)都蘊(yùn)涵著問(wèn)題,舊的問(wèn)題解決了,新的問(wèn)題又產(chǎn)生了。在知識(shí)的拓展中再次掀起學(xué)生探究的熱情。另外它為下節(jié)課研究圓的一般方程作了重要的準(zhǔn)備。

  以上是我縱向的教學(xué)過(guò)程及簡(jiǎn)單的設(shè)計(jì)意圖,接下來(lái),我從三個(gè)方面橫向的進(jìn)一步闡述我的教學(xué)設(shè)計(jì):

  橫向闡述教學(xué)設(shè)計(jì)

  (一)突出重點(diǎn)抓住關(guān)鍵突破難點(diǎn)

  求圓的標(biāo)準(zhǔn)方程既是本節(jié)課的教學(xué)重點(diǎn)也是難點(diǎn),為此我布設(shè)了由淺入深的學(xué)習(xí)環(huán)境,先讓學(xué)生熟悉圓心、半徑與圓的標(biāo)準(zhǔn)方程之間的關(guān)系,逐步理解三個(gè)參數(shù)的重要性,自然形成待定系數(shù)法的解題思路,在突出重點(diǎn)的同時(shí)突破了難點(diǎn)。

  第二個(gè)教學(xué)難點(diǎn)就是解決實(shí)際應(yīng)用問(wèn)題,這是學(xué)生固有的難題,主要是因?yàn)閼?yīng)用問(wèn)題的題目冗長(zhǎng),學(xué)生很難根據(jù)問(wèn)題情境構(gòu)建數(shù)學(xué)模型,缺乏解決實(shí)際問(wèn)題的信心,為此我首先用一道題目簡(jiǎn)潔、貼近生活的實(shí)例進(jìn)行引入,激發(fā)學(xué)生的求知欲,同時(shí)我借助多媒體課件的演示,引導(dǎo)學(xué)生真正走入問(wèn)題的情境之中,并從中抽象出數(shù)學(xué)模型,從而消除畏難情緒,增強(qiáng)了信心。最后再形成應(yīng)用圓的標(biāo)準(zhǔn)方程解決實(shí)際問(wèn)題的一般模式,并嘗試應(yīng)用該模式分析和解決第二個(gè)應(yīng)用問(wèn)題——問(wèn)題五。這樣的設(shè)計(jì),使學(xué)生在解決問(wèn)題的同時(shí),形成了方法,難點(diǎn)自然突破。

  (二)學(xué)生主體教師主導(dǎo)探究主線

  本節(jié)課的設(shè)計(jì)用問(wèn)題做鏈,環(huán)環(huán)相扣,使學(xué)生的探究活動(dòng)貫穿始終。從圓的標(biāo)準(zhǔn)方程的推導(dǎo)到應(yīng)用都是在問(wèn)題的指引、我的指導(dǎo)下,由學(xué)生探究完成的。另外,我重點(diǎn)設(shè)計(jì)了兩次思維發(fā)散點(diǎn),分別是問(wèn)題二和問(wèn)題四的第三問(wèn),要求學(xué)生分組討論,合作交流,為學(xué)生設(shè)立充分的探究空間,學(xué)生在交流成果的過(guò)程中,既體驗(yàn)了科學(xué)研究和真理發(fā)現(xiàn)的復(fù)雜與艱辛,又在我的適度引導(dǎo)、側(cè)面幫助、不斷肯定下順利完成了探究活動(dòng)并走向成功,在一個(gè)個(gè)問(wèn)題的驅(qū)動(dòng)下,高效的完成本節(jié)的學(xué)習(xí)任務(wù)。

  (三)培養(yǎng)思維提升能力激勵(lì)創(chuàng)新

  為了培養(yǎng)學(xué)生的理性思維,我分別在問(wèn)題一和問(wèn)題四中,設(shè)計(jì)了兩次由特殊到一般的學(xué)習(xí)思路,培養(yǎng)學(xué)生的歸納概括能力。在問(wèn)題的設(shè)計(jì)中,我利用一題多解的探究,縱向挖掘知識(shí)深度,橫向加強(qiáng)知識(shí)間的聯(lián)系,培養(yǎng)了學(xué)生的創(chuàng)新精神,并且使學(xué)生的有效思維量加大,隨時(shí)對(duì)所學(xué)知識(shí)和方法產(chǎn)生有意注意,使能力與知識(shí)的形成相伴而行。

  以上是我對(duì)這節(jié)課的教學(xué)預(yù)設(shè),具體的教學(xué)過(guò)程還要根據(jù)學(xué)生在課堂中的具體情況適當(dāng)調(diào)整,向生成性課堂進(jìn)行轉(zhuǎn)變。最后我以赫爾巴特的一句名言結(jié)束我的說(shuō)課,發(fā)揮我們的創(chuàng)造性,力爭(zhēng)“使教育過(guò)程成為一種藝術(shù)的事業(yè)”。

高中數(shù)學(xué)說(shuō)課稿3

  一、地位作用

  數(shù)列是高中數(shù)學(xué)重要的內(nèi)容之一,等比數(shù)列是在學(xué)習(xí)了等差數(shù)列后新的一種特殊數(shù)列,在生活中如儲(chǔ)蓄、分期付款等應(yīng)用較為廣泛,在整個(gè)高中數(shù)學(xué)內(nèi)容中數(shù)列與已學(xué)過(guò)的函數(shù)及后面的數(shù)列極限有密切聯(lián)系,它也是培養(yǎng)學(xué)生數(shù)學(xué)能力的良好題材,它可以培養(yǎng)學(xué)生的觀察、分析、歸納、猜想及綜合解決問(wèn)題的能力。

  基于此,設(shè)計(jì)本節(jié)的數(shù)學(xué)思路上:

  利用類比的思想,聯(lián)系等差數(shù)列的概念及通項(xiàng)公式的學(xué)習(xí)方法,采取自學(xué)、引導(dǎo)、歸納、猜想、類比總結(jié)的教學(xué)思路,充分發(fā)揮學(xué)生主觀能動(dòng)性,調(diào)動(dòng)學(xué)生的主體地位,充分體現(xiàn)教為主導(dǎo)、學(xué)為主體、練為主線的教學(xué)思想。

  二、教學(xué)目標(biāo)

  知識(shí)目標(biāo):1)理解等比數(shù)列的概念

  2)掌握等比數(shù)列的通項(xiàng)公式

  3)并能用公式解決一些實(shí)際問(wèn)題

  能力目標(biāo):培養(yǎng)學(xué)生觀察能力及發(fā)現(xiàn)意識(shí),培養(yǎng)學(xué)生運(yùn)用類比思想、解決分析問(wèn)題的能力。

  三、教學(xué)重點(diǎn)

  1)等比數(shù)列概念的理解與掌握 關(guān)鍵:是讓學(xué)生理解“等比”的特點(diǎn)

  2)等比數(shù)列的通項(xiàng)公式的推導(dǎo)及應(yīng)用

  四、教學(xué)難點(diǎn)

  “等比”的理解及利用通項(xiàng)公式解決一些問(wèn)題。

  五、教學(xué)過(guò)程設(shè)計(jì)

  (一)預(yù)習(xí)自學(xué)環(huán)節(jié)。(8分鐘)

  首先讓學(xué)生重新閱讀課本105頁(yè)國(guó)際象棋發(fā)明者的故事,并出示預(yù)習(xí)提綱,要求學(xué)生閱讀課本P122至P123例1上面。

  回答下列問(wèn)題

  1)課本中前3個(gè)實(shí)例有什么特點(diǎn)?能否舉出其它例子,并給出等比數(shù)列的定義。

  2)觀察以下幾個(gè)數(shù)列,回答下面問(wèn)題:

  1, , , ,……

 。1,-2,-4,-8……

  1,2,-4,8……

 。1,-1,-1,-1,……

  1,0,1,0……

 、儆心膸讉(gè)是等比數(shù)列?若是公比是什么?

 、诠萹為什么不能等于零?首項(xiàng)能為零嗎?

 、酃萹=1時(shí)是什么數(shù)列?

 、躴>0時(shí)數(shù)列遞增嗎?q<0時(shí)遞減嗎?

  3)怎樣推導(dǎo)等比數(shù)列通項(xiàng)公式?課本中采取了什么方法?還可以怎樣推導(dǎo)?

  4)等比數(shù)列通項(xiàng)公式與函數(shù)關(guān)系怎樣?

  (二)歸納主導(dǎo)與總結(jié)環(huán)節(jié)(15分鐘)

  這一環(huán)節(jié)主要是通過(guò)學(xué)生回答為主體,教師引導(dǎo)總結(jié)為主線解決本節(jié)兩個(gè)重點(diǎn)內(nèi)容。

  通過(guò)回答問(wèn)題(1)(2)給出等比數(shù)列的定義并強(qiáng)調(diào)以下幾點(diǎn):①定義關(guān)鍵字“第二項(xiàng)起”“常數(shù)”;

 、谝龑(dǎo)學(xué)生用數(shù)學(xué)語(yǔ)言表達(dá)定義: =q(n≥2);③q=1時(shí)為非零常數(shù)數(shù)列,既是等差數(shù)列又是等比數(shù)列。引申:若數(shù)列公比為字母,分q=1和q≠1兩種情況;引入分類討論的思想。

 、躴>0時(shí)等比數(shù)列單調(diào)性不定,q<0為擺動(dòng)數(shù)列,類比等差數(shù)列d>0為遞增數(shù)列,d<0為遞減數(shù)列。

  通過(guò)回答問(wèn)題(3)回憶等差數(shù)列的推導(dǎo)方法,比較兩個(gè)數(shù)列定義的不同,引導(dǎo)推出等比數(shù)列通項(xiàng)公式。

  法一:歸納法,學(xué)會(huì)從特殊到一般的方法,并從次數(shù)中發(fā)現(xiàn)規(guī)律,培養(yǎng)觀察力。

  法二:迭乘法,聯(lián)系等差數(shù)列“迭加法”,培養(yǎng)學(xué)生類比能力及新舊知識(shí)轉(zhuǎn)化能力。

高中數(shù)學(xué)說(shuō)課稿4

  各位老師你們好!今天我要為大家講的課題是

  首先,我對(duì)本節(jié)教材進(jìn)行一些分析:

  一、教材分析(說(shuō)教材):

  1. 教材所處的地位和作用:

  本節(jié)內(nèi)容在全書(shū)和章節(jié)中的作用是:《 》是 中數(shù)學(xué)教材第 冊(cè)第 章第 節(jié)內(nèi)容。在此之前學(xué)生已學(xué)習(xí)了 基礎(chǔ),這為過(guò)渡到本節(jié)的學(xué)習(xí)起著鋪墊作用。本節(jié)內(nèi)容是在 中,占據(jù) 的地位。以及為其他學(xué)科和今后的學(xué)習(xí)打下基礎(chǔ)。

  2. 教育教學(xué)目標(biāo):

  根據(jù)上述教材分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征,制定如下教學(xué)目標(biāo):

 。1)知識(shí)目標(biāo): (2)能力目標(biāo):通過(guò)教學(xué)初步培養(yǎng)學(xué)生分析問(wèn)題,解決實(shí)際問(wèn)題,讀圖分析,收集處理信息,團(tuán)結(jié)協(xié)作,語(yǔ)言表達(dá)能力以及通過(guò)師生雙邊活動(dòng),初步培養(yǎng)學(xué)生運(yùn)用知識(shí)的能力,培養(yǎng)學(xué)生加強(qiáng)理論聯(lián)系實(shí)際的能力,(3)情感目標(biāo):通過(guò) 的教學(xué)引導(dǎo)學(xué)生從現(xiàn)實(shí)的生活經(jīng)歷與體驗(yàn)出發(fā),激發(fā)學(xué)生學(xué)習(xí)興趣。

  3. 重點(diǎn),難點(diǎn)以及確定依據(jù):

  本著課程標(biāo)準(zhǔn),在吃透教材基礎(chǔ)上,我確立了如下的教學(xué)重點(diǎn)、難點(diǎn)

  重點(diǎn): 通過(guò) 突出重點(diǎn)

  難點(diǎn): 通過(guò) 突破難點(diǎn)

  關(guān)鍵:

  下面,為了講清重難上點(diǎn),使學(xué)生能達(dá)到本節(jié)課設(shè)定的目標(biāo),再?gòu)慕谭ê蛯W(xué)法上談?wù)劊?/p>

  二、教學(xué)策略(說(shuō)教法)

  1. 教學(xué)手段:

  如何突出重點(diǎn),突破難點(diǎn),從而實(shí)現(xiàn)教學(xué)目標(biāo)。在教學(xué)過(guò)程中擬計(jì)劃進(jìn)行如下操作:教學(xué)方法。基于本節(jié)課的特點(diǎn): 應(yīng)著重采用 的教學(xué)方法。

  2. 教學(xué)方法及其理論依據(jù):堅(jiān)持“以學(xué)生為主體,以教師為主導(dǎo)”的原則,根據(jù)學(xué)生的心理發(fā)展規(guī)律,采用學(xué)生參與程度高的學(xué)導(dǎo)式討論教學(xué)法。在學(xué)生看書(shū),討論的基礎(chǔ)上,在老師啟發(fā)引導(dǎo)下,運(yùn)用問(wèn)題解決式教法,師生交談法,圖像信號(hào)法,問(wèn)答式,課堂討論法。在采用問(wèn)答法時(shí),特別注重不同難度的問(wèn)題,提問(wèn)不同層次的學(xué)生,面向全體,使基礎(chǔ)差的學(xué)生也能有表現(xiàn)機(jī)會(huì),培養(yǎng)其自信心,激發(fā)其學(xué)習(xí)熱情。有效的開(kāi)發(fā)各層次學(xué)生的潛在智能,力求使學(xué)生能在原有的基礎(chǔ)上得到發(fā)展。同時(shí)通過(guò)課堂練習(xí)和課后作業(yè),啟發(fā)學(xué)生從書(shū)本知識(shí)回到社會(huì)實(shí)踐。提供給學(xué)生與其生活和周圍世界密切相關(guān)的數(shù)學(xué)知識(shí),學(xué)習(xí)基礎(chǔ)性的知識(shí)和技能,在教學(xué)中積極培養(yǎng)學(xué)生學(xué)習(xí)興趣和動(dòng)機(jī),明確的學(xué)習(xí)目的,老師應(yīng)在課堂上充分調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性,激發(fā)來(lái)自學(xué)生主體的最有力的動(dòng)力。

  3. 學(xué)情分析:(說(shuō)學(xué)法)

  我們常說(shuō):“現(xiàn)代的文盲不是不識(shí)字的人,而是沒(méi)有掌握學(xué)習(xí)方法的人”,因而在教學(xué)中要特別重視學(xué)法的指導(dǎo)。

 。1) 學(xué)生特點(diǎn)分析:中學(xué)生心理學(xué)研究指出,高中階段是(查同中學(xué)生心發(fā)展情況)抓住學(xué)

  生特點(diǎn),積極采用形象生動(dòng),形式多樣的教學(xué)方法和學(xué)生廣泛的積極主動(dòng)參與的學(xué)習(xí)方式,定能激發(fā)學(xué)生興趣,有效地培養(yǎng)學(xué)生能力,促進(jìn)學(xué)生個(gè)性發(fā)展。生理上表少年好動(dòng),注意力易分散

 。2) 知識(shí)障礙上:知識(shí)掌握上,學(xué)生原有的知識(shí) ,許多學(xué)生出現(xiàn)知識(shí)遺忘,所以應(yīng)全面系統(tǒng)的去講述;學(xué)生學(xué)習(xí)本節(jié)課的知識(shí)障礙, 知識(shí) 學(xué)生不易理解,所以教學(xué)中老師應(yīng)予以簡(jiǎn)單明白,深入淺出的分析。

 。3) 動(dòng)機(jī)和興趣上:明確的學(xué)習(xí)目的,老師應(yīng)在課堂上充分調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性,激發(fā)來(lái)自學(xué)生主體的最有力的動(dòng)力

  最后我來(lái)具體談?wù)勥@一堂課的教學(xué)過(guò)程:

  4. 教學(xué)程序及設(shè)想:

 。1)由 引入:把教學(xué)內(nèi)容轉(zhuǎn)化為具有潛在意義的問(wèn)題,讓學(xué)生產(chǎn)生強(qiáng)烈的問(wèn)題意識(shí),使學(xué)生的整個(gè)學(xué)習(xí)過(guò)程成為“猜想”繼而緊張的沉思,期待錄找理由和證明過(guò)程。在實(shí)際情況下學(xué)習(xí)可以使學(xué)生利用已有的知識(shí)與經(jīng)驗(yàn),同化和索引出當(dāng)肖學(xué)習(xí)的新知識(shí),這樣獲取知識(shí),不但易于保持,而且易于遷移到陌生的問(wèn)題情境中。

 。2)由實(shí)例得出本課新的知識(shí)點(diǎn)

 。3)講解例題。在講例題時(shí),不僅在于怎樣解,更在于為什么這樣解,而及時(shí)對(duì)解題方法和規(guī)律進(jìn)行概括,有利于學(xué)生的思維能力。

 。4)能力訓(xùn)練。課后練習(xí)使學(xué)生能鞏固羨慕自覺(jué)運(yùn)用所學(xué)知識(shí)與解題思想方法。

  (5)總結(jié)結(jié)論,強(qiáng)化認(rèn)識(shí)。知識(shí)性的內(nèi)容小結(jié),可把課堂教學(xué)傳授的知識(shí)盡快化為學(xué)生的素質(zhì),數(shù)學(xué)思想方法的小結(jié),可使學(xué)生更深刻地理解數(shù)學(xué)思想方法在解題中的地位和應(yīng)用,并且逐步培養(yǎng)學(xué)生良好的個(gè)性品質(zhì)目標(biāo)。

 。6)變式延伸,進(jìn)行重構(gòu),重視課本例題,適當(dāng)對(duì)題目進(jìn)行引申,使例題的作用更加突出,有利于學(xué)生對(duì)知識(shí)的串聯(lián),累積,加工,從而達(dá)到舉一反三的效果。

  (7)板書(shū)

 。8)布置作業(yè)。 針對(duì)學(xué)生素質(zhì)的差異進(jìn)行分層訓(xùn)練,既使學(xué)生掌握基礎(chǔ)知識(shí),又使學(xué)有余力的學(xué)生有所提高,

  教學(xué)程序:

  課堂結(jié)構(gòu):復(fù)習(xí)提問(wèn),導(dǎo)入講授課,課堂練習(xí),鞏固新課,布置作業(yè)等五部分

高中數(shù)學(xué)說(shuō)課稿5

  一、教材分析

  集合概念及其基本理論,稱為集合論,是近、現(xiàn)代數(shù)學(xué)的一個(gè)重要的基礎(chǔ),一方面,許多重要的數(shù)學(xué)分支,都建立在集合理論的基礎(chǔ)上。另一方面,集合論及其所反映的數(shù)學(xué)思想,在越來(lái)越廣泛的領(lǐng)域種得到應(yīng)用。

  本節(jié)課主要分為兩個(gè)部分,一是理解集合的定義及一些基本特征。二是掌握集合與元素之間的關(guān)系。

  二、教學(xué)目標(biāo)

  1、學(xué)習(xí)目標(biāo)

 。1)通過(guò)實(shí)例,了解集合的含義,體會(huì)元素與集合之間的關(guān)系以及理解“屬

  于”關(guān)系;

 。2)能選擇自然語(yǔ)言、圖形語(yǔ)言、集合語(yǔ)言(列舉法或描述法)描述不同的具體問(wèn)題,感受集合語(yǔ)言的意義和作用;

  2、能力目標(biāo)

 。1)能夠把一句話一個(gè)事件用集合的方式表示出來(lái)。

 。2)準(zhǔn)確理解集合與及集合內(nèi)的元素之間的關(guān)系。

  3、情感目標(biāo)

  通過(guò)本節(jié)的把實(shí)際事件用集合的方式表示出來(lái),從而培養(yǎng)數(shù)學(xué)敏感性,了 解到數(shù)學(xué)于生活中。

  三、教學(xué)重點(diǎn)與難點(diǎn)

  重點(diǎn) 集合的基本概念與表示方法;

  難點(diǎn) 運(yùn)用集合的兩種常用表示方法———列舉法與描述法,正確表示一些簡(jiǎn)單的集合;

  四、教學(xué)方法

  (1)本課將采用探究式教學(xué),讓學(xué)生主動(dòng)去探索,激發(fā)學(xué)生的學(xué)習(xí)興趣。并分層教學(xué),這樣可顧及到全體學(xué)生,達(dá)到優(yōu)生得到培養(yǎng),后進(jìn)生也有所收獲的效果;

 。2)學(xué)生在老師的引導(dǎo)下,通過(guò)閱讀教材,自主學(xué)習(xí)、思考、交流、討論和概括,從而完成本節(jié)課的教學(xué)目標(biāo)。

  五、學(xué)習(xí)方法

  (1)主動(dòng)學(xué)習(xí)法:舉出例子,提出問(wèn)題,讓學(xué)生在獲得感性認(rèn)識(shí)的同時(shí),

  教師層層深入,啟發(fā)學(xué)生積極思維,主動(dòng)探索知識(shí),培養(yǎng)學(xué)生思維想象 的綜合能力。

 。2)反饋補(bǔ)救法:在練習(xí)中,注意觀察學(xué)生對(duì)學(xué)習(xí)的反饋情況,以實(shí)現(xiàn)“培

  優(yōu)扶差,滿足不同!

  六、教學(xué)思路

  具體的思路如下

  復(fù)習(xí)的引入:講一些集合的相關(guān)數(shù)學(xué)及相關(guān)數(shù)學(xué)家的經(jīng)歷故事!這可以讓學(xué)生更加了解數(shù)學(xué)史從何使學(xué)生對(duì)數(shù)學(xué)更加感興趣,有助于上課的效率!因?yàn)闀r(shí)間關(guān)系這里我就不說(shuō)相關(guān)數(shù)學(xué)史咯。

  一、 引入課題

  軍訓(xùn)前學(xué)校通知:8月15日8點(diǎn),高一年段在體育館集合進(jìn)行軍訓(xùn)動(dòng)員;試問(wèn)這個(gè)通知的對(duì)象是全體的高一學(xué)生還是個(gè)別學(xué)生?

  在這里,集合是我們常用的一個(gè)詞語(yǔ),我們感興趣的是問(wèn)題中某些特定(是高一而不是高二、高三)對(duì)象的總體,而不是個(gè)別的對(duì)象,為此,我們將學(xué)習(xí)一個(gè)新的概念——集合,即是一些研究對(duì)象的總體。

  二、 正體部分

  學(xué)生閱讀教材,并思考下列問(wèn)題:

 。1)集合有那些概念?

 。2)集合有那些符號(hào)?

  (3)集合中元素的特性是什么?

 。4)如何給集合分類?

  (一)集合的有關(guān)概念

 。1)對(duì)象:我們可以感覺(jué)到的客觀存在以及我們思想中的事物或抽象符號(hào),

  都可以稱作對(duì)象.

 。2)集合:把一些能夠確定的不同的對(duì)象看成一個(gè)整體,就說(shuō)這個(gè)整體是由

  這些對(duì)象的全體構(gòu)成的集合.

 。3)元素:集合中每個(gè)對(duì)象叫做這個(gè)集合的元素.

  集合通常用大寫(xiě)的拉丁字母表示,如A、B、C、??元素通常用小寫(xiě)的拉丁字母表示,如a、b、c、??

  1. 思考:課本P3的思考題,并再列舉一些集合例子和不能構(gòu)成集合的例子,

  對(duì)學(xué)生的例子予以討論、點(diǎn)評(píng),進(jìn)而講解下面的問(wèn)題。

  2、元素與集合的關(guān)系

  (1)屬于:如果a是集合A的元素,就說(shuō)a屬于A,記作a∈A。(舉例)集合A={2,3,4,6,9}a=2 因此我們知道 a∈A

 。2)不屬于:如果a不是集合A的元素,就說(shuō)a不屬于A,記作a?A

  要注意“∈”的方向,不能把a(bǔ)∈A顛倒過(guò)來(lái)寫(xiě). (舉例)

  集合A={3,4,6,9}a=2 因此我們知道a?A

  3、集合中元素的特性

 。1)確定性:給定一個(gè)集合,任何對(duì)象是不是這個(gè)集合的元素是確定的了.

 。2)互異性:集合中的元素一定是不同的.

 。3)無(wú)序性:集合中的元素沒(méi)有固定的順序.

  4、集合分類

  根據(jù)集合所含元素個(gè)屬不同,可把集合分為如下幾類:

 。1)把不含任何元素的集合叫做空集Ф

  (2)含有有限個(gè)元素的集合叫做有限集

 。3)含有無(wú)窮個(gè)元素的集合叫做無(wú)限集

  注:應(yīng)區(qū)分?,{?},{0},0等符號(hào)的含義

  5、常用數(shù)集及其表示方法

 。1)非負(fù)整數(shù)集(自然數(shù)集):全體非負(fù)整數(shù)的集合.記作N

 。2)正整數(shù)集:非負(fù)整數(shù)集內(nèi)排除0的集.記作N*或N+

 。3)整數(shù)集:全體整數(shù)的集合.記作Z

 。4)有理數(shù)集:全體有理數(shù)的集合.記作Q

  (5)實(shí)數(shù)集:全體實(shí)數(shù)的集合.記作R

  注:(1)自然數(shù)集包括數(shù)0.

 。2)非負(fù)整數(shù)集內(nèi)排除0的集.記作N*或N+,Q、Z、R等其它數(shù)集內(nèi)排

  除0的集,也這樣表示,例如,整數(shù)集內(nèi)排除0的集,表示成Z*

  (二)集合的表示方法

  我們可以用自然語(yǔ)言來(lái)描述一個(gè)集合,但這將給我們帶來(lái)很多不便,除此之外還常用列舉法和描述法來(lái)表示集合。

 。1) 列舉法:把集合中的元素一一列舉出來(lái),寫(xiě)在大括號(hào)內(nèi)。

  如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},?;

  例1.(課本例1)

  思考2,引入描述法

  說(shuō)明:集合中的元素具有無(wú)序性,所以用列舉法表示集合時(shí)不必考慮元素的順序。

  (2) 描述法:把集合中的元素的公共屬性描述出來(lái),寫(xiě)在大括號(hào){}內(nèi)。 具體方法:在大括號(hào)內(nèi)先寫(xiě)上表示這個(gè)集合元素的一般符號(hào)及取值(或變化)范圍,再畫(huà)一條豎線,在豎線后寫(xiě)出這個(gè)集合中元素所具有的共同特征。

  如:{x|x-3>2},{(x,y)|y=x2+1},{直角三角形},?;

  例2.(課本例2)

  說(shuō)明:(課本P5最后一段)

  思考3:(課本P6思考) 強(qiáng)調(diào):描述法表示集合應(yīng)注意集合的代表元素

  {(x,y)|y= x2+3x+2}與 {y|y= x2+3x+2}不同,只要不引起誤解,集合的代表元素也可省略,例如:{整數(shù)},即代表整數(shù)集Z。

  辨析:這里的{ }已包含“所有”的意思,所以不必寫(xiě){全體整數(shù)}。下列寫(xiě)法{實(shí)數(shù)集},{R}也是錯(cuò)誤的。

  說(shuō)明:列舉法與描述法各有優(yōu)點(diǎn),應(yīng)該根據(jù)具體問(wèn)題確定采用哪種表示法,要注意,一般集合中元素較多或有無(wú)限個(gè)元素時(shí),不宜采用列舉法。

  (三)課堂練習(xí)(課本P6練習(xí))

  三、 歸納小結(jié)與作業(yè)

  本節(jié)課從實(shí)例入手,非常自然貼切地引出集合與集合的概念,并且結(jié)合實(shí)例對(duì)集合的概念作了說(shuō)明,然后介紹了集合的常用表示方法,包括列舉法、描述法。

  書(shū)面作業(yè):習(xí)題1.1,第1- 4題

高中數(shù)學(xué)說(shuō)課稿6

  一、教材分析:

  1.教材所處的地位和作用:

  本節(jié)內(nèi)容在全書(shū)和章節(jié)中的作用是:《1.3.1柱體、錐體、臺(tái)體的表面積》是高中數(shù)學(xué)教材數(shù)學(xué)2第一章空間幾何體3節(jié)內(nèi)容。在此之前學(xué)生已學(xué)習(xí)了空間幾何體的結(jié)構(gòu)、三視圖和直觀圖為基礎(chǔ),這為過(guò)渡到本節(jié)的學(xué)習(xí)起著鋪墊作用。本節(jié)內(nèi)容是在空間幾何中,占據(jù)重要的地位。以及為其他學(xué)科和今后的學(xué)習(xí)打下基礎(chǔ)。

  2.教育教學(xué)目標(biāo):

  根據(jù)上述教材分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征,制定如下教學(xué)目標(biāo):

  知識(shí)與能力:

 。1)了解柱體、錐體、臺(tái)體的表面積.

 。2)能用公式求柱體、錐體、臺(tái)體的表面積。

 。3)培養(yǎng)學(xué)生空間想象能力和思維能力

  過(guò)程與方法:

  讓學(xué)生經(jīng)歷幾何體的表面積的實(shí)際求法,感知幾何體的形狀,培養(yǎng)學(xué)生對(duì)數(shù)學(xué)問(wèn)題的轉(zhuǎn)化化歸能力。

  情感、態(tài)度與價(jià)值觀:

  通過(guò)學(xué)習(xí),是學(xué)生感受到幾何體表面積的求解過(guò)程,激發(fā)學(xué)生探索、創(chuàng)新意識(shí),增強(qiáng)學(xué)習(xí)積極性。

  3.重點(diǎn),難點(diǎn)以及確定依據(jù):

  本著新課程標(biāo)準(zhǔn),在吃透教材基礎(chǔ)上,我確立了如下的教學(xué)重點(diǎn)、難點(diǎn)

  教學(xué)重點(diǎn):柱,錐,臺(tái)的表面積公式的推導(dǎo)

  教學(xué)難點(diǎn):柱,錐,臺(tái)展開(kāi)圖與空間幾何體的轉(zhuǎn)化

  二、教法分析

  1.教學(xué)手段:

  如何突出重點(diǎn),突破難點(diǎn),從而實(shí)現(xiàn)教學(xué)目標(biāo)。在教學(xué)過(guò)程中擬計(jì)劃進(jìn)行如下操作:教學(xué)方法;诒竟(jié)課的特點(diǎn):應(yīng)著重采用合作探究、小組討論的教學(xué)方法。

  2.教學(xué)方法及其理論依據(jù):堅(jiān)持“以學(xué)生為主體,以教師為主導(dǎo)”的原則,根據(jù)學(xué)生的心理發(fā)展規(guī)律,采用學(xué)生參與程度高的探究式討論教學(xué)法。在學(xué)生親自動(dòng)手去給出各種幾何體的表面積的計(jì)算方法,特別注重不同解決問(wèn)題的方法,提問(wèn)不同層次的學(xué)生,面向全體,使基礎(chǔ)差的學(xué)生也能有表現(xiàn)機(jī)會(huì),培養(yǎng)其自信心,激發(fā)其學(xué)習(xí)熱情。有效的開(kāi)發(fā)各層次學(xué)生的潛在智能,力求使學(xué)生能在原有的基礎(chǔ)上得到發(fā)展。啟發(fā)學(xué)生從書(shū)本知識(shí)回到社會(huì)實(shí)踐。提供給學(xué)生與其生活和周圍世界密切相關(guān)的數(shù)學(xué)知識(shí),學(xué)習(xí)基礎(chǔ)性的知識(shí)和技能,在教學(xué)中積極培養(yǎng)學(xué)生學(xué)習(xí)興趣和動(dòng)機(jī),明確的學(xué)習(xí)目的,老師應(yīng)在課堂上充分調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性,激發(fā)來(lái)自學(xué)生主體的最有力的動(dòng)力。

  三.學(xué)情分析

  我們常說(shuō):“現(xiàn)代的文盲不是不識(shí)字的人,而是沒(méi)有掌握學(xué)習(xí)方法的人”,因而在教學(xué)中要特別重視學(xué)法的指導(dǎo)。

  (1)學(xué)生特點(diǎn)分析:中學(xué)生心理學(xué)研究指出,高中階段是(查同中學(xué)生心發(fā)展情況)抓住學(xué)生特點(diǎn),積極采用形象生動(dòng),形式多樣的教學(xué)方法和學(xué)生廣泛的積極主動(dòng)參與的學(xué)習(xí)方式,定能激發(fā)學(xué)生興趣,有效地培養(yǎng)學(xué)生能力,促進(jìn)學(xué)生個(gè)性發(fā)展。生理上表少年好動(dòng),注意力易分散

 。2)動(dòng)機(jī)和興趣上:明確的學(xué)習(xí)目的,老師應(yīng)在課堂上充分調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性,激發(fā)來(lái)自學(xué)生主體的最有力的動(dòng)力

  最后我來(lái)具體談?wù)勥@一堂課的教學(xué)過(guò)程:

  四、教學(xué)過(guò)程分析

 。1)由一段動(dòng)畫(huà)視頻引入:豐富生動(dòng)的吸引學(xué)生的注意力,調(diào)動(dòng)學(xué)生學(xué)習(xí)積極性

 。2)由引入得出本課新的所要探討的問(wèn)題——幾何體的表面積的計(jì)算。

  (3)探究問(wèn)題。完全將主動(dòng)權(quán)教給學(xué)生,讓學(xué)生主動(dòng)去探究,得到解決問(wèn)題的思路,鍛煉學(xué)生動(dòng)手能力,解決實(shí)際問(wèn)題能力。

  (4)總結(jié)結(jié)論,強(qiáng)化認(rèn)識(shí)。知識(shí)性的內(nèi)容小結(jié),可把課堂教學(xué)傳授的知識(shí)盡快化為學(xué)生的素質(zhì),數(shù)學(xué)思想方法的小結(jié),可使學(xué)生更深刻地理解數(shù)學(xué)思想方法在解題中的地位和應(yīng)用,并且逐步培養(yǎng)學(xué)生良好的個(gè)性品質(zhì)目標(biāo)。

  (5)例題及練習(xí),見(jiàn)學(xué)案。

 。6)布置作業(yè)。

  針對(duì)學(xué)生素質(zhì)的差異進(jìn)行分層訓(xùn)練,既使學(xué)生掌握基礎(chǔ)知識(shí),又使學(xué)有余力的學(xué)生有所提高,

  (7)小結(jié)。讓學(xué)生總結(jié)本節(jié)課的收獲。老師適時(shí)總結(jié)歸納。

高中數(shù)學(xué)說(shuō)課稿7

  一、教材分析

  1.教材所處的地位和作用

  本節(jié)課所學(xué)內(nèi)容為算法案例3,主要學(xué)習(xí)如何給一組數(shù)據(jù)排序,學(xué)習(xí)作程序框圖和設(shè)計(jì)程序,通過(guò)本節(jié)課的學(xué)習(xí)之后將能使許多復(fù)雜的問(wèn)題在計(jì)算機(jī)上得到解決,減少工作量。

  2 教學(xué)的重點(diǎn)和難點(diǎn)

  重點(diǎn):兩種排序法的排序步驟及計(jì)算機(jī)程序設(shè)計(jì)

  難點(diǎn):排序法的計(jì)算機(jī)程序設(shè)計(jì)

  二、教學(xué)目標(biāo)分析

  1.知識(shí)與技能目標(biāo):

  掌握數(shù)據(jù)排序的原理能使用直接排序法與冒泡排序法給一組數(shù)據(jù)排序,進(jìn)而能設(shè)計(jì)冒泡排序法的程序框圖及程序,理解數(shù)學(xué)算法與計(jì)算機(jī)算法的區(qū)別,理解計(jì)算機(jī)對(duì)數(shù)學(xué)的輔助作用。

  2.過(guò)程與方法目標(biāo):

  能根據(jù)排序法中的直接插入排序法與冒泡排序法的步驟,了解數(shù)學(xué)計(jì)算轉(zhuǎn)換為計(jì)算機(jī)計(jì)算的途徑,從而探究計(jì)算機(jī)算法與數(shù)學(xué)算法的區(qū)別,體會(huì)計(jì)算機(jī)對(duì)數(shù)學(xué)學(xué)習(xí)的輔助作用。

  3.情感,態(tài)度和價(jià)值觀目標(biāo)

  通過(guò)對(duì)排序法的學(xué)習(xí),領(lǐng)會(huì)數(shù)學(xué)計(jì)算與計(jì)算機(jī)計(jì)算的區(qū)別,充分認(rèn)識(shí)信息技術(shù)對(duì)數(shù)學(xué)的促進(jìn)。

  三、教學(xué)方法與手段分析

  1.教學(xué)方法:充分發(fā)揮學(xué)生的主體作用和教師的主導(dǎo)作用,采用啟發(fā)式,并遵循循序漸進(jìn)的教學(xué)原則。這有利于學(xué)生掌握從現(xiàn)象到本質(zhì),從已知到未知逐步形成概念的學(xué)習(xí)方法,有利于發(fā)展學(xué)生抽象思維能力和邏輯推理能力。

  2.教學(xué)手段:通過(guò)各種教學(xué)媒體(計(jì)算機(jī))調(diào)動(dòng)學(xué)生參與課堂教學(xué)的主動(dòng)性與積極性。

  四、學(xué)法分析

  模仿排序法中數(shù)字排序的步驟,理解計(jì)算機(jī)計(jì)算的一般步驟,領(lǐng)會(huì)數(shù)學(xué)計(jì)算在計(jì)算機(jī)上實(shí)施的要求。

  五、教學(xué)過(guò)程分析

  一、創(chuàng)設(shè)情境

  提出問(wèn)題:大家考完試后如果要排一下成績(jī)的話,單靠人手該怎樣操作呢?如果我們用計(jì)算機(jī)里的軟件電子表格對(duì)分?jǐn)?shù)排序就非常簡(jiǎn)單,那么電子計(jì)算機(jī)是怎么對(duì)數(shù)據(jù)進(jìn)行排序的呢?

  通過(guò)這個(gè)問(wèn)題,引出我們這節(jié)課所要學(xué)習(xí)的兩種排序方法--直接插入排序法與冒泡排序法

  二、探索新知

  這里我先讓學(xué)生們閱讀課本P30-P31的內(nèi)容,然后回答下面的問(wèn)題:

  (1)排序法中的直接插入排序法與冒泡排序法的步驟有什么區(qū)別?

  (2)冒泡法排序中對(duì)5個(gè)數(shù)字進(jìn)行排序最多需要多少趟?

  (3)在冒泡法排序?qū)?個(gè)數(shù)字進(jìn)行排序的每一趟中需要比較大小幾次?

  提出問(wèn)題,然后讓學(xué)生們作出回答,這樣可以促使學(xué)生們能夠積極思考,自主地去學(xué)習(xí)新的知識(shí),而不只是單向的由老師向?qū)W生灌輸。

  三、知識(shí)應(yīng)用

  例1 用冒泡排序法對(duì)數(shù)據(jù)7,5,3,9,1從小到大進(jìn)行排序

 。ǜ鶕(jù)剛剛提問(wèn)所總結(jié)的方法完成解題步驟)

  練習(xí):寫(xiě)出用冒泡排序法對(duì)5個(gè)數(shù)據(jù)4,11,7,9,6排序的過(guò)程中每一趟排序的結(jié)果.

  (及時(shí)將學(xué)到的知識(shí)應(yīng)用,有利于知識(shí)的掌握)

  例2 設(shè)計(jì)冒泡排序法對(duì)5個(gè)數(shù)據(jù)進(jìn)行排序的程序框圖.

  (在之前所學(xué)習(xí)知識(shí)的基礎(chǔ)上畫(huà)出程序框圖,然后給出一個(gè)思考題)

  思考:直接插入排序法的程序框圖如何設(shè)計(jì)?可否把上述程序框圖轉(zhuǎn)化為程序?

 。ㄖ蟪鲆粋(gè)練習(xí)題,找出思考題的答案)

  練習(xí):用直接插入排序法對(duì)例1中的數(shù)據(jù)從小到大排序,畫(huà)出程序框圖,并轉(zhuǎn)化為程序運(yùn)行求出最終答案。

 。ㄟ@里可以使學(xué)生們領(lǐng)會(huì)數(shù)學(xué)計(jì)算與計(jì)算機(jī)計(jì)算的區(qū)別,充分認(rèn)識(shí)信息技術(shù)對(duì)數(shù)學(xué)的促進(jìn)。)

  四、課堂小結(jié):

  (1)數(shù)字排序法中的常見(jiàn)的兩種排序法直接插入排序法與冒泡排序法它們的排序步驟

  (2兩種排序法的計(jì)算機(jī)程序設(shè)計(jì)

  (3)注意循環(huán)語(yǔ)句的使用與算法的循環(huán)次數(shù),對(duì)算法進(jìn)行改進(jìn)。

  通過(guò)小結(jié)使學(xué)生們對(duì)知識(shí)有一個(gè)系統(tǒng)的認(rèn)識(shí),突出重點(diǎn),抓住關(guān)鍵,培養(yǎng)概括能力。

高中數(shù)學(xué)說(shuō)課稿8

  【一】教學(xué)背景分析

  1.教材結(jié)構(gòu)分析

  《圓的方程》安排在高中數(shù)學(xué)第二冊(cè)(上)第七章第六節(jié).圓作為常見(jiàn)的簡(jiǎn)單幾何圖形,在實(shí)際生活和生產(chǎn)實(shí)踐中有著廣泛的應(yīng)用.圓的方程屬于解析幾何學(xué)的基礎(chǔ)知識(shí),是研究二次曲線的開(kāi)始,對(duì)后續(xù)直線與圓的位置關(guān)系、圓錐曲線等內(nèi)容的學(xué)習(xí),無(wú)論在知識(shí)上還是方法上都有著積極的意義,所以本節(jié)內(nèi)容在整個(gè)解析幾何中起著承前啟后的作用.

  2.學(xué)情分析

  圓的方程是學(xué)生在初中學(xué)習(xí)了圓的概念和基本性質(zhì)后,又掌握了求曲線方程的一般方法的基礎(chǔ)上進(jìn)行研究的.但由于學(xué)生學(xué)習(xí)解析幾何的時(shí)間還不長(zhǎng)、學(xué)習(xí)程度較淺,且對(duì)坐標(biāo)法的運(yùn)用還不夠熟練,在學(xué)習(xí)過(guò)程中難免會(huì)出現(xiàn)困難.另外學(xué)生在探究問(wèn)題的能力,合作交流的意識(shí)等方面有待加強(qiáng).

  根據(jù)上述教材結(jié)構(gòu)與內(nèi)容分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)和心理特征,我制定如下教學(xué)目標(biāo):

  3.教學(xué)目標(biāo)

  (1) 知識(shí)目標(biāo):①掌握?qǐng)A的標(biāo)準(zhǔn)方程;

  ②會(huì)由圓的標(biāo)準(zhǔn)方程寫(xiě)出圓的半徑和圓心坐標(biāo),能根據(jù)條件寫(xiě)出圓的標(biāo)準(zhǔn)方程;

  ③利用圓的標(biāo)準(zhǔn)方程解決簡(jiǎn)單的實(shí)際問(wèn)題.

  (2) 能力目標(biāo):①進(jìn)一步培養(yǎng)學(xué)生用代數(shù)方法研究幾何問(wèn)題的能力;

 、诩由顚(duì)數(shù)形結(jié)合思想的理解和加強(qiáng)對(duì)待定系數(shù)法的運(yùn)用;

  ③增強(qiáng)學(xué)生用數(shù)學(xué)的意識(shí).

  (3) 情感目標(biāo):①培養(yǎng)學(xué)生主動(dòng)探究知識(shí)、合作交流的意識(shí);

 、谠隗w驗(yàn)數(shù)學(xué)美的過(guò)程中激發(fā)學(xué)生的學(xué)習(xí)興趣.

  根據(jù)以上對(duì)教材、教學(xué)目標(biāo)及學(xué)情的分析,我確定如下的教學(xué)重點(diǎn)和難點(diǎn):

  4. 教學(xué)重點(diǎn)與難點(diǎn)

  (1)重點(diǎn):圓的標(biāo)準(zhǔn)方程的求法及其應(yīng)用.

  (2)難點(diǎn): ①會(huì)根據(jù)不同的已知條件求圓的標(biāo)準(zhǔn)方程;

  ②選擇恰當(dāng)?shù)淖鴺?biāo)系解決與圓有關(guān)的實(shí)際問(wèn)題.

  為使學(xué)生能達(dá)到本節(jié)設(shè)定的教學(xué)目標(biāo),我再?gòu)慕谭ê蛯W(xué)法上進(jìn)行分析:

  好學(xué)教育:

  【二】教法學(xué)法分析

  1.教法分析 為了充分調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性,本節(jié)課采用“啟發(fā)式”問(wèn)題教學(xué)法,用環(huán)環(huán)相扣的問(wèn)題將探究活動(dòng)層層深入,使教師總是站在學(xué)生思維的最近發(fā)展區(qū)上.另外我恰當(dāng)?shù)睦枚嗝襟w課件進(jìn)行輔助教學(xué),借助信息技術(shù)創(chuàng)設(shè)實(shí)際問(wèn)題的情境既能激發(fā)學(xué)生的學(xué)習(xí)興趣,又直觀的引導(dǎo)了學(xué)生建模的過(guò)程.

  2.學(xué)法分析 通過(guò)推導(dǎo)圓的標(biāo)準(zhǔn)方程,加深對(duì)用坐標(biāo)法求軌跡方程的理解.通過(guò)求圓的標(biāo)準(zhǔn)方程,理解必須具備三個(gè)獨(dú)立的條件才可以確定一個(gè)圓.通過(guò)應(yīng)用圓的標(biāo)準(zhǔn)方程,熟悉用待定系數(shù)法求的過(guò)程. 下面我就對(duì)具體的教學(xué)過(guò)程和設(shè)計(jì)加以說(shuō)明:

  【三】教學(xué)過(guò)程與設(shè)計(jì)

  整個(gè)教學(xué)過(guò)程是由七個(gè)問(wèn)題組成的問(wèn)題鏈驅(qū)動(dòng)的,共分為五個(gè)環(huán)節(jié):

  創(chuàng)設(shè)情境 啟迪思維 深入探究 獲得新知 應(yīng)用舉例 鞏固提高

  反饋訓(xùn)練 形成方法 小結(jié)反思 拓展引申

  下面我從縱橫兩方面敘述我的教學(xué)程序與設(shè)計(jì)意圖.

  首先:縱向敘述教學(xué)過(guò)程

  (一)創(chuàng)設(shè)情境——啟迪思維

  問(wèn)題一 已知隧道的截面是半徑為4m的半圓,車輛只能在道路中心線一側(cè)行駛,一輛寬為2.7m,高為3m的貨車能不能駛?cè)脒@個(gè)隧道?

  通過(guò)對(duì)這個(gè)實(shí)際問(wèn)題的探究,把學(xué)生的思維由用勾股定理求線段CD的長(zhǎng)度轉(zhuǎn)移為用曲線的方程來(lái)解決.一方面幫助學(xué)生回顧了舊知——求軌跡方程的一般方法,另一方面,在得到汽車不能通過(guò)的結(jié)論的同時(shí)學(xué)生自己推導(dǎo)出了圓心在原點(diǎn),半徑為4的圓的標(biāo)準(zhǔn)方程,從而很自然的進(jìn)入了本課的主題.用實(shí)際問(wèn)題創(chuàng)設(shè)問(wèn)題情境,讓學(xué)生感受到問(wèn)題來(lái)源于實(shí)際,應(yīng)用于實(shí)際,激發(fā)了學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)欲望.這樣獲取的知識(shí),不但易于保持,而且易于遷移.

  通過(guò)對(duì)問(wèn)題一的探究,抓住了學(xué)生的注意力,把學(xué)生的思維引到用坐標(biāo)法研究圓的方程上來(lái),此時(shí)再把問(wèn)題深入,進(jìn)入第二環(huán)節(jié).

  (二)深入探究——獲得新知

  問(wèn)題二 1.根據(jù)問(wèn)題一的探究能不能得到圓心在原點(diǎn),半徑為的圓的方程?

  2.如果圓心在,半徑為時(shí)又如何呢?

  好學(xué)教育:

  這一環(huán)節(jié)我首先讓學(xué)生對(duì)問(wèn)題一進(jìn)行歸納,得到圓心在原點(diǎn),半徑為4的圓的標(biāo)準(zhǔn)方程后,引導(dǎo)學(xué)生歸納出圓心在原點(diǎn),半徑為r的圓的標(biāo)準(zhǔn)方程.然后再讓學(xué)生對(duì)圓心不在原點(diǎn)的情況進(jìn)行探究.我預(yù)設(shè)了三種方法等待著學(xué)生的探究結(jié)果,分別是:坐標(biāo)法、圖形變換法、向量平移法.

  得到圓的標(biāo)準(zhǔn)方程后,我設(shè)計(jì)了由淺入深的三個(gè)應(yīng)用平臺(tái),進(jìn)入第三環(huán)節(jié).

  (三)應(yīng)用舉例——鞏固提高

  I.直接應(yīng)用 內(nèi)化新知

  問(wèn)題三 1.寫(xiě)出下列各圓的標(biāo)準(zhǔn)方程:

  (1)圓心在原點(diǎn),半徑為3;

  (2)經(jīng)過(guò)點(diǎn),圓心在點(diǎn).

  2.寫(xiě)出圓的圓心坐標(biāo)和半徑.

  我設(shè)計(jì)了兩個(gè)小問(wèn)題,第一題是直接或間接的給出圓心坐標(biāo)和半徑求圓的標(biāo)準(zhǔn)方程,第二題是給出圓的標(biāo)準(zhǔn)方程求圓心坐標(biāo)和半徑,這兩題比較簡(jiǎn)單,可以安排學(xué)生口答完成,目的是先讓學(xué)生熟練掌握?qǐng)A心坐標(biāo)、半徑與圓的標(biāo)準(zhǔn)方程之間的關(guān)系,為后面探究圓的切線問(wèn)題作準(zhǔn)備.

  II.靈活應(yīng)用 提升能力

  問(wèn)題四 1.求以點(diǎn)為圓心,并且和直線相切的圓的方程.

  2.求過(guò)點(diǎn),圓心在直線上且與軸相切的圓的方程.

  3.已知圓的方程為,求過(guò)圓上一點(diǎn)的切線方程.

  你能歸納出具有一般性的結(jié)論嗎?

  已知圓的方程是,經(jīng)過(guò)圓上一點(diǎn)的切線的方程是什么?

  我設(shè)計(jì)了三個(gè)小問(wèn)題,第一個(gè)小題有了剛剛解決問(wèn)題三的基礎(chǔ),學(xué)生會(huì)很快求出半徑,根據(jù)圓心坐標(biāo)寫(xiě)出圓的標(biāo)準(zhǔn)方程.第二個(gè)小題有些困難,需要引導(dǎo)學(xué)生應(yīng)用待定系數(shù)法確定圓心坐標(biāo)和半徑再求解,從而理解必須具備三個(gè)獨(dú)立的條件才可以確定一個(gè)圓.第三個(gè)小題解決方法較多,我預(yù)設(shè)了四種方法再一次為學(xué)生的發(fā)散思維創(chuàng)設(shè)了空間.最后我讓學(xué)生由第三小題的結(jié)論進(jìn)行歸納、猜想,在論證經(jīng)過(guò)圓上一點(diǎn)圓的切線方程的過(guò)程中,又一次模擬了真理發(fā)現(xiàn)的過(guò)程,使探究氣氛達(dá)到高潮.

  III.實(shí)際應(yīng)用 回歸自然

  問(wèn)題五 如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度AB=20m,拱高OP=4m,在建造時(shí)每隔4m需用一個(gè)支柱支撐,求支柱的長(zhǎng)度(精確到0.01m).

  好學(xué)教育:

  我選用了教材的例3,它是待定系數(shù)法求出圓的三個(gè)參數(shù)的又一次應(yīng)用,同時(shí)也與引例相呼應(yīng),使學(xué)生形成解決實(shí)際問(wèn)題的一般方法,培養(yǎng)了學(xué)生建模的習(xí)慣和用數(shù)學(xué)的意識(shí).

  (四)反饋訓(xùn)練——形成方法

  問(wèn)題六 1.求過(guò)原點(diǎn)和點(diǎn),且圓心在直線上的圓的標(biāo)準(zhǔn)方程.

  2.求圓過(guò)點(diǎn)的切線方程.

  3.求圓過(guò)點(diǎn)的切線方程.

  接下來(lái)是第四環(huán)節(jié)——反饋訓(xùn)練.這一環(huán)節(jié)中,我設(shè)計(jì)三個(gè)小題作為鞏固性訓(xùn)練,給學(xué)生一塊“用武”之地,讓每一位同學(xué)體驗(yàn)學(xué)習(xí)數(shù)學(xué)的樂(lè)趣,成功的喜悅,找到自信,增強(qiáng)學(xué)習(xí)數(shù)學(xué)的愿望與信心.另外第3題是我特意安排的一道求過(guò)圓外一點(diǎn)的圓的切線方程,由于學(xué)生剛剛歸納了過(guò)圓上一點(diǎn)圓的切線方程,因此很容易產(chǎn)生思維的負(fù)遷移,另外這道題目有兩解,學(xué)生容易漏掉斜率不存在的情況,這時(shí)引導(dǎo)學(xué)生用數(shù)形結(jié)合的思想,結(jié)合初中已有的圓的知識(shí)進(jìn)行判斷,這樣的設(shè)計(jì)對(duì)培養(yǎng)學(xué)生思維的嚴(yán)謹(jǐn)性具有良好的效果.

  (五)小結(jié)反思——拓展引申

  1.課堂小結(jié)

  把圓的標(biāo)準(zhǔn)方程與過(guò)圓上一點(diǎn)圓的切線方程加以小結(jié),提煉數(shù)形結(jié)合的思想和待定系數(shù)的方法 ①圓心為,半徑為r 的圓的標(biāo)準(zhǔn)方程為:

  圓心在原點(diǎn)時(shí),半徑為r 的圓的標(biāo)準(zhǔn)方程為:.

 、谝阎獔A的方程是,經(jīng)過(guò)圓上一點(diǎn)的切線的方程是:.

  2.分層作業(yè)

  (A)鞏固型作業(yè):教材P81-82:(習(xí)題7.6)1,2,4.(B)思維拓展型作業(yè):試推導(dǎo)過(guò)圓上一點(diǎn)的切線方程.

  3.激發(fā)新疑

  問(wèn)題七 1.把圓的標(biāo)準(zhǔn)方程展開(kāi)后是什么形式?

  2.方程表示什么圖形?

  在本課的結(jié)尾設(shè)計(jì)這兩個(gè)問(wèn)題,作為對(duì)這節(jié)課內(nèi)容的鞏固與延伸,讓學(xué)生體會(huì)知識(shí)的起點(diǎn)與終點(diǎn)都蘊(yùn)涵著問(wèn)題,舊的問(wèn)題解決了,新的問(wèn)題又產(chǎn)生了.在知識(shí)的拓展中再次掀起學(xué)生探究的熱情.另外它為下節(jié)課研究圓的一般方程作了重要的準(zhǔn)備.

  以上是我縱向的教學(xué)過(guò)程及簡(jiǎn)單的設(shè)計(jì)意圖,接下來(lái),我從三個(gè)方面橫向的進(jìn)一步闡述我的教學(xué)設(shè)計(jì): 橫向闡述教學(xué)設(shè)計(jì)

  (一)突出重點(diǎn) 抓住關(guān)鍵 突破難點(diǎn)

  好學(xué)教育:

  求圓的標(biāo)準(zhǔn)方程既是本節(jié)課的教學(xué)重點(diǎn)也是難點(diǎn),為此我布設(shè)了由淺入深的學(xué)習(xí)環(huán)境,先讓學(xué)生熟悉圓心、半徑與圓的標(biāo)準(zhǔn)方程之間的關(guān)系,逐步理解三個(gè)參數(shù)的重要性,自然形成待定系數(shù)法的解題思路,在突出重點(diǎn)的同時(shí)突破了難點(diǎn).

  第二個(gè)教學(xué)難點(diǎn)就是解決實(shí)際應(yīng)用問(wèn)題,這是學(xué)生固有的難題,主要是因?yàn)閼?yīng)用問(wèn)題的題目冗長(zhǎng),學(xué)生很難根據(jù)問(wèn)題情境構(gòu)建數(shù)學(xué)模型,缺乏解決實(shí)際問(wèn)題的信心,為此我首先用一道題目簡(jiǎn)潔、貼近生活的實(shí)例進(jìn)行引入,激發(fā)學(xué)生的求知欲,同時(shí)我借助多媒體課件的演示,引導(dǎo)學(xué)生真正走入問(wèn)題的情境之中,并從中抽象出數(shù)學(xué)模型,從而消除畏難情緒,增強(qiáng)了信心.最后再形成應(yīng)用圓的標(biāo)準(zhǔn)方程解決實(shí)際問(wèn)題的一般模式,并嘗試應(yīng)用該模式分析和解決第二個(gè)應(yīng)用問(wèn)題——問(wèn)題五.這樣的設(shè)計(jì),使學(xué)生在解決問(wèn)題的同時(shí),形成了方法,難點(diǎn)自然突破.

  (二)學(xué)生主體 教師主導(dǎo) 探究主線

  本節(jié)課的設(shè)計(jì)用問(wèn)題做鏈,環(huán)環(huán)相扣,使學(xué)生的探究活動(dòng)貫穿始終.從圓的標(biāo)準(zhǔn)方程的推導(dǎo)到應(yīng)用都是在問(wèn)題的指引、我的指導(dǎo)下,由學(xué)生探究完成的.另外,我重點(diǎn)設(shè)計(jì)了兩次思維發(fā)散點(diǎn),分別是問(wèn)題二和問(wèn)題四的第三問(wèn),要求學(xué)生分組討論,合作交流,為學(xué)生設(shè)立充分的探究空間,學(xué)生在交流成果的過(guò)程中,既體驗(yàn)了科學(xué)研究和真理發(fā)現(xiàn)的復(fù)雜與艱辛,又在我的適度引導(dǎo)、側(cè)面幫助、不斷肯定下順利完成了探究活動(dòng)并走向成功,在一個(gè)個(gè)問(wèn)題的驅(qū)動(dòng)下,高效的完成本節(jié)的學(xué)習(xí)任務(wù).

  (三)培養(yǎng)思維 提升能力 激勵(lì)創(chuàng)新

  為了培養(yǎng)學(xué)生的理性思維,我分別在問(wèn)題一和問(wèn)題四中,設(shè)計(jì)了兩次由特殊到一般的學(xué)習(xí)思路,培養(yǎng)學(xué)生的歸納概括能力.在問(wèn)題的設(shè)計(jì)中,我利用一題多解的探究,縱向挖掘知識(shí)深度,橫向加強(qiáng)知識(shí)間的聯(lián)系,培養(yǎng)了學(xué)生的創(chuàng)新精神,并且使學(xué)生的有效思維量加大,隨時(shí)對(duì)所學(xué)知識(shí)和方法產(chǎn)生有意注意,使能力與知識(shí)的形成相伴而行.

  以上是我對(duì)這節(jié)課的教學(xué)預(yù)設(shè),具體的教學(xué)過(guò)程還要根據(jù)學(xué)生在課堂中的具體情況適當(dāng)調(diào)整,向生成性課堂進(jìn)行轉(zhuǎn)變.最后我以赫爾巴特的一句名言結(jié)束我的說(shuō)課,發(fā)揮我們的創(chuàng)造性,力爭(zhēng)“使教育過(guò)程成為一種藝術(shù)的事業(yè)”.

高中數(shù)學(xué)說(shuō)課稿9

  一、說(shuō)設(shè)計(jì)理念

  《數(shù)學(xué)課程標(biāo)準(zhǔn)》指出要讓學(xué)生感受生活中處處有數(shù)學(xué),用數(shù)學(xué)知識(shí)解決生活中的實(shí)際問(wèn)題。

  基于這一理念,我在教學(xué)過(guò)程中力求聯(lián)系學(xué)生生活實(shí)際和已有的知識(shí)經(jīng)驗(yàn),從學(xué)生感興趣的素材,設(shè)計(jì)新穎的導(dǎo)入與例題教學(xué),給數(shù)學(xué)課富予新的生命力。課堂中力求構(gòu)建一種自主探究、和諧合作的教學(xué)氛圍,讓學(xué)生經(jīng)歷知識(shí)的探究過(guò)程,培養(yǎng)學(xué)生感受生活中的數(shù)學(xué)和用數(shù)學(xué)知識(shí)解決生活問(wèn)題的能力,體驗(yàn)數(shù)學(xué)的應(yīng)用價(jià)值。

  二、教材分析:

 。ㄒ唬┙滩牡牡匚缓妥饔

  有關(guān)統(tǒng)計(jì)圖的認(rèn)識(shí),小學(xué)階段主要認(rèn)識(shí)條形統(tǒng)計(jì)圖、折線統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖?紤]到扇形統(tǒng)計(jì)圖在日常生活中的廣泛應(yīng)用,《標(biāo)準(zhǔn)》把它作為必學(xué)內(nèi)容安排在本單元。本單元是在前面學(xué)習(xí)了條形統(tǒng)計(jì)圖和折線統(tǒng)計(jì)圖的特點(diǎn)和作用的基礎(chǔ)上進(jìn)行教學(xué)的。主要通過(guò)熟悉的事例使學(xué)生體會(huì)到扇形統(tǒng)計(jì)圖的實(shí)用價(jià)值。

 。ǘ┙虒W(xué)目標(biāo)

  1、聯(lián)系生活情境了解扇形統(tǒng)計(jì)圖的特點(diǎn)和作用

  2、能讀懂扇形統(tǒng)計(jì)圖,從中獲取有效的信息。

  3、讓學(xué)生在觀察、比較、討論和交流中體會(huì)扇形統(tǒng)計(jì)圖反映的是整體和部分的關(guān)系。

  (三)教學(xué)重點(diǎn):

  1、能讀懂扇形統(tǒng)計(jì)圖,理解扇形統(tǒng)計(jì)圖的特點(diǎn)和作用,并能從中獲取有效信息。

  2、認(rèn)識(shí)折線統(tǒng)計(jì)圖,了解折線統(tǒng)計(jì)圖的特點(diǎn)。

 。ㄋ模┙虒W(xué)難點(diǎn):

  1、能從扇形統(tǒng)計(jì)圖中獲得有用信息,并做出合理推斷。

  2、能根據(jù)統(tǒng)計(jì)圖和數(shù)據(jù)進(jìn)行數(shù)據(jù)變化趨勢(shì)的分析。

  二、學(xué)情分析

  本單元的教學(xué)是在學(xué)生已有統(tǒng)計(jì)經(jīng)驗(yàn)的基礎(chǔ)上,學(xué)習(xí)新知的。六年級(jí)的學(xué)生已經(jīng)學(xué)習(xí)了條形統(tǒng)計(jì)圖和折線統(tǒng)計(jì)圖,知道他們的特點(diǎn),并具有一定的概括、分析能力,在此基礎(chǔ)上,通過(guò)新舊知識(shí)對(duì)比,自然生成新知識(shí)點(diǎn)。

  三、設(shè)計(jì)理念和教法分析

  1、本堂課力爭(zhēng)做到由“關(guān)注知識(shí)”轉(zhuǎn)向“關(guān)注學(xué)生”,由“傳授知識(shí)”轉(zhuǎn)向“引導(dǎo)探索”,“教師是組織者、領(lǐng)導(dǎo)者!睂⒄n堂設(shè)置問(wèn)題給學(xué)生,讓學(xué)生自己獲取信息、分析信息,自主探索、合作交流,參與知識(shí)的構(gòu)建。

  2、運(yùn)用探究法。探究學(xué)習(xí)的內(nèi)容以問(wèn)題的形式出現(xiàn)在教師的引導(dǎo)下,學(xué)生自主探究,讓學(xué)生在課堂上多活動(dòng)、多思考,自主構(gòu)建知識(shí)體系。引導(dǎo)學(xué)生獲取信息并合作交流。

  四、說(shuō)學(xué)法

  《數(shù)學(xué)課程標(biāo)準(zhǔn)》指出有效的數(shù)學(xué)學(xué)習(xí)不能單純的依賴模仿和記憶,動(dòng)手操作、自主探索與合作交流是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式。教學(xué)時(shí),我通過(guò)學(xué)生感興趣的話題引入,引導(dǎo)學(xué)生關(guān)注身邊的數(shù)學(xué),使學(xué)生體會(huì)到觀察、概括、想象、遷移等數(shù)學(xué)學(xué)習(xí)方法,在師生互動(dòng)中讓每個(gè)學(xué)生都動(dòng)口,動(dòng)手,動(dòng)腦。培養(yǎng)學(xué)生學(xué)習(xí)的主動(dòng)性和積極性。

  五、說(shuō)教學(xué)程序

  本課分成創(chuàng)設(shè)情境,感知特點(diǎn)——分析數(shù)據(jù),理解特征——嘗試制圖,看圖分析——實(shí)踐應(yīng)用,全課總結(jié)四環(huán)節(jié)。

  六、說(shuō)教學(xué)過(guò)程

 。ㄒ唬⿵(fù)習(xí)引新

  1、復(fù)習(xí)舊知

  提問(wèn):我們學(xué)習(xí)過(guò)哪些統(tǒng)計(jì)方法?其中條形統(tǒng)計(jì)圖和折線統(tǒng)計(jì)圖各有什么特點(diǎn)?

  2、引入新課

 。ǘ┳灾魈剿鳎瑢W(xué)習(xí)新知

  新知識(shí)教學(xué)分二步教學(xué):第一步整體感知,看懂統(tǒng)計(jì)圖,理解特征,這是本節(jié)課的重點(diǎn)。在教學(xué)中,以知識(shí)遷移的方式建立新舊知識(shí)之間的聯(lián)系,放手讓學(xué)生獨(dú)立思考,互相合作,進(jìn)一步了解統(tǒng)計(jì)圖的特征。

  第二步實(shí)踐應(yīng)用環(huán)節(jié)。在教學(xué)中,精心地選取了大量的生活素材,使統(tǒng)計(jì)知識(shí)與生活建立緊密的聯(lián)系。根據(jù)統(tǒng)計(jì)圖回答問(wèn)題,是讓學(xué)生運(yùn)用到剛才學(xué)習(xí)到的知識(shí)來(lái)解決生活中的一些問(wèn)題,并鞏固剛才所學(xué)的知識(shí),為學(xué)生自己發(fā)現(xiàn)問(wèn)題、提出問(wèn)題及自己解決問(wèn)題提供了較大的空間。同時(shí),讓學(xué)生感悟由于數(shù)據(jù)變化帶來(lái)的啟示,并能合理地進(jìn)行推理與判斷

  三、課堂總結(jié)

  四、布置作業(yè)。

  五、板書(shū)設(shè)計(jì):

高中數(shù)學(xué)說(shuō)課稿10

  一、教材分析:

  《向量的加法》是《必修》4第二章第二單元中"平面向量的線性運(yùn)算"的第一節(jié)課。本節(jié)資料有向量加法的平行四邊形法則、三角形法則及應(yīng)用,向量加法的運(yùn)算律及應(yīng)用,大約需要1課時(shí)。向量的加法是向量的線性運(yùn)算中最基本的一種運(yùn)算,向量的加法及其幾何意義為后繼學(xué)習(xí)向量的減法運(yùn)算及其幾何意義、向量的數(shù)乘運(yùn)算及其幾何意義奠定了基礎(chǔ);其中三角形法則適用于求任意多個(gè)向量的和,在空間向量與立體幾何中有很普遍的'應(yīng)用。所以本課在"平面向量"及"空間向量"中有很重要的地位。

  二、學(xué)情分析:

  學(xué)生在上節(jié)課中學(xué)習(xí)了向量的定義及表示,相等向量,平行向量等概念,明白向量能夠自由移動(dòng),這是學(xué)習(xí)本節(jié)資料的基礎(chǔ)。學(xué)生對(duì)數(shù)的運(yùn)算了如指掌,并且在物理中學(xué)過(guò)力的合成、位移的合成等矢量的加法,所以向量的加法可經(jīng)過(guò)類比數(shù)的加法、以所學(xué)的物理模型為背景引入,這樣做有利于學(xué)生更好地理解向量加法的意義,準(zhǔn)確把握兩個(gè)加法法則的特點(diǎn)。

  三、教學(xué)目的:

  1、經(jīng)過(guò)對(duì)向量加法的探究,使學(xué)生掌握向量加法的概念,結(jié)合物理學(xué)實(shí)際理解向量加法的意義。能正確領(lǐng)會(huì)向量加法的平行四邊形法則和三角形法則的幾何意義,并能運(yùn)用法則作出兩個(gè)已知向量的和向量。

  2、在應(yīng)用活動(dòng)中,理解向量加法滿足交換律和結(jié)合律以及表述兩個(gè)運(yùn)算律的幾何意義。掌握有特殊位置關(guān)系的兩個(gè)向量之和,比如共線向量,共起點(diǎn)向量、共終點(diǎn)向量等。

  3、經(jīng)過(guò)本節(jié)的學(xué)習(xí),培養(yǎng)學(xué)生類比、遷移、分類、歸納等數(shù)學(xué)方面的本事。

  四、教學(xué)重、難點(diǎn)

  重點(diǎn):向量的加法法則。探究向量的加法法則并正確應(yīng)用是本課的重點(diǎn)。兩個(gè)加法法則各有特點(diǎn),聯(lián)系緊密,你中有我,我中有你,實(shí)質(zhì)相同,可是三角形法則適用范圍更加廣泛,且簡(jiǎn)便易行,所以是詳講資料,平行四邊形法則在本課中所占份量略少于三角形法則。

  難點(diǎn):對(duì)三角形法則的理解;方向相反的兩個(gè)向量的加法。主要是讓學(xué)生認(rèn)識(shí)到三角形法則的實(shí)質(zhì)是:將已知向量首尾相接,而不是表示向量的有向線段之間必須構(gòu)成三角形。

  五、教學(xué)方法

  本節(jié)采用以下教學(xué)方法:

  1、類比:由數(shù)的加法運(yùn)算類比向量的加法運(yùn)算。

  2、探究:由力的合成引入平行四邊形法則,在法則的運(yùn)用中觀察圖形得出三角形法則,探求共線向量的加法,發(fā)現(xiàn)三角形法則適用于任意向量相加;經(jīng)過(guò)圖形,觀察得出向量加法滿足交換律、結(jié)合律等,這些都體現(xiàn)探究式教學(xué)法的運(yùn)用。

  3、講解與練習(xí):對(duì)兩個(gè)法則特點(diǎn)的分析,例題都采取了引導(dǎo)與講解的方法,學(xué)生課堂完成教材中的練習(xí)。

  4、多媒體技術(shù)的運(yùn)用,能直觀地表現(xiàn)向量的平移,相等向量的意義,更能說(shuō)清兩個(gè)法則的幾何意義及運(yùn)算律。

  六、數(shù)學(xué)思想的體現(xiàn):

  1、分類的思想:總的來(lái)說(shuō)本課中向量的加法分為不共線向量及共線向量?jī)煞N形式,共線向量又分為方向相同與方向相反兩種情形,然后專門(mén)對(duì)零向量與任意向量相加作了規(guī)定,這樣對(duì)任意向量的加法都做了討論,線索清楚。

  2、類比思想:使之與數(shù)的加法進(jìn)行類比,使學(xué)生對(duì)向量的加法不致于太陌生,既有似曾相識(shí)的感覺(jué),又能從比較中看出兩者的不一樣,效果較好。

  3、歸納思想:主要體此刻以下三個(gè)環(huán)節(jié):

 、賹W(xué)完平行四邊形法則和三角形法則后,歸納總結(jié),對(duì)不共線向量相加,兩個(gè)法則都能夠選用。

 、谟晒簿向量的加法總結(jié)出三角形法則適用于任意兩個(gè)向量的相加,而三角形法則僅適用于不共線向量相加。

 、蹖(duì)向量加法的結(jié)合律和探討中,又使學(xué)生發(fā)現(xiàn)了三角形法則還適用于任意多個(gè)向量的加法。歸納思想在這三個(gè)環(huán)節(jié)中的運(yùn)用,使得學(xué)生對(duì)兩個(gè)加法法則,尤其是三角形法則的理解,步步深入。

  七、教學(xué)過(guò)程:

  1、回顧舊知:本節(jié)要進(jìn)行向量的平移,且對(duì)向量加法分共線與不共線兩種情景,所以要復(fù)習(xí)向量、相等向量、共線向量等概念,這些都是新課學(xué)習(xí)中必要的知識(shí)鋪墊。

  2、引入新課:

  (1)平行四邊形法則的引入。

  學(xué)生在物理學(xué)中雖然接觸過(guò)位移的合成,可是并沒(méi)有構(gòu)成三角形法則的概念;而對(duì)平行四邊形法則學(xué)生已學(xué)過(guò),很熟悉。所以我決定由力的合成引入向量加法的平行四邊形法則。平行四邊形法則的特點(diǎn)是起點(diǎn)相同,可是物理中力的合成是在有相同的作用點(diǎn)的條件下合成的,引入到數(shù)學(xué)中向量加法的平行四邊形法則,所給出的圖形也是現(xiàn)成的平行四邊形,而學(xué)生剛學(xué)完相等向量,對(duì)相等向量的概念還沒(méi)有深刻的認(rèn)識(shí),易產(chǎn)生誤解:表示兩個(gè)已知向量的有向線段的起點(diǎn)必須在一齊才能用平行四邊形法則,不在一齊不能用。這時(shí)要經(jīng)過(guò)講解例1,使學(xué)生認(rèn)識(shí)到能夠經(jīng)過(guò)平移向量,使表示兩個(gè)向量的有向線段有共同的起點(diǎn)。這一點(diǎn)對(duì)理解及運(yùn)用法則求兩向量的和很重要。

  設(shè)計(jì)意圖:本著從學(xué)生最熟悉、離學(xué)生最近的知識(shí)經(jīng)驗(yàn)為接入點(diǎn),用學(xué)生熟知的方法來(lái)解決新的問(wèn)題——向量的加法,這樣新中有舊,學(xué)生容易理解,也使學(xué)科間的滲透發(fā)揮了作用,加深了學(xué)生對(duì)向量加法的平行四邊形法則的"起點(diǎn)相同"這一特點(diǎn)的認(rèn)識(shí),例1的講解使學(xué)生認(rèn)識(shí)到當(dāng)表示向量的有向線段的起點(diǎn)不在一齊時(shí),須把起點(diǎn)移到一齊,至此才能使學(xué)生完成對(duì)平行四邊形法則理解真正到位。

 。2)三角形法則的引入。三角形法則沒(méi)有按照教材中利用位移的合成引入,而是從前面所講的平行四邊形法則的圖形中直接引入。

  所以這種把兩個(gè)向量相加的方法稱為三角形法則。接下來(lái)用幻燈片完整展示三角形法則,同時(shí)法則的作法敘述、作圖過(guò)程對(duì)學(xué)生也起到了示例的作用。于是前面的例1還能夠利用三角形法則來(lái)做。

  這時(shí),總結(jié)出兩個(gè)不共線向量求和時(shí),平行四邊形法則與三角形法則都能夠用。

  設(shè)計(jì)意圖:由平行四邊形法則的圖形引入三角形法則,能夠很清楚地使學(xué)生從向何意義上認(rèn)識(shí)到兩個(gè)法則之間的密切聯(lián)系,理解它們的實(shí)質(zhì),并且銜接自然,能夠使學(xué)生比較地得出兩個(gè)法則的特點(diǎn)與實(shí)質(zhì),并對(duì)兩個(gè)法則的特點(diǎn)有較深刻的印象。

 。3)共線向量的加法

  方向相同的兩個(gè)向量相加,對(duì)學(xué)生來(lái)說(shuō)較易完成,"將它們接在一齊,取它們的方向及長(zhǎng)度之和,作為和向量的方向與長(zhǎng)度。"引導(dǎo)學(xué)生分析作法,結(jié)果發(fā)現(xiàn)還是運(yùn)用了三角形法則:首尾相接,方向由第一個(gè)向量的起點(diǎn)指向第二個(gè)向量的終點(diǎn)。

  方向相反的兩個(gè)向量相加,對(duì)學(xué)生來(lái)說(shuō)是個(gè)難點(diǎn),首先從作圖上不明白怎樣做。可是學(xué)生學(xué)過(guò)有理數(shù)加法中的異號(hào)兩數(shù)相加:"異號(hào)兩數(shù)相加,用較大的絕對(duì)值減去較小的絕對(duì)值,符號(hào)取絕對(duì)值較大的數(shù)的符號(hào)。"類比異號(hào)兩數(shù)相加,他們會(huì)用較長(zhǎng)的模減去較短的模,方向取模較長(zhǎng)的向量的方向。具體做法由教師引導(dǎo)學(xué)生嘗試運(yùn)用三角形法則去做,發(fā)現(xiàn)結(jié)論正確。

  反思過(guò)程,學(xué)生自然會(huì)想到方向相同的兩個(gè)向量相加,類似于同號(hào)兩數(shù)相加。這說(shuō)明兩個(gè)共線向量相加依然可用三角形法則經(jīng)過(guò)以上幾個(gè)環(huán)節(jié)的討論,能夠作個(gè)簡(jiǎn)單的小結(jié):兩個(gè)不共線向量相加,可采用平行四邊形法則或三角形法則,而兩個(gè)共線向量相加在本課所學(xué)方法中只能用三角形法則,說(shuō)明三角形法則適用于任意兩個(gè)向量相加。

  設(shè)計(jì)意圖:經(jīng)過(guò)對(duì)共線向量加法的探討,拓寬了學(xué)生對(duì)三角形法則的認(rèn)識(shí),使得不一樣位置的向量相加都有了依據(jù),并且采用類比的方法,使學(xué)生對(duì)共線向量的加法,尤其是方向相反的兩個(gè)向量的加法更易于理解,能夠化解難點(diǎn)。

 。4)向量加法的運(yùn)算律

 、俳粨Q律:交換律是利用平行四邊形法則的圖形,又結(jié)合三角

  形法則得出,理解起來(lái)沒(méi)什么困難,再一次強(qiáng)化了學(xué)生對(duì)兩個(gè)法則特點(diǎn)及實(shí)質(zhì)的認(rèn)識(shí)。

  ②結(jié)合律:結(jié)合律是經(jīng)過(guò)三個(gè)向量首尾相接,先加前兩個(gè)再與第三個(gè)向量相加,和先加后兩個(gè)向量再與第一個(gè)向量相加所得結(jié)果相同。

  接下來(lái)是對(duì)應(yīng)的兩個(gè)練習(xí),運(yùn)用交換律與結(jié)合律計(jì)算向量的和。

  設(shè)計(jì)意圖:運(yùn)算律的引入給加法運(yùn)算帶來(lái)方便,從后面的練習(xí)中學(xué)生能夠體會(huì)到這點(diǎn)。由結(jié)合律還使學(xué)生發(fā)現(xiàn),多個(gè)向量相加,同樣能夠運(yùn)用三角形法則:將所加向量首尾相接,和向量的方向是由第一個(gè)向量的起點(diǎn)指向最終一個(gè)向量的終點(diǎn)。這樣使學(xué)生明白,三角形法則適用于任意多個(gè)向量相加。

  3、小結(jié)

  先由學(xué)生小結(jié),檢查學(xué)生對(duì)本課重要知識(shí)的認(rèn)識(shí),也給學(xué)生一個(gè)概括本節(jié)知識(shí)的機(jī)會(huì),然后用課件展示小結(jié)資料,使學(xué)生印象更深。

 。1)平行四邊形法則:起點(diǎn)相同,適用于不共線向量的求和。

 。2)三角形法則首尾相接,適用于任意多個(gè)向量的求和。

  (3)運(yùn)算律

高中數(shù)學(xué)說(shuō)課稿11

  各位評(píng)委:下午好!

  我叫 ,來(lái)自 。今天我說(shuō)課的課題《 》(第 課時(shí))。下面我將圍繞本節(jié)課“教什么?”、“怎樣教?”以及“為什么這樣教?”三個(gè)問(wèn)題,從教材分析、教學(xué)目標(biāo)分析、教學(xué)重難點(diǎn)分析、教法與學(xué)法、課堂設(shè)計(jì)五方面逐一加以分析和說(shuō)明。

  一、教材分析

 。ㄒ唬┙滩牡牡匚缓妥饔

  《 》是人教版出版社 第 冊(cè)、第 單元的內(nèi)容!丁芳仁 在知識(shí)上的延伸和發(fā)展,又是本章 的運(yùn)用與鞏固,也為下一章 教學(xué)作鋪墊,起著鏈條的作用。同時(shí),這部分內(nèi)容較好地反映了 的內(nèi)在聯(lián)系和相互轉(zhuǎn)化,蘊(yùn)含著歸納、轉(zhuǎn)化、數(shù)形結(jié)合等豐富的數(shù)學(xué)思想方法,能較好地培養(yǎng)學(xué)生的觀察能力、概括能力、探究能力及創(chuàng)新意識(shí)。

  概括地講,本節(jié)課內(nèi)容的地位體現(xiàn)在它的基礎(chǔ)性,作用體現(xiàn)在它的工具性。

  (二)、學(xué)情分析

  通過(guò)前一階段的教學(xué),學(xué)生對(duì) 的認(rèn)識(shí)已有了一定的認(rèn)知結(jié)構(gòu),主要體現(xiàn)在三個(gè)層面:

  知識(shí)層面:學(xué)生在已初步掌握了 。

  能力層面:學(xué)生在初步已經(jīng)掌握了用

  初步具備了 思想。 情感層面:學(xué)生對(duì)數(shù)學(xué)新內(nèi)容的學(xué)習(xí)有相當(dāng)?shù)呐d趣和積極性。但探究問(wèn)題的能力以及合作交流等方面發(fā)展不夠均衡.

  (三)教學(xué)課時(shí)

  本節(jié)內(nèi)容分 課時(shí)學(xué)習(xí)。(本課時(shí),品味數(shù)學(xué)中的和諧美,體驗(yàn)成功的樂(lè)趣。)

  二、教學(xué)目標(biāo)分析

  根據(jù)教學(xué)大綱的要求、本節(jié)教材的特點(diǎn)和高中生的認(rèn)知規(guī)律,本節(jié)課的教學(xué)目標(biāo)確定為:

  知識(shí)與技能:

  過(guò)程與方法:

  情感態(tài)度:

 。ɡ纾簞(chuàng)設(shè)問(wèn)題情景,激發(fā)學(xué)生觀察、分析、探求的學(xué)習(xí)激情、強(qiáng)化學(xué)生參與意識(shí)及主體作用。在自主探究與討論交流過(guò)程中,培養(yǎng)學(xué)生的合作意識(shí)和創(chuàng)新精神. 通過(guò) 對(duì)立統(tǒng)一關(guān)系的認(rèn)識(shí),對(duì)學(xué)生進(jìn)行辨證唯物主義教育)

  在探索過(guò)程中,培養(yǎng)獨(dú)立獲取數(shù)學(xué)知識(shí)的能力。在解決問(wèn)題的過(guò)程中,讓學(xué)生感受到成功的喜悅,樹(shù)立學(xué)好數(shù)學(xué)的信心。在解答數(shù)學(xué)問(wèn)題時(shí),讓學(xué)生養(yǎng)成理性思維的品質(zhì)。

  三、重難點(diǎn)分析

  重點(diǎn)確定為:

  要把握這個(gè)重點(diǎn)。關(guān)鍵在于理解

  其本質(zhì)就是

  本節(jié)課的難點(diǎn)確定為:

  要突破這個(gè)難點(diǎn),讓學(xué)生歸納

  作鋪墊。

  四、教法與學(xué)法分析

 。ㄒ唬⿲W(xué)法指導(dǎo)

  教學(xué)矛盾的主要方面是學(xué)生的學(xué)。學(xué)是中心,會(huì)學(xué)是目的。因此在教學(xué)中要不斷指導(dǎo)學(xué)生學(xué)會(huì)學(xué)習(xí)。本節(jié)課主要是教給學(xué)生“動(dòng)手畫(huà)、動(dòng)眼看、動(dòng)腦想、動(dòng)口說(shuō)、善提煉、勤鉆研”的研討式學(xué)習(xí)方法,這樣做增加了學(xué)生自主參與,合作交流的機(jī)會(huì),教給了學(xué)生獲取知識(shí)的途徑、思考問(wèn)題的方法,使學(xué)生真正成了教學(xué)的主體;只有這樣做,才能使學(xué)生“學(xué)”有新“思”,“思”有新“得”,“練”有新“獲”,學(xué)生也才會(huì)逐步感受到數(shù)學(xué)的美,會(huì)產(chǎn)生一種成功感,從而提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣;也只有這樣做,課堂教學(xué)才富有時(shí)代特色,才能適應(yīng)素質(zhì)教育下培養(yǎng)“創(chuàng)新型”人才的需要。

 。ǘ┙谭ǚ治

  本節(jié)課設(shè)計(jì)的指導(dǎo)思想是:現(xiàn)代認(rèn)知心理學(xué)--建構(gòu)主義學(xué)習(xí)理論。

  建構(gòu)主義學(xué)習(xí)理論認(rèn)為:應(yīng)把學(xué)習(xí)看成是學(xué)生主動(dòng)的建構(gòu)活動(dòng),學(xué)生應(yīng)與一定的知識(shí)背景即情景相聯(lián)系,在實(shí)際情景下進(jìn)行學(xué)習(xí),可以使學(xué)生利用已有知識(shí)與經(jīng)驗(yàn)同化和索引出當(dāng)前要學(xué)習(xí)的新知識(shí),這樣獲取的知識(shí),不但便于保持,而且易于遷移到陌生的問(wèn)題情景中。

  本節(jié)課采用“誘思探究教學(xué)法”( 陜西師范大學(xué)教育研究所張熊飛教授)。在課堂教學(xué)中凸顯學(xué)生主體地位的重要性,不再是以教師為中心去設(shè)計(jì)教學(xué)過(guò)程,而是以學(xué)生為主體去組織教學(xué)進(jìn)程。把課堂真正地交給了學(xué)生,學(xué)生主體地位得以實(shí)現(xiàn)。

  五、說(shuō)教學(xué)過(guò)程

  本節(jié)課的教學(xué)設(shè)計(jì)充分體現(xiàn)以學(xué)生發(fā)展為本,培養(yǎng)學(xué)生的觀察、概括和探究能力,遵循學(xué)生的認(rèn)知規(guī)律,體現(xiàn)理論聯(lián)系實(shí)際、循序漸進(jìn)和因材施教的教學(xué)原則,通過(guò)問(wèn)題情境的創(chuàng)設(shè),激發(fā)興趣,使學(xué)生在問(wèn)題解決的探索過(guò)程中,由學(xué)會(huì)走向會(huì)學(xué),由被動(dòng)答題走向主動(dòng)探究。

  (一)創(chuàng)設(shè)情景………………….

 。ǘ┍扰f悟新………………….

 。ㄈw納提煉…………………

 。ㄋ模⿷(yīng)用新知,熟練掌握 …………………

 。ㄎ澹┛偨Y(jié)…………………

 。┳鳂I(yè)布置…………………

  (七)板書(shū)設(shè)計(jì)…………………

  以上是我對(duì)本節(jié)課的一些粗淺的認(rèn)識(shí)和構(gòu)想,如有不妥之處,懇請(qǐng)各位專家批評(píng)指正。謝謝

  著名美國(guó)數(shù)學(xué)家和數(shù)學(xué)教育家波利亞 包括“弄清問(wèn)題”、“擬定計(jì)劃”、“實(shí)現(xiàn)計(jì)劃”和“回顧反思”四大步驟的解題全過(guò)程,它們就好比是尋找和發(fā)現(xiàn)解法的思維過(guò)程進(jìn)行分解,使我們對(duì)解題的思維過(guò)程看得見(jiàn),摸得著,易于操作。精髓是啟發(fā)你去聯(lián)想。聯(lián)想什么?怎樣聯(lián)想?

高中數(shù)學(xué)說(shuō)課稿12

  一、教材分析:

  1、教材的地位與作用:

  線性規(guī)劃是運(yùn)籌學(xué)的一個(gè)重要分支,在實(shí)際生活中有著廣泛的應(yīng)用。本節(jié)內(nèi)容是在學(xué)習(xí)了不等式、直線方程的基礎(chǔ)上,利用不等式和直線方程的有關(guān)知識(shí)展開(kāi)的,它是對(duì)二元一次不等式的深化和再認(rèn)識(shí)、再理解。通過(guò)這一部分的學(xué)習(xí),使學(xué)生進(jìn)一步了解數(shù)學(xué)在解決實(shí)際問(wèn)題中的應(yīng)用,體驗(yàn)數(shù)形結(jié)合和轉(zhuǎn)化的思想方法,培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣、應(yīng)用數(shù)學(xué)的意識(shí)和解決實(shí)際問(wèn)題的能力。

  2、教學(xué)重點(diǎn)與難點(diǎn):

  重點(diǎn):畫(huà)可行域;在可行域內(nèi),用圖解法準(zhǔn)確求得線性規(guī)劃問(wèn)題的最優(yōu)解。

  難點(diǎn):在可行域內(nèi),用圖解法準(zhǔn)確求得線性規(guī)劃問(wèn)題的最優(yōu)解。

  二、目標(biāo)分析:

  在新課標(biāo)讓學(xué)生經(jīng)歷“學(xué)數(shù)學(xué)、做數(shù)學(xué)、用數(shù)學(xué)”的理念指導(dǎo)下,本節(jié)課的教學(xué)目標(biāo)分設(shè)為知識(shí)目標(biāo)、能力目標(biāo)和情感目標(biāo)。

  知識(shí)目標(biāo):

  1、了解線性規(guī)劃的意義,了解線性約束條件、線性目標(biāo)函數(shù)、可行解、可行

  域和最優(yōu)解等概念;

  2、理解線性規(guī)劃問(wèn)題的圖解法;

  3、會(huì)利用圖解法求線性目標(biāo)函數(shù)的最優(yōu)解.

  能力目標(biāo):

  1、在應(yīng)用圖解法解題的過(guò)程中培養(yǎng)學(xué)生的觀察能力、理解能力。

  2、在變式訓(xùn)練的過(guò)程中,培養(yǎng)學(xué)生的分析能力、探索能力。

  3、在對(duì)具體事例的感性認(rèn)識(shí)上升到對(duì)線性規(guī)劃的理性認(rèn)識(shí)過(guò)程中,培養(yǎng)學(xué)生運(yùn)用數(shù)形結(jié)合思想解題的能力和化歸能力。

  情感目標(biāo):

  1、讓學(xué)生體驗(yàn)數(shù)學(xué)來(lái)源于生活,服務(wù)于生活,體驗(yàn)數(shù)學(xué)在建設(shè)節(jié)約型社會(huì)中的作用,品嘗學(xué)習(xí)數(shù)學(xué)的樂(lè)趣。

  2、讓學(xué)生體驗(yàn)數(shù)學(xué)活動(dòng)充滿著探索與創(chuàng)造,培養(yǎng)學(xué)生勤于思考、勇于探索的精神;

  3、讓學(xué)生學(xué)會(huì)用運(yùn)動(dòng)觀點(diǎn)觀察事物,了解事物之間從一般到特殊、從特殊到一般的辨證關(guān)系,滲透辯證唯物主義認(rèn)識(shí)論的思想。

  三、過(guò)程分析:

  數(shù)學(xué)教學(xué)是數(shù)學(xué)活動(dòng)的教學(xué)。因此,我將整個(gè)教學(xué)過(guò)程分為以下六個(gè)教學(xué)環(huán)節(jié):1、創(chuàng)設(shè)情境,提出問(wèn)題;2、分析問(wèn)題,形成概念;3、反思過(guò)程,提煉方法;4、變式演練,深入探究;5、運(yùn)用新知,解決問(wèn)題;6、歸納總結(jié),鞏固提高。

  1、創(chuàng)設(shè)情境,提出問(wèn)題:

  在課堂教學(xué)的開(kāi)始,我以一組生動(dòng)的動(dòng)畫(huà)(配圖片)描述出在神奇的數(shù)學(xué)王國(guó)里,有一種算法廣泛應(yīng)用于工農(nóng)業(yè)、軍事、交通運(yùn)輸、決策管理與規(guī)劃等領(lǐng)域,應(yīng)用它已節(jié)約了億萬(wàn)財(cái)富,還被列為20世紀(jì)對(duì)科學(xué)發(fā)展和工程實(shí)踐影響最大的十大算法之一。它為何有如此大的魅力?它又是怎樣的一種神奇算法呢?我以景激情,以情激思,點(diǎn)燃學(xué)生的求知欲,引領(lǐng)學(xué)生進(jìn)入學(xué)習(xí)情境。

高中數(shù)學(xué)說(shuō)課稿13

  一、說(shuō)教材:

  1. 地位及作用:

  “橢圓及其標(biāo)準(zhǔn)方程”是高中《解析幾何》第二章第七節(jié)內(nèi)容,是本書(shū)的重點(diǎn)內(nèi)容之一,也是歷年高考、會(huì)考的必考內(nèi)容,是在學(xué)完求曲線方程的基礎(chǔ)上,進(jìn)一步研究橢圓的特性,以完成對(duì)圓錐曲線的全面研究,為今后的學(xué)習(xí)打好基礎(chǔ),因此本節(jié)內(nèi)容具有承前啟后的作用。

  2. 教學(xué)目標(biāo):

  根據(jù)《教學(xué)大綱》,《考試說(shuō)明》的要求,并根據(jù)教材的具體內(nèi)容和學(xué)生的實(shí)際情況,確定本節(jié)課的教學(xué)目標(biāo):

  (1)知識(shí)目標(biāo):掌握橢圓的定義和標(biāo)準(zhǔn)方程,以及它們的應(yīng)用。

 。2)能力目標(biāo):

 。╝)培養(yǎng)學(xué)生靈活應(yīng)用知識(shí)的能力。

 。╞) 培養(yǎng)學(xué)生全面分析問(wèn)題和解決問(wèn)題的能力。

 。╟)培養(yǎng)學(xué)生快速準(zhǔn)確的運(yùn)算能力。

 。3)德育目標(biāo):培養(yǎng)學(xué)生數(shù)形結(jié)合思想,類比、分類討論的思想以及確立從感性到理性認(rèn)識(shí)的辯證唯物主義觀點(diǎn)。

  3. 重點(diǎn)、難點(diǎn)和關(guān)鍵點(diǎn):

  因?yàn)闄E圓的定義和標(biāo)準(zhǔn)方程是解決與橢圓有關(guān)問(wèn)題的重要依據(jù),也是研究雙曲線和拋物線的基礎(chǔ),因此,它是本節(jié)教材的重點(diǎn);由于學(xué)生推理歸納能力較低,在推導(dǎo)橢圓的標(biāo)準(zhǔn)方程時(shí)涉及到根式的兩次平方,并且運(yùn)算也較繁,因此它是本節(jié)課的難點(diǎn);坐標(biāo)系建立的好壞直接影響標(biāo)準(zhǔn)方程的推導(dǎo)和化簡(jiǎn),因此建立一個(gè)適當(dāng)?shù)闹苯亲鴺?biāo)系是本節(jié)的關(guān)鍵。

  二、 說(shuō)教材處理

  為了完成本節(jié)課的教學(xué)目標(biāo),突出重點(diǎn)、分散難點(diǎn)、根據(jù)教材的內(nèi)容和學(xué)生的實(shí)際情況,對(duì)教材做以下的處理:

  1.學(xué)生狀況分析及對(duì)策:

  2.教材內(nèi)容的組織和安排:

  本節(jié)教材的處理上按照人們認(rèn)識(shí)事物的規(guī)律,遵循由淺入深,循序漸進(jìn),層層深入的原則組織和安排如下:

 。1)復(fù)習(xí)提問(wèn)(2)引入新課(3)新課講解(4)反饋練習(xí)(5)歸納總結(jié)(6)布置作業(yè)

  三、 說(shuō)教法和學(xué)法

  1.為了充分調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性,是學(xué)生變被動(dòng)學(xué)習(xí)為主動(dòng)而愉快的學(xué)習(xí),引導(dǎo)學(xué)生自己動(dòng)手,讓學(xué)生的思維活動(dòng)在教師的引導(dǎo)下層層展開(kāi)。請(qǐng)學(xué)生參與課堂。加強(qiáng)方程推導(dǎo)的指導(dǎo),是傳授知識(shí)與培養(yǎng)能力有機(jī)的溶為一體,為此,本節(jié)課采用“引導(dǎo)教學(xué)法”。

  2.利用電腦所畫(huà)圖形的動(dòng)態(tài)演示總結(jié)規(guī)律。同時(shí)利用電腦的動(dòng)態(tài)演示激發(fā)學(xué)生的學(xué)習(xí)興趣。

  四、 教學(xué)過(guò)程

  教學(xué)環(huán)節(jié)

  3.設(shè)a(-2,0),b(2,0),三角形abp周長(zhǎng)為10,動(dòng)點(diǎn)p軌跡方程。

  例1屬基礎(chǔ),主要反饋學(xué)生掌握基本知識(shí)的程度。

  例2可強(qiáng)化基本技能訓(xùn)練和基本知識(shí)的靈活運(yùn)用。

  小結(jié)

  為使學(xué)生對(duì)本節(jié)內(nèi)容有一個(gè)完整深刻的認(rèn)識(shí),教師引導(dǎo)學(xué)生從以下幾個(gè)方面進(jìn)行小結(jié)。

  1.橢圓的定義和標(biāo)準(zhǔn)方程及其應(yīng)用。

  2.橢圓標(biāo)準(zhǔn)方程中a,b,c諸關(guān)系。

  3.求橢圓方程常用方法和基本思路。

  通過(guò)小結(jié)形成知識(shí)體系,加深對(duì)本節(jié)知識(shí)的理解培養(yǎng)學(xué)生的歸納總結(jié)能力,增強(qiáng)學(xué)生學(xué)好圓錐曲線的信心。

  布置作業(yè)

 。1) 77頁(yè)——78頁(yè) 1,2,3,79頁(yè) 11

 。2) 預(yù)習(xí)下節(jié)內(nèi)容

  鞏固本節(jié)所學(xué)概念,強(qiáng)化基本技能訓(xùn)練,培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣和品質(zhì),發(fā)現(xiàn)和彌補(bǔ)教學(xué)中的遺漏和不足。

高中數(shù)學(xué)說(shuō)課稿14

  一、教學(xué)內(nèi)容分析

  圓錐曲線的定義反映了圓錐曲線的本質(zhì)屬性,它是無(wú)數(shù)次實(shí)踐后的高度抽象.恰當(dāng)?shù)乩枚x解題,許多時(shí)候能以簡(jiǎn)馭繁.因此,在學(xué)習(xí)了橢圓、雙曲線、拋物線的定義及標(biāo)準(zhǔn)方程、幾何性質(zhì)后,再一次強(qiáng)調(diào)定義,學(xué)會(huì)利用圓錐曲線定義來(lái)熟練的解題”。

  二、學(xué)生學(xué)習(xí)情況分析

  我所任教班級(jí)的學(xué)生參與課堂教學(xué)活動(dòng)的積極性強(qiáng),思維活躍,但計(jì)算能力較差,推理能力較弱,使用數(shù)學(xué)語(yǔ)言的表達(dá)能力也略顯不足。

  三、設(shè)計(jì)思想

  由于這部分知識(shí)較為抽象,如果離開(kāi)感性認(rèn)識(shí),容易使學(xué)生陷入困境,降低學(xué)習(xí)熱情.在教學(xué)時(shí),借助多媒體動(dòng)畫(huà),引導(dǎo)學(xué)生主動(dòng)發(fā)現(xiàn)問(wèn)題、解決問(wèn)題,主動(dòng)參與教學(xué),在輕松愉快的環(huán)境中發(fā)現(xiàn)、獲取新知,提高教學(xué)效率.

  四、教學(xué)目標(biāo)

  1.深刻理解并熟練掌握?qǐng)A錐曲線的定義,能靈活應(yīng)用定義解決問(wèn)題;熟練掌握焦點(diǎn)坐標(biāo)、頂點(diǎn)坐標(biāo)、焦距、離心率、準(zhǔn)線方程、漸近線、焦半徑等概念和求法;能結(jié)合平面幾何的基本知識(shí)求解圓錐曲線的方程。

  2.通過(guò)對(duì)練習(xí),強(qiáng)化對(duì)圓錐曲線定義的理解,提高分析、解決問(wèn)題的能力;通過(guò)對(duì)問(wèn)題的不斷引申,精心設(shè)問(wèn),引導(dǎo)學(xué)生學(xué)習(xí)解題的一般方法。

  3.借助多媒體輔助教學(xué),激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣.

  五、教學(xué)重點(diǎn)與難點(diǎn):

  教學(xué)重點(diǎn)

  1.對(duì)圓錐曲線定義的理解

  2.利用圓錐曲線的定義求“最值”

  3.“定義法”求軌跡方程

  教學(xué)難點(diǎn):

  巧用圓錐曲線定義解題

  六、教學(xué)過(guò)程設(shè)計(jì)

  【設(shè)計(jì)思路】

  (一)開(kāi)門(mén)見(jiàn)山,提出問(wèn)題

  一上課,我就直截了當(dāng)?shù)亟o出——

  例題1:(1) 已知A(-2,0), B(2,0)動(dòng)點(diǎn)M滿足|MA|+|MB|=2,則點(diǎn)M的軌跡是( )。

  (A)橢圓 (B)雙曲線 (C)線段 (D)不存在

  (2)已知?jiǎng)狱c(diǎn) M(x,y)滿足(x1)2(y2)2|3x4y|,則點(diǎn)M的軌跡是( )。

  (A)橢圓 (B)雙曲線 (C)拋物線 (D)兩條相交直線

  【設(shè)計(jì)意圖】

  定義是揭示概念內(nèi)涵的邏輯方法,熟悉不同概念的不同定義方式,是學(xué)習(xí)和研究數(shù)學(xué)的一個(gè)必備條件,而通過(guò)一個(gè)階段的學(xué)習(xí)之后,學(xué)生們對(duì)圓錐曲線的定義已有了一定的認(rèn)識(shí),他們是否能真正掌握它們的本質(zhì),是我本節(jié)課首先要弄清楚的問(wèn)題。

  為了加深學(xué)生對(duì)圓錐曲線定義理解,我以圓錐曲線的定義的運(yùn)用為主線,精心準(zhǔn)備了兩道練習(xí)題。

  【學(xué)情預(yù)設(shè)】

  估計(jì)多數(shù)學(xué)生能夠很快回答出正確答案,但是部分學(xué)生對(duì)于圓錐曲線的定義可能并未真正理解,因此,在學(xué)生們回答后,我將要求學(xué)生接著說(shuō)出:若想答案是其他選項(xiàng)的話,條件要怎么改?這對(duì)于已學(xué)完圓錐曲線這部分知識(shí)的學(xué)生來(lái)說(shuō),并不是什么難事。但問(wèn)題(2)就可能讓學(xué)生們費(fèi)一番周折—— 如果有學(xué)生提出:可以利用變形來(lái)解決問(wèn)題,那么我就可以循著他的思路,先對(duì)原等式做變形:(x1)2(y2)2

  5這樣,很快就能得出正確結(jié)果。如若不然,我將啟發(fā)他們從等式兩端的式子|3x4y|5

  入手,考慮通過(guò)適當(dāng)?shù)淖冃危D(zhuǎn)化為學(xué)生們熟知的兩個(gè)距離公式。

  在對(duì)學(xué)生們的解答做出判斷后,我將把問(wèn)題引申為:該雙曲線的中心坐標(biāo)是 ,實(shí)軸長(zhǎng)為 ,焦距為 。以深化對(duì)概念的理解。

  (二)理解定義、解決問(wèn)題

  例2 (1)已知?jiǎng)訄AA過(guò)定圓B:x2y26x70的圓心,且與定圓C:xy6x910 相內(nèi)切,求△ABC面積的最大值。

  (2)在(1)的條件下,給定點(diǎn)P(-2,2), 求|PA|

  七、教學(xué)反思

  1.本課將借助于“XXX”,將使全體學(xué)生參與活動(dòng)成為可能,使原來(lái)令人難以理解的抽象的數(shù)學(xué)理論變得形象,生動(dòng)且通俗易懂,同時(shí),運(yùn)用“多媒體課件”輔助教學(xué),節(jié)省了板演的時(shí)間,從而給學(xué)生留出更多的時(shí)間自悟、自練、自查,充分發(fā)揮學(xué)生的主體作用,這充分顯示出“多媒體課件”與探究合作式教學(xué)理念的有機(jī)結(jié)合的教學(xué)優(yōu)勢(shì)。

  2.利用兩個(gè)例題及其引申,通過(guò)一題多變,層層深入的探索,以及對(duì)猜測(cè)結(jié)果的檢測(cè)研究,培養(yǎng)學(xué)生思維能力,使學(xué)生從學(xué)會(huì)一個(gè)問(wèn)題的求解到掌握一類問(wèn)題的解決方法. 循序漸進(jìn)的讓學(xué)生把握這類問(wèn)題的解法;將學(xué)生容易混淆的兩類求“最值問(wèn)題”并為一道題,方便學(xué)生進(jìn)行比較、分析。雖然從表面上看,我這一堂課的教學(xué)容量不大,但事實(shí)上,學(xué)生們的思維運(yùn)動(dòng)量并不會(huì)小。

  總之,如何更好地選擇符合學(xué)生具體情況,滿足教學(xué)目標(biāo)的例題與練習(xí)、靈活把握課堂教學(xué)節(jié)奏仍是我今后工作中的一個(gè)重要研究課題.而要能真正進(jìn)行素質(zhì)教育,培養(yǎng)學(xué)生的創(chuàng)新意識(shí),自己首先必須更新觀念——在教學(xué)中適度使用多媒體技術(shù),讓學(xué)生有參與教學(xué)實(shí)踐的機(jī)會(huì),能夠使學(xué)生在學(xué)習(xí)新知識(shí)的同時(shí),激發(fā)起求知的欲望,在尋求解決問(wèn)題的辦法的過(guò)程中獲得自信和成功的體驗(yàn),于不知不覺(jué)中改善了他們的思維品質(zhì),提高了數(shù)學(xué)思維能力。

高中數(shù)學(xué)說(shuō)課稿15

  一、教材分析:

  集合概念及其基本理論,稱為集合論,是近、現(xiàn)代數(shù)學(xué)的一個(gè)重要的基礎(chǔ),一方面,許多重要的數(shù)學(xué)分支,都建立在集合理論的基礎(chǔ)上。另一方面,集合論及其所反映的數(shù)學(xué)思想,在越來(lái)越廣泛的領(lǐng)域種得到應(yīng)用。

  二、目標(biāo)分析:

  教學(xué)重點(diǎn)、難點(diǎn)

  重點(diǎn):集合的含義與表示方法。

  難點(diǎn):表示法的恰當(dāng)選擇。

  教學(xué)目標(biāo)

  l.知識(shí)與技能

  (1)通過(guò)實(shí)例,了解集合的含義,體會(huì)元素與集合的屬于關(guān)系;

  (2)知道常用數(shù)集及其專用記號(hào);

  (3)了解集合中元素的確定性。互異性。無(wú)序性;

 。4)會(huì)用集合語(yǔ)言表示有關(guān)數(shù)學(xué)對(duì)象;

  2. 過(guò)程與方法

 。1)讓學(xué)生經(jīng)歷從集合實(shí)例中抽象概括出集合共同特征的過(guò)程,感知集合的含義。

 。2)讓學(xué)生歸納整理本節(jié)所學(xué)知識(shí)。

  3. 情感、態(tài)度與價(jià)值觀

  使學(xué)生感受到學(xué)習(xí)集合的必要性,增強(qiáng)學(xué)習(xí)的積極性。

  三、教法分析

  1. 教學(xué)方法:學(xué)生通過(guò)閱讀教材,自主學(xué)習(xí)。思考。交流。討論和概括,從而更好地完成本節(jié)課的教學(xué)目標(biāo)。

  2. 教學(xué)手段:在教學(xué)中使用投影儀來(lái)輔助教學(xué)。

  四、過(guò)程分析

  (一)創(chuàng)設(shè)情景,揭示課題

  1、教師首先提出問(wèn)題:

 。1)介紹自己的家庭、原來(lái)就讀的學(xué)校、現(xiàn)在的班級(jí)。

 。2)問(wèn)題:像"家庭"、"學(xué)校"、"班級(jí)"等,有什么共同特征?

  引導(dǎo)學(xué)生互相交流。 與此同時(shí),教師對(duì)學(xué)生的活動(dòng)給予評(píng)價(jià)。

  2.活動(dòng):

 。1)列舉生活中的集合的例子;

  (2)分析、概括各實(shí)例的共同特征

  由此引出這節(jié)要學(xué)的內(nèi)容。

  設(shè)計(jì)意圖:既激發(fā)了學(xué)生濃厚的學(xué)習(xí)興趣,又為新知作好鋪墊

 。ǘ┭刑叫轮,建構(gòu)概念

  1.教師利用多媒體設(shè)備向?qū)W生投影出下面7個(gè)實(shí)例:

 。1)1-20以內(nèi)的所有質(zhì)數(shù);

 。2)我國(guó)古代的四大發(fā)明;

 。3)所有的安理會(huì)常任理事國(guó);

 。4)所有的正方形;

 。5)海南省在20xx年9月之前建成的所有立交橋;

 。6)到一個(gè)角的兩邊距離相等的所有的點(diǎn);

 。7)國(guó)興中學(xué)20xx年9月入學(xué)的高一學(xué)生的全體。

  2.教師組織學(xué)生分組討論:這7個(gè)實(shí)例的共同特征是什么?

  3.每個(gè)小組選出--位同學(xué)發(fā)表本組的討論結(jié)果,在此基礎(chǔ)上,師生共同概括出7個(gè)實(shí)例的特征,并給出集合的含義。

  一般地,指定的某些對(duì)象的全體稱為集合(簡(jiǎn)稱為集)。集合中的每個(gè)對(duì)象叫作這個(gè)集合的元素。

  4.教師指出:集合常用大寫(xiě)字母A,B,C,D,…表示,元素常用小寫(xiě)字母…表示。

  設(shè)計(jì)意圖:通過(guò)實(shí)例讓學(xué)生感受集合的概念,激發(fā)學(xué)習(xí)的興趣,培養(yǎng)學(xué)生樂(lè)于求索的精神

 。ㄈ┵|(zhì)疑答辯,發(fā)展思維

  1.教師引導(dǎo)學(xué)生閱讀教材中的相關(guān)內(nèi)容,思考:集合中元素有什么特點(diǎn)?并注意個(gè)別輔導(dǎo),解答學(xué)生疑難。使學(xué)生明確集合元素的三大特性,即:確定性;ギ愋院蜔o(wú)序性。只要構(gòu)成兩個(gè)集合的元素是一樣的,我們就稱這兩個(gè)集合相等。

  2.教師組織引導(dǎo)學(xué)生思考以下問(wèn)題:

  判斷以下元素的全體是否組成集合,并說(shuō)明理由:

 。1)大于3小于11的偶數(shù);

 。2)我國(guó)的小河流。

  讓學(xué)生充分發(fā)表自己的建解。

  3. 讓學(xué)生自己舉出一些能夠構(gòu)成集合的例子以及不能構(gòu)成集合的例子,并說(shuō)明理由。教師對(duì)學(xué)生的學(xué)習(xí)活動(dòng)給予及時(shí)的評(píng)價(jià)。

  4.教師提出問(wèn)題,讓學(xué)生思考

  (1)如果用A表示高-(3)班全體學(xué)生組成的集合,用表示高一(3)班的一位同學(xué),是高一(4)班的一位同學(xué),那么與集合A分別有什么關(guān)系?由此引導(dǎo)學(xué)生得出元素與集合的關(guān)系有兩種:屬于和不屬于。

  如果是集合A的元素,就說(shuō)屬于集合A,記作。

  如果不是集合A的元素,就說(shuō)不屬于集合A,記作。

 。2)如果用A表示"所有的安理會(huì)常任理事國(guó)"組成的集合,則中國(guó)。日本與集合A的關(guān)系分別是什么?請(qǐng)用數(shù)學(xué)符號(hào)分別表示。

 。3)讓學(xué)生完成教材第6頁(yè)練習(xí)第1題。

  5.教師引導(dǎo)學(xué)生回憶數(shù)集擴(kuò)充過(guò)程,然后閱讀教材中的相交內(nèi)容,寫(xiě)出常用數(shù)集的記號(hào)。并讓學(xué)生完成習(xí)題1.1A組第1題。

  6.教師引導(dǎo)學(xué)生閱讀教材中的相關(guān)內(nèi)容,并思考。討論下列問(wèn)題:

 。1)要表示一個(gè)集合共有幾種方式?

  (2)試比較自然語(yǔ)言。列舉法和描述法在表示集合時(shí),各自有什么特點(diǎn)?適用的對(duì)象是什么?

 。3)如何根據(jù)問(wèn)題選擇適當(dāng)?shù)募媳硎痉ǎ?/p>

  使學(xué)生弄清楚三種表示方式的優(yōu)缺點(diǎn)和體會(huì)它們存在的必要性和適用對(duì)象。

  設(shè)計(jì)意圖:明確集合元素的三大特性,使學(xué)生弄清楚三種表示方式的優(yōu)缺點(diǎn),從而突破難點(diǎn)。

 。ㄋ模╈柟躺罨答伋C正

  教師投影學(xué)習(xí):

 。1)用自然語(yǔ)言描述集合{1,3,5,7,9};

 。2)用例舉法表示集合

 。3)試選擇適當(dāng)?shù)姆椒ū硎鞠铝屑希航滩牡?頁(yè)練習(xí)第2題。

  設(shè)計(jì)意圖:使學(xué)生及時(shí)鞏固所學(xué)新知,體會(huì)三種表示方式存在的必要性和適用對(duì)象(五)歸納小結(jié),布置作業(yè)

  小結(jié):在師生互動(dòng)中,讓學(xué)生了解或體會(huì)下例問(wèn)題:

  1.本節(jié)課我們學(xué)習(xí)了哪些知識(shí)內(nèi)容?

  2.你認(rèn)為學(xué)習(xí)集合有什么意義?

  3.選擇集合的表示法時(shí)應(yīng)注意些什么?

  設(shè)計(jì)意圖:通過(guò)回顧,對(duì)概念的發(fā)生與發(fā)展過(guò)程有清晰的認(rèn)識(shí),回顧集合元素的三大特性及集合的三種表示方式。

  作業(yè):

  1.課后書(shū)面作業(yè):第13頁(yè)習(xí)題1.1A組第4題。

  2. 元素與集合的關(guān)系有多少種?如何表示?類似地集合與集合間的關(guān)系又有多少種呢?如何表示?請(qǐng)同學(xué)們通過(guò)預(yù)習(xí)教材。

【高中數(shù)學(xué)說(shuō)課稿】相關(guān)文章:

高中數(shù)學(xué)的說(shuō)課稿11-04

高中數(shù)學(xué)經(jīng)典說(shuō)課稿范文06-24

高中數(shù)學(xué)集合說(shuō)課稿11-12

高中數(shù)學(xué)面試說(shuō)課稿11-18

高中數(shù)學(xué)《集合》說(shuō)課稿10-31

高中數(shù)學(xué)函數(shù)的說(shuō)課稿11-17

高中數(shù)學(xué)的說(shuō)課稿范文04-29

高中數(shù)學(xué)說(shuō)課稿05-01

高中數(shù)學(xué)說(shuō)課稿06-09

高中數(shù)學(xué)的優(yōu)秀說(shuō)課稿12-04