国产激情久久久久影院小草_国产91高跟丝袜_99精品视频99_三级真人片在线观看

高中數(shù)學(xué)說(shuō)課稿

時(shí)間:2022-11-21 16:45:21 高中說(shuō)課稿 我要投稿

高中數(shù)學(xué)說(shuō)課稿(通用15篇)

  作為一名老師,常常要寫(xiě)一份優(yōu)秀的說(shuō)課稿,借助說(shuō)課稿可以有效提升自己的教學(xué)能力。優(yōu)秀的說(shuō)課稿都具備一些什么特點(diǎn)呢?以下是小編收集整理的高中數(shù)學(xué)說(shuō)課稿,供大家參考借鑒,希望可以幫助到有需要的朋友。

高中數(shù)學(xué)說(shuō)課稿(通用15篇)

高中數(shù)學(xué)說(shuō)課稿1

  一、教材分析

  1、教材地位和作用

  二面角及其平面角的概念是立體幾何最重要的概念之一。二面角的概念發(fā)展、完善了空間角的概念;而二面角的平面角不但定量描述了兩相交平面的相對(duì)位置,同時(shí)它也是空間中線線、線面、面面垂直關(guān)系的一個(gè)匯集點(diǎn)。搞好本節(jié)課的學(xué)習(xí),對(duì)學(xué)生系統(tǒng)地掌握直線和平面的知識(shí)乃至于創(chuàng)新能力的培養(yǎng)都具有十分重要的意義。教學(xué)大綱明確要求要讓學(xué)生掌握二面角及其平面角的概念和運(yùn)用。

  2、教學(xué)目標(biāo)

  根據(jù)上面對(duì)教材的分析,并結(jié)合學(xué)生的認(rèn)知水平和思維特點(diǎn),確定本節(jié)課的教學(xué)目標(biāo):

  認(rèn)知目標(biāo):

  (1)使學(xué)生正確理解二面角及其平面角的概念,并能初步運(yùn)用它們解決實(shí)際問(wèn)題。

 。2)進(jìn)一步培養(yǎng)學(xué)生把空間問(wèn)題轉(zhuǎn)化為平面問(wèn)題的化歸思想。

  能力目標(biāo):以培養(yǎng)學(xué)生的創(chuàng)新能力和動(dòng)手能力為重點(diǎn)。

  (1)突出對(duì)類比、直覺(jué)、發(fā)散等探索性思維的培養(yǎng),從而提高學(xué)生的創(chuàng)新能力。

 。2)通過(guò)對(duì)圖形的觀察、分析、比較和操作來(lái)強(qiáng)化學(xué)生的動(dòng)手操作能力。

  教育目標(biāo):

  (1)使學(xué)生認(rèn)識(shí)到數(shù)學(xué)知識(shí)來(lái)自實(shí)踐,并服務(wù)于實(shí)踐,從而增強(qiáng)學(xué)生應(yīng)用數(shù)學(xué)的意識(shí)。

  (2)通過(guò)揭示線線、線面、面面之間的內(nèi)在聯(lián)系,進(jìn)一步培養(yǎng)學(xué)生聯(lián)系的辯證唯物主義觀點(diǎn)。

  3、本節(jié)課教學(xué)的重、難點(diǎn)是兩個(gè)過(guò)程的教學(xué):

 。1)二面角的平面角概念的形成過(guò)程。

  (2)尋找二面角的平面角的方法的發(fā)現(xiàn)過(guò)程。

  其理由如下:

 。1)現(xiàn)行教材省略了概念的形成過(guò)程和方法的發(fā)現(xiàn)過(guò)程,沒(méi)有反映出科學(xué)認(rèn)識(shí)產(chǎn)生的辯證過(guò)程,與學(xué)生的認(rèn)知規(guī)律相悖,給學(xué)生的學(xué)習(xí)造成了很大的困難,非常不利于學(xué)生創(chuàng)新能力、獨(dú)立思考能力以及動(dòng)手能力的培養(yǎng)。

 。2)現(xiàn)代認(rèn)知學(xué)認(rèn)為,揭示知識(shí)的形成過(guò)程,對(duì)學(xué)生學(xué)習(xí)新知識(shí)是十分必要的。同時(shí)通過(guò)展現(xiàn)知識(shí)的發(fā)生、發(fā)展過(guò)程,給學(xué)生思考、探索、發(fā)現(xiàn)和創(chuàng)新提供了最大的空間,可以使學(xué)生在整個(gè)教學(xué)過(guò)程中始終處于積極的思維狀態(tài),進(jìn)而培養(yǎng)他們獨(dú)立思考和大膽求索的精神,這樣才能全面落實(shí)本節(jié)課的教學(xué)目標(biāo)。

  二、指導(dǎo)思想和教學(xué)方法

  在設(shè)計(jì)本教學(xué)時(shí),主要貫徹了以下兩個(gè)思想:

  1、樹(shù)立以學(xué)生發(fā)展為本的思想。通過(guò)構(gòu)建以學(xué)習(xí)者為中心、有利于學(xué)生主體精神、創(chuàng)新能力健康發(fā)展的寬松的教學(xué)環(huán)境,提供學(xué)生自主探索和動(dòng)手操作的機(jī)會(huì),鼓勵(lì)他們創(chuàng)新思考,親身參與概念和方法的形成過(guò)程。2、堅(jiān)持協(xié)同創(chuàng)新原則。把教材創(chuàng)新、教法創(chuàng)新以及學(xué)法創(chuàng)新有機(jī)地統(tǒng)一起來(lái),因?yàn)橹挥薪處焺?chuàng)新地教,學(xué)生創(chuàng)新地學(xué),才能營(yíng)建一個(gè)有利于創(chuàng)新能力培養(yǎng)的良好環(huán)境。

  首先是教材創(chuàng)新。

  (1)在二面角的平面角概念引入上,我變課本上的“直接給出定義”為“類比——猜想——操作——定義”,也就是變封閉的、邏輯演繹體系為開(kāi)放的、探索性的發(fā)現(xiàn)過(guò)程。

 。2)在引入定義之后,例題講解之前,引導(dǎo)學(xué)生發(fā)現(xiàn)尋找二面角的平面角的方法,為例題做好鋪墊。

  (3)重新編排例題。

  其次是教法創(chuàng)新。采用多種創(chuàng)新的教學(xué)方法,包括問(wèn)題解決法、類比發(fā)現(xiàn)法、研究發(fā)現(xiàn)法等教學(xué)方法。

  這組教學(xué)方法的特點(diǎn)是教師通過(guò)創(chuàng)設(shè)問(wèn)題情境,引導(dǎo)學(xué)生逐步發(fā)現(xiàn)知識(shí)的形成過(guò)程,使教學(xué)活動(dòng)真正建立在學(xué)生自主活動(dòng)和探索的基礎(chǔ)上,著力培養(yǎng)學(xué)生的創(chuàng)新能力。

  這組教學(xué)方法使得學(xué)生在解決問(wèn)題的過(guò)程中學(xué)數(shù)學(xué),用數(shù)學(xué),不僅強(qiáng)調(diào)動(dòng)腦思考,而且強(qiáng)調(diào)動(dòng)手操作,親身體驗(yàn),注重多感官參與、多種心理能力的投入,通過(guò)學(xué)生全面、多樣的主體實(shí)踐活動(dòng),促進(jìn)他們獨(dú)立思考能力、動(dòng)手能力等多方面素質(zhì)的整體發(fā)展。

  教學(xué)手段的現(xiàn)代化有利于提高課堂效益,有利于創(chuàng)新人才的培養(yǎng),根據(jù)本節(jié)課的教學(xué)需要,確定利用《幾何畫(huà)板》制作課件來(lái)輔助教學(xué);此外,為加強(qiáng)直觀教學(xué),教師可預(yù)先做好一些模型。

  最后是學(xué)法創(chuàng)新。意在指導(dǎo)學(xué)生會(huì)創(chuàng)新地學(xué)。

  1、樂(lè)學(xué):在整個(gè)學(xué)習(xí)過(guò)程中學(xué)生要保持強(qiáng)烈的好奇心和求知欲,不斷強(qiáng)化自己的創(chuàng)新意識(shí),全身心地投入到學(xué)習(xí)中去,成為學(xué)習(xí)的主人。

  2、學(xué)會(huì):在掌握基礎(chǔ)知識(shí)的同時(shí),學(xué)生要注意領(lǐng)會(huì)化歸、類比聯(lián)想等數(shù)學(xué)思想方法的運(yùn)用,學(xué)會(huì)建立完善的認(rèn)知結(jié)構(gòu)。

  3、會(huì)學(xué):通過(guò)自已親身參與,學(xué)生要領(lǐng)會(huì)復(fù)習(xí)類比和深入研究這兩種知識(shí)創(chuàng)新的方法,從而既學(xué)到知識(shí),又學(xué)會(huì)創(chuàng)新。

  三、程序安排

  (一)、二面角

  1、揭示概念產(chǎn)生背景。

  心理學(xué)研究表明,當(dāng)學(xué)生明確數(shù)學(xué)概念的學(xué)習(xí)目的和意義時(shí),就會(huì)對(duì)概念的學(xué)習(xí)產(chǎn)生濃厚的興趣。創(chuàng)設(shè)問(wèn)題情境,激發(fā)了學(xué)生的創(chuàng)新意識(shí),營(yíng)造了創(chuàng)新思維的氛圍。

  問(wèn)題情境1、我們是如何定量研究?jī)善叫衅矫娴南鄬?duì)位置的?

  問(wèn)題情境2、立幾中常用距離和角來(lái)定量描述兩個(gè)元素之間的相對(duì)位置,為什么不引入兩平行平面所成的角?

  問(wèn)題情境3、我們應(yīng)如何定量研究?jī)蓚(gè)相交平面之間的相對(duì)位置呢?

  通過(guò)這三個(gè)問(wèn)題,打開(kāi)了學(xué)生的原有認(rèn)知結(jié)構(gòu),為知識(shí)的創(chuàng)新做好了準(zhǔn)備;同時(shí)也讓學(xué)生領(lǐng)會(huì)到,二面角這一概念的產(chǎn)生是因?yàn)檠芯績(jī)上嘟黄矫娴南鄬?duì)位置的需要,從而明確新課題研究的必要性,觸發(fā)學(xué)生積極思維活動(dòng)的展開(kāi)。

  2、展現(xiàn)概念形成過(guò)程。

高中數(shù)學(xué)說(shuō)課稿2

  尊敬的各位評(píng)委、各位老師大家好!我說(shuō)課的題目是《直線的點(diǎn)斜式方程》,選自人民教育出版社普通高中課程標(biāo)準(zhǔn)試驗(yàn)教科書(shū)數(shù)學(xué)必修2(A版),是第三章直線與方程中的第2節(jié)的第一課時(shí)3.2.1直線的點(diǎn)斜式方程的內(nèi)容。下面我將從教學(xué)背景、教學(xué)方法、教學(xué)過(guò)程及教學(xué)特點(diǎn)等四個(gè)方面具體說(shuō)明。

  一、教學(xué)背景的分析

  1.教材分析

  直線的方程是學(xué)生在初中學(xué)習(xí)了一次函數(shù)的概念和圖象及高中學(xué)習(xí)了直線的斜率后進(jìn)行研究的。直線的方程屬于解析幾何學(xué)的基礎(chǔ)知識(shí),是研究解析幾何學(xué)的開(kāi)始,對(duì)后續(xù)研究?jī)蓷l直線的位置關(guān)系、圓的方程、直線與圓的位置關(guān)系、圓錐曲線等內(nèi)容,無(wú)論在知識(shí)上還是方法上都是地位顯要,作用非同尋常,是本章的重點(diǎn)內(nèi)容之一!爸本的點(diǎn)斜式方程”可以說(shuō)是直線的方程的形式中最重要、最基本的形式,在此花多大的時(shí)間和精力都不為過(guò)。直線作為常見(jiàn)的最簡(jiǎn)單的曲線,在實(shí)際生活和生產(chǎn)實(shí)踐中有著廣泛的應(yīng)用。同時(shí)在這一節(jié)中利用坐標(biāo)法來(lái)研究曲線的數(shù)形結(jié)合、幾何直觀等數(shù)學(xué)思想將貫穿于我們整個(gè)高中數(shù)學(xué)教學(xué)。

  2.學(xué)情分析

  我校的生源較差,學(xué)生的基礎(chǔ)和學(xué)習(xí)習(xí)慣都有待加強(qiáng)。又由于剛開(kāi)始學(xué)習(xí)解析幾何,第一次用坐標(biāo)法來(lái)求曲線的方程,在學(xué)習(xí)過(guò)程中,會(huì)出現(xiàn)“數(shù)”與“形”相互轉(zhuǎn)化的困難。另外我校學(xué)生在探究問(wèn)題的能力,合作交流的意識(shí)等方面更有待加強(qiáng)。

  根據(jù)上述教材分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)和心理特征,我制定如下教學(xué)目標(biāo):

  3.教學(xué)目標(biāo)

  (1)了解直線的方程的概念和直線的點(diǎn)斜式方程的推導(dǎo)過(guò)程及方法;

  (2)明確點(diǎn)斜式、斜截式方程的形式特點(diǎn)和適用范圍;初步學(xué)會(huì)準(zhǔn)確地使用直線的點(diǎn)斜式、斜截式方程 ;

  (3)從實(shí)例入手,通過(guò)類比、推廣、特殊化等,使學(xué)生體會(huì)從特殊到一般再到特殊的認(rèn)知規(guī)律;

  (4)提倡學(xué)生用舊知識(shí)解決新問(wèn)題,通過(guò)體會(huì)直線的斜截式方程與一次函數(shù)的關(guān)系等活動(dòng),培養(yǎng)學(xué)生主動(dòng)探究知識(shí)、合作交流的意識(shí),并初步了解數(shù)形結(jié)合在解析幾何中的應(yīng)用。

  4. 教學(xué)重點(diǎn)與難點(diǎn)

  (1)重點(diǎn): 直線點(diǎn)斜式、斜截式方程的特點(diǎn)及其初步應(yīng)用。

  (2)難點(diǎn):直線的方程的概念,點(diǎn)斜式方程的推導(dǎo)及點(diǎn)斜式、斜截式方程的應(yīng)用。

  二、教法學(xué)法分析

  1.教法分析:根據(jù)學(xué)情,為了能調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性,本節(jié)課采用“實(shí)例引導(dǎo)的啟發(fā)式”問(wèn)題教學(xué)法。幫助學(xué)生將幾何問(wèn)題代數(shù)化,用代數(shù)的語(yǔ)言描述直線的幾何要素及其關(guān)系,進(jìn)而將直線的問(wèn)題轉(zhuǎn)化為直線方程的問(wèn)題,通過(guò)對(duì)直線的方程的研究,最終解決有關(guān)直線的一些簡(jiǎn)單的問(wèn)題。另外可以恰當(dāng)?shù)睦枚嗝襟w課件進(jìn)行輔助教學(xué),激發(fā)學(xué)生的學(xué)習(xí)興趣。

  2.學(xué)法分析:學(xué)生從問(wèn)題中嘗試、總結(jié)、質(zhì)疑、運(yùn)用,體會(huì)學(xué)習(xí)數(shù)學(xué)的樂(lè)趣;通過(guò)推導(dǎo)直線的點(diǎn)斜式方程的學(xué)習(xí),要了解用坐標(biāo)法求方程的思想;通過(guò)一個(gè)點(diǎn)和方向可以確定一條直線,進(jìn)而可求出直線的點(diǎn)斜式方程,要能體會(huì)“形”與“數(shù)”的轉(zhuǎn)化思想。

  下面我就對(duì)具體的教學(xué)過(guò)程和設(shè)計(jì)加以說(shuō)明:

  三、教學(xué)過(guò)程的設(shè)計(jì)及實(shí)施

  整個(gè)教學(xué)過(guò)程是由六個(gè)問(wèn)題組成,共分為四個(gè)環(huán)節(jié),學(xué)習(xí)或涉及四個(gè)概念:

  溫故知新,澄清概念----直線的方程

  深入探究,獲得新知--------點(diǎn)斜式

  拓展知識(shí),再獲新知--------斜截式

  小結(jié)引申,思維延續(xù)--------兩點(diǎn)式

  平面上的點(diǎn)可以用坐標(biāo)表示,直線的傾斜程度可以用斜率表示,那么平面上的直線如何表示呢?這就是本節(jié)要學(xué)習(xí)的內(nèi)容。

  (一)溫故知新,澄清概念----直線的方程

  問(wèn)題一:畫(huà)出一次函數(shù)y=2x+1的圖象;y=2x+1是一個(gè)方程嗎?若是,那么方程的解與圖象上的點(diǎn)的坐標(biāo)有何關(guān)系?

  [學(xué)生活動(dòng)] 通過(guò)動(dòng)手畫(huà)圖,思考并嘗試用語(yǔ)言進(jìn)行初步的表述。

  [教師活動(dòng)] 對(duì)于不同學(xué)生的表述進(jìn)行分析、歸納,用規(guī)范的語(yǔ)言對(duì)方程和直線的方程進(jìn)行描述。

  [設(shè)計(jì)意圖]從學(xué)生熟知的舊知識(shí)出發(fā)澄清直線的方程的概念,試圖做到“用學(xué)生已有的數(shù)學(xué)知識(shí)去學(xué)數(shù)學(xué)”,從而突破難點(diǎn)。通過(guò)對(duì)這個(gè)問(wèn)題的研究,一方面認(rèn)識(shí)到以方程的解為坐標(biāo)的點(diǎn)在直線上,另一方面認(rèn)識(shí)到直線上的點(diǎn)的坐標(biāo)滿足方程;從而使同學(xué)意識(shí)到直線可以由直線上任意一點(diǎn)P(x,y)的坐標(biāo)x和y之間的等量關(guān)系來(lái)表示。

  問(wèn)題二:若直線經(jīng)過(guò)點(diǎn)A(-1, 3),斜率為-2,點(diǎn)P在直線l上。

  (1) 若點(diǎn)P在直線l上從A點(diǎn)開(kāi)始運(yùn)動(dòng),橫坐標(biāo)增加1時(shí),點(diǎn)P的坐標(biāo)是 ;

  (2)畫(huà)出直線l,你能求出直線l的方程嗎?

  (3)若點(diǎn)P在直線l上運(yùn)動(dòng),設(shè)P點(diǎn)的坐標(biāo)為(x,y),你會(huì)有什么方法找到x,y滿足的關(guān)系式?

  [學(xué)生活動(dòng)]學(xué)生獨(dú)立思考5分鐘,必要的話可進(jìn)行分組討論、合作交流。

  [教師活動(dòng)]巡視?隙▽W(xué)生的各種方法及大膽嘗試的行為;并引導(dǎo)學(xué)生觀察發(fā)現(xiàn),得到當(dāng)點(diǎn)P在直線l上運(yùn)動(dòng)時(shí)(除點(diǎn) A外),點(diǎn)P與定點(diǎn)A(-1, 3)所確定的直線的斜率恒等于-2,體會(huì)“動(dòng)中有靜”的思維策略。

  [設(shè)計(jì)意圖]復(fù)習(xí)斜率公式;待定系數(shù)法;初步體會(huì)坐標(biāo)法。同時(shí)引導(dǎo)學(xué)生注意為什么要把分式化簡(jiǎn)?(若不化簡(jiǎn),就少一點(diǎn)),感受數(shù)學(xué)簡(jiǎn)潔的美感和嚴(yán)謹(jǐn)性。還要指出這樣的事實(shí):當(dāng)點(diǎn)P在直線l上運(yùn)動(dòng)時(shí),P的坐標(biāo)(x,y)滿足方程2x+y-1=0.反過(guò)來(lái),以方程2x+y-1=0的解為坐標(biāo)的點(diǎn)在直線l上。把學(xué)生的思維引到用坐標(biāo)法研究直線的方程上來(lái),此時(shí)再把問(wèn)題深入,進(jìn)入第二環(huán)節(jié)。

  (二)深入探究,獲得新知----點(diǎn)斜式

  問(wèn)題三: ① 若直線l經(jīng)過(guò)點(diǎn)P0(x0,y0),且斜率為k,求直線l的方程。

  ②直線的點(diǎn)斜式方程能否表示經(jīng)過(guò)P0(x0,y0)的所有直線?

  [學(xué)生活動(dòng)] ①學(xué)生敘述,老師板書(shū),強(qiáng)調(diào)斜率公式與點(diǎn)斜式的區(qū)別。 ②指導(dǎo)學(xué)生用筆轉(zhuǎn)一轉(zhuǎn)不難發(fā)現(xiàn),當(dāng)直線l的傾斜角α=90°時(shí),斜率k不存在,當(dāng)然不存在點(diǎn)斜式方程;討論k=0的情況;觀察并總結(jié)點(diǎn)斜式方程的特征。

  [設(shè)計(jì)意圖] 由特殊到一般的學(xué)習(xí)思路,突破難點(diǎn),培養(yǎng)學(xué)生的歸納概括能力。通過(guò)對(duì)這個(gè)問(wèn)題的探究使學(xué)生獲得直線點(diǎn)斜式方程;由②知:當(dāng)直線斜率k不存在時(shí),不能用點(diǎn)斜式方程表示直線,培養(yǎng)思維的嚴(yán)謹(jǐn)性,這時(shí)直線l與y軸平行,它上面的每一點(diǎn)的橫坐標(biāo)都等于x0,直線l的方程是:x=x0;通過(guò)學(xué)生的觀察討論總結(jié),明確點(diǎn)斜式方程的形式特點(diǎn)和適用范圍,通過(guò)下面的例題和基礎(chǔ)練習(xí),突破重難點(diǎn)。

  問(wèn)題四:分別求經(jīng)過(guò)點(diǎn)且滿足下列條件的直線的方程

  (1) 斜率;(2)傾斜角; (3)與軸平行 ;(4)與軸垂直。

  [練習(xí)]P95.1、2。

  [學(xué)生活動(dòng)]學(xué)生獨(dú)立完成并展示或敘述,老師點(diǎn)評(píng)。

  [設(shè)計(jì)意圖]充分用好教材的例題和習(xí)題,因?yàn)檫@些題都是專家精心編排的,充分體現(xiàn)必要性及合理性;做到及時(shí)反饋,便于反思本環(huán)節(jié)的教學(xué),指導(dǎo)下個(gè)環(huán)節(jié)的安排;突破重點(diǎn)內(nèi)容后,進(jìn)入第三環(huán)節(jié)。

  (三)拓展知識(shí),再獲新知----斜截式

  問(wèn)題五:(1)一條直線與y軸交于點(diǎn)(0,3),直線的斜率為2,求這條直線的方程。

  (2)若直線l斜率為k,且與y軸的交點(diǎn)是 P(0,b),求直線l的方程。

  [學(xué)生活動(dòng)]學(xué)生獨(dú)立完成后口述,教師板書(shū)。

  [設(shè)計(jì)意圖] 由一般到特殊再到一般,培養(yǎng)學(xué)生的推理能力,同時(shí)引出截距的概念及斜截式方程,強(qiáng)調(diào)截距不是距離。類比點(diǎn)斜式明確斜截式方程的形式特點(diǎn)和適用范圍及幾何意義,并討論其與一次函數(shù)的關(guān)系。通過(guò)下面的基礎(chǔ)練習(xí),突破重點(diǎn)。

  [練習(xí)]P95.3。

  [設(shè)計(jì)意圖]充分用好教材習(xí)題,及時(shí)反饋本環(huán)節(jié)的教學(xué)情況,指導(dǎo)下個(gè)環(huán)節(jié)的安排。

  (四)小結(jié)引申,思維延續(xù)----兩點(diǎn)式

  課堂小結(jié) 1、有哪些收獲?(點(diǎn)斜式方程:;斜截式方程:;求直線方程的方法:公式法、等斜率法、待定系數(shù)法。)

  2、哪些地方還沒(méi)有學(xué)好?

  問(wèn)題六:(1)直線l過(guò)(1,0)點(diǎn),且與直線平行,求直線l的方程。

  (2)直線l過(guò)點(diǎn)(2,-1)和點(diǎn)(3,-3),求直線l的方程。

  [學(xué)生活動(dòng)]學(xué)生獨(dú)立思考并嘗試自主完成,可以相互討論,探討解題思路。

  [教師活動(dòng)]教師深入學(xué)生中,與學(xué)生交流,了解學(xué)生思考問(wèn)題的進(jìn)展過(guò)程,有時(shí)間的話,可以讓學(xué)生口述解題思路,也可以投影學(xué)生的證明過(guò)程,糾正出現(xiàn)的錯(cuò)誤,規(guī)范書(shū)寫(xiě)的格式;沒(méi)時(shí)間就布置分層作業(yè)。

  [設(shè)計(jì)意圖](1)小題與上一節(jié)的平行綜合,學(xué)生應(yīng)該有思路求出方程;(2)小題解決方法較多,預(yù)設(shè)有利用公式法、等斜率法、待定系數(shù)法,讓好一點(diǎn)的學(xué)生有一些發(fā)散思維的機(jī)會(huì),以及課后學(xué)習(xí)的空間,使探究氣氛有一點(diǎn)高潮。另外也為下節(jié)課研究直線的兩點(diǎn)式方程作了重要的準(zhǔn)備。

  分層作業(yè) 必做題:P100.A組:1.(1)(2)(3)、5.

  選做題:P100.A組:1.(4)(5)(6).

  [設(shè)計(jì)意圖]通過(guò)分層作業(yè),做到因材施教,使不同的學(xué)生在數(shù)學(xué)上得到不同的發(fā)展,讓每一個(gè)學(xué)生都得到符合自身實(shí)踐的感悟,使不同層次的學(xué)生都可以獲得成功的喜悅,看到自己的潛能,從而激發(fā)學(xué)生飽滿的學(xué)習(xí)興趣,促進(jìn)學(xué)生自主發(fā)展。

  四、教學(xué)特點(diǎn)分析

  (一)實(shí)例引導(dǎo)。在字母運(yùn)算、公式推導(dǎo)之前,總是用實(shí)例作為鋪墊,使學(xué)生有學(xué)習(xí)知識(shí)的可能和興趣,關(guān)注學(xué)困生的成長(zhǎng)與發(fā)展。

  (二)啟發(fā)式教學(xué)。教學(xué)中總是以提問(wèn)的方式敘述所學(xué)內(nèi)容,如:1.直角坐標(biāo)系內(nèi)的所有直線都有點(diǎn)斜式方程嗎?2.截距是距離嗎?它可以是負(fù)數(shù)嗎?3.你會(huì)求直線在軸上的截距嗎?4.觀察方程 ,它的形式具有什么特點(diǎn)?它與我們學(xué)過(guò)的一次函數(shù)有什么關(guān)系?等等。啟發(fā)學(xué)生的思維,作好與學(xué)生的對(duì)話與交流活動(dòng)。

  (三)注重自主探究。設(shè)計(jì)問(wèn)題鏈,環(huán)環(huán)相扣,使學(xué)生的探究活動(dòng)貫穿始終。教師總是站在學(xué)生思維的最近發(fā)展區(qū)上,布設(shè)了由淺入深的學(xué)習(xí)環(huán)境突破重點(diǎn)、難點(diǎn),引導(dǎo)學(xué)生逐步發(fā)現(xiàn)知識(shí)的形成過(guò)程。設(shè)計(jì)了兩次思維發(fā)散點(diǎn),分別是問(wèn)題二和問(wèn)題六的第(2)問(wèn),要求學(xué)生分組討論,合作交流,為學(xué)生創(chuàng)造充分的探究空間,學(xué)生在交流成果的過(guò)程中,高效的完成教學(xué)任務(wù)。

高中數(shù)學(xué)說(shuō)課稿3

  各位評(píng)委老師好:今天我說(shuō)課的題目是

  是必修章第節(jié)的內(nèi)容,我將以新課程標(biāo)準(zhǔn)的理念指導(dǎo)本節(jié)課的教學(xué),從教材分析,教法學(xué)法,教學(xué)過(guò)程,教學(xué)評(píng)價(jià)四個(gè)方面加以說(shuō)明。

  一、 教材分析

  是在學(xué)習(xí)了基礎(chǔ)上進(jìn)一步研究 并為后面學(xué)習(xí) 做準(zhǔn)備,在整個(gè)

  高中數(shù)學(xué)中起著承上啟下的作用,因此本節(jié)內(nèi)容十分重要。

  根據(jù)新課標(biāo)要求和學(xué)生實(shí)際水平我制定以下教學(xué)目標(biāo)

  1、 知識(shí)能力目標(biāo):使學(xué)生理解掌握

  2、 過(guò)程方法目標(biāo):通過(guò)觀察歸納抽象概括使學(xué)生構(gòu)建領(lǐng)悟 數(shù)學(xué)思想,培養(yǎng) 能力

  3、 情感態(tài)度價(jià)值觀目標(biāo):通過(guò)學(xué)習(xí)體驗(yàn)數(shù)學(xué)的科學(xué)價(jià)值和應(yīng)用價(jià)值,培養(yǎng)善于

  觀察勇于思考的學(xué)習(xí)習(xí)慣和嚴(yán)謹(jǐn) 的科學(xué)態(tài)度

  根據(jù)教學(xué)目標(biāo)、本節(jié)特點(diǎn)和學(xué)生實(shí)際情況本節(jié)重點(diǎn)是 ,由于學(xué)生對(duì) 缺少感性認(rèn)識(shí),所以本節(jié)課的重點(diǎn)是

  二、教法學(xué)法

  根據(jù)教師主導(dǎo)地位和學(xué)生主體地位相統(tǒng)一的規(guī)律,我采用引導(dǎo)發(fā)現(xiàn)法為本節(jié)課的主要教學(xué)方法并借助多媒體為輔助手段。在教師點(diǎn)撥下,學(xué)生自主探索、合作交流來(lái)尋求解決問(wèn)題的方法。

  三、 教學(xué)過(guò)程

  四、 教學(xué)程序及設(shè)想

  1、由……引入:

  把教學(xué)內(nèi)容轉(zhuǎn)化為具有潛在意義的問(wèn)題,讓學(xué)生產(chǎn)生強(qiáng)烈的問(wèn)題意識(shí),使學(xué)生的整個(gè)學(xué)習(xí)過(guò)程成為“猜想”,繼而緊張地沉思,期待尋找理由和證明過(guò)程。 在實(shí)際情況下進(jìn)行學(xué)習(xí),可以使學(xué)生利用已有知識(shí)與經(jīng)驗(yàn),同化和索引出當(dāng)前學(xué)習(xí)的新知識(shí),這樣獲取的知識(shí),不但易于保持,而且易于遷移到陌生的問(wèn)題情境中。

  對(duì)于本題:……

  2、由實(shí)例得出本課新的知識(shí)點(diǎn)是:……

  3、講解例題。

  我們?cè)谥v解例題時(shí),不僅在于怎樣解,更在于為什么這樣解,而及時(shí)對(duì)解題方法和規(guī)律進(jìn)行概括,有利于發(fā)展學(xué)生的思維能力。在題中:

  4、能力訓(xùn)練。

  課后練習(xí)……

  使學(xué)生能鞏固羨慕自覺(jué)運(yùn)用所學(xué)知識(shí)與解題思想方法。

  5、總結(jié)結(jié)論,強(qiáng)化認(rèn)識(shí)。

  知識(shí)性內(nèi)容的小結(jié),可把課堂教學(xué)傳授的知識(shí)盡快化為學(xué)生的素質(zhì);數(shù)學(xué)思想方法的小結(jié),可使學(xué)生更深刻地理解數(shù)學(xué)思想方法在解題中的地位和應(yīng)用,并且逐漸培養(yǎng)學(xué)生的良好的個(gè)性品質(zhì)目標(biāo)。

  6、變式延伸,進(jìn)行重構(gòu)。

  重視課本例題,適當(dāng)對(duì)題目進(jìn)行引申,使例題的作用更加突出,有利于學(xué)生對(duì)知識(shí)的串聯(lián)、累積、加工,從而達(dá)到舉一反三的效果。

  五、教學(xué)評(píng)價(jià)

  學(xué)生學(xué)習(xí)的學(xué)習(xí)結(jié)果評(píng)價(jià)當(dāng)然重要,但是更重要的是學(xué)生學(xué)習(xí)的過(guò)程評(píng)價(jià),教師應(yīng)

  當(dāng)高度重視學(xué)生學(xué)習(xí)過(guò)程中的參與度、自信心、團(tuán)隊(duì)精神合作意識(shí)數(shù)學(xué)能力的發(fā)現(xiàn),以及學(xué)習(xí)的興趣和成就感。

高中數(shù)學(xué)說(shuō)課稿4

  課題《數(shù)列的概念與簡(jiǎn)單表示方法(一)》選自普通高中課程標(biāo)準(zhǔn)試驗(yàn)教科書(shū)人教版A版數(shù)學(xué)必修5第二章第一節(jié)的第一課時(shí)。我將從教材分析、學(xué)情分析、教學(xué)目標(biāo)分析、教法分析、教學(xué)過(guò)程這五個(gè)方面來(lái)匯報(bào)我對(duì)這節(jié)課的教學(xué)設(shè)想。

  一、教材分析

  1、教材的地位和作用

  數(shù)列是高中數(shù)學(xué)的重要內(nèi)容之一,它的地位作用可以從三個(gè)方面來(lái)看:

 。1)數(shù)列有著廣泛的實(shí)際應(yīng)用。如堆放的物品的總數(shù)計(jì)算要用到數(shù)列的前n項(xiàng)和,又如分期儲(chǔ)蓄、付款公式的有關(guān)計(jì)算也要用到數(shù)列的一些知識(shí)。

 。2)數(shù)列起著承前啟后的作用。一方面,初中數(shù)學(xué)的許多內(nèi)容在解決數(shù)列的某些問(wèn)題中得到了充分運(yùn)用,數(shù)列是前面函數(shù)知識(shí)的延伸及應(yīng)用,可以使學(xué)生加深對(duì)函數(shù)概念的理解;另一方面,學(xué)習(xí)數(shù)列又為進(jìn)一步學(xué)習(xí)數(shù)列的極限,等差數(shù)列、等比數(shù)列的前n項(xiàng)和以及通項(xiàng)公式打好了鋪墊。因此就有必要講好、學(xué)好數(shù)列。

 。3)數(shù)列是培養(yǎng)學(xué)生數(shù)學(xué)能力的良好題材。是進(jìn)行計(jì)算,推理等基本訓(xùn)練,綜合訓(xùn)練的重要教材。學(xué)習(xí)數(shù)列,要經(jīng)常觀察、分析、歸納、猜想,還要綜合運(yùn)用前面的知識(shí)解決數(shù)列中的一些問(wèn)題,這些都有助于學(xué)生數(shù)學(xué)能力的提高。

  二、學(xué)情分析

  從學(xué)生知識(shí)層面看:學(xué)生對(duì)數(shù)列已有初步的認(rèn)識(shí),對(duì)方程、函數(shù)、數(shù)學(xué)公式的運(yùn)用已有一定的基礎(chǔ),對(duì)方程、函數(shù)思想的體會(huì)也逐漸深刻。

  從學(xué)生素質(zhì)層面看:從高一新生入學(xué)開(kāi)始,我就很注意學(xué)生自主探究習(xí)慣的養(yǎng)成,F(xiàn)階段我的學(xué)生思維活躍,課堂參與意識(shí)較強(qiáng),而且已經(jīng)具有一定的分析、推理能力。

  三、教學(xué)目標(biāo)分析

  根據(jù)上面的教材分析以及學(xué)情分析,確定了本節(jié)課的教學(xué)目標(biāo):

  (1)知識(shí)目標(biāo):認(rèn)識(shí)數(shù)列的特點(diǎn),掌握數(shù)列的概念及表示方法,并明白數(shù)列與集合的不同點(diǎn)。了解數(shù)列通項(xiàng)公式的意義及數(shù)列分類。能由數(shù)列的通項(xiàng)公式求出數(shù)列的各項(xiàng),反之,又能由數(shù)列的前幾項(xiàng)寫(xiě)出數(shù)列的一個(gè)通項(xiàng)公式。

 。2)能力目標(biāo):通過(guò)對(duì)數(shù)列概念以及通項(xiàng)公式的探究、推導(dǎo)、應(yīng)用等過(guò)程,鍛煉了學(xué)生的觀察、歸納、類比等分析問(wèn)題的能力。同時(shí)更深層次的理解了數(shù)學(xué)知識(shí)之間的相互滲透性思想。

 。3)情感目標(biāo):在教學(xué)中使學(xué)生體會(huì)教學(xué)知識(shí)與現(xiàn)實(shí)世界的聯(lián)系,并且利用各種有趣的,貼近學(xué)生生活的素材激發(fā)學(xué)生的學(xué)習(xí)興趣,培養(yǎng)熱愛(ài)生活的情感。

  四、教學(xué)重點(diǎn)與難點(diǎn)

  根據(jù)教學(xué)目標(biāo)以及學(xué)生的理解能力與認(rèn)知水平,我確定了如下的教學(xué)重難點(diǎn)。

  重點(diǎn):理解數(shù)列的概念,能由函數(shù)的觀點(diǎn)去認(rèn)識(shí)數(shù)列,以及對(duì)通項(xiàng)公式的理解。

  難點(diǎn):根據(jù)數(shù)列的前幾項(xiàng)的特點(diǎn),通過(guò)多角度、多層次的觀察分析歸納出數(shù)列的一個(gè)通項(xiàng)公式。

  五、教法分析

  根據(jù)本節(jié)課的內(nèi)容和學(xué)生的實(shí)際情況,結(jié)合波利亞的先猜后證理論,本節(jié)課主要以講解法為主,引導(dǎo)發(fā)現(xiàn)為輔,由老師帶領(lǐng)同學(xué)們發(fā)現(xiàn)問(wèn)題,分析問(wèn)題,并解決問(wèn)題.考慮到學(xué)生的認(rèn)知過(guò)程,本節(jié)課會(huì)采用由易到難的教學(xué)進(jìn)程以及實(shí)例給出與練習(xí)設(shè)置,讓學(xué)生們充分體會(huì)到事物的發(fā)展規(guī)律。同時(shí)為了增大課堂容量,提高教學(xué)效率,更吸引同學(xué)們的眼光,提高學(xué)習(xí)熱情,本節(jié)課還會(huì)采用常規(guī)手段與現(xiàn)代手段相結(jié)合的辦法,充分利用多媒體,將引例、例題具體呈現(xiàn).

高中數(shù)學(xué)說(shuō)課稿5

  一.內(nèi)容和內(nèi)容分析

  “函數(shù)的奇偶性”是人教版數(shù)學(xué)必修教材必修一第一章第三節(jié)的內(nèi)容,本節(jié)的主要內(nèi)容是研究函數(shù)的一個(gè)性質(zhì)—函數(shù)的奇偶性,學(xué)習(xí)奇函數(shù)和偶函數(shù)的概念.奇偶性是函數(shù)的一條重要性質(zhì),教材從學(xué)生熟悉的兩個(gè)特殊函數(shù)入手,從特殊到一般,從具體到抽象,從感性到理性比較系統(tǒng)地介紹了函數(shù)的奇偶性.從知識(shí)結(jié)構(gòu)看,它既是函數(shù)概念的拓展和深化,又為后續(xù)研究指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、冪函數(shù)、三角函數(shù)的基礎(chǔ),因此,本節(jié)課起著承上啟下的重要作用。 本節(jié)課的教學(xué)重點(diǎn):函數(shù)奇偶性的概念及判定。

  二.目標(biāo)和目標(biāo)分析

  (1)知識(shí)目標(biāo):從形和數(shù)兩個(gè)方面進(jìn)行引導(dǎo),使學(xué)生理解奇偶性的概念,學(xué)會(huì)利用定義判斷

  簡(jiǎn)單函數(shù)的奇偶性。

 。2)能力目標(biāo):通過(guò)設(shè)置問(wèn)題情境培養(yǎng)學(xué)生判斷、推理的能力,同時(shí)滲透數(shù)形結(jié)合和由特殊

  到一般的數(shù)學(xué)思想方法.

  (3)情感目標(biāo):在學(xué)生感受數(shù)學(xué)美的同時(shí),激發(fā)學(xué)習(xí)的興趣,培養(yǎng)學(xué)生樂(lè)于求索的精神。

  三.教學(xué)問(wèn)題診斷分析

  導(dǎo)入有點(diǎn)慢,講的有點(diǎn)細(xì),導(dǎo)致時(shí)間上沒(méi)有完成教學(xué)任務(wù),感覺(jué)還是自己講的太多,不能充分調(diào)動(dòng)學(xué)生的積極性。

  四.教學(xué)支持條件分析

  用了多媒體,使用ppt,使得奇偶性函數(shù)概念的探究過(guò)程更形象更直觀,是學(xué)生理解更深刻。

  五.教學(xué)過(guò)程設(shè)計(jì)

  為了達(dá)到預(yù)期的教學(xué)目標(biāo),我對(duì)整個(gè)教學(xué)過(guò)程進(jìn)行了系統(tǒng)地規(guī)劃,設(shè)計(jì)了四個(gè)主要的教學(xué)程序是:

  1.設(shè)疑導(dǎo)入、觀圖激趣:

  使用幻燈片展示圖片蝴蝶、雪花等讓學(xué)生感受生活中的美,從而引入對(duì)稱在函數(shù)中的體現(xiàn)。

  2.指導(dǎo)觀察、形成概念:

  作出函數(shù)y=x的圖象,并觀察這兩個(gè)函數(shù)圖象的對(duì)稱性如何?

  借助課件演示,讓學(xué)生分別計(jì)算f(1),f(-1),f(2),f(-2),學(xué)生很快會(huì)得到f(-1)=f(1),f(-2)=f(2),進(jìn)而提出在定義域內(nèi)是否對(duì)所有的x,都有類似的情況?借助課件演示,學(xué)生會(huì)得出結(jié)論,f(-x)=f(x),從而引導(dǎo)學(xué)生先把它們具體化,再用數(shù)學(xué)符號(hào)表示。根據(jù)以上特點(diǎn),請(qǐng)學(xué)生用完整的語(yǔ)言敘述定義,同時(shí)給出板書(shū):

  函數(shù)f(x)的定義域?yàn)锳,且關(guān)于原點(diǎn)對(duì)稱,如果有f(-x)=f(x),則稱f(x)為偶函數(shù),類比探究2

  偶函數(shù)的過(guò)程,得到奇函數(shù)的概念,又通過(guò)具體的例子說(shuō)明了定義域關(guān)于原點(diǎn)對(duì)稱是研究奇偶性的前提。

  3.學(xué)生探索、發(fā)展思維。

  接著通過(guò)學(xué)案上的例一,總結(jié)函數(shù)奇偶性的判斷方法及步驟:

  (1)求出函數(shù)的定義域,并判斷是否關(guān)于原點(diǎn)對(duì)稱

  (2)驗(yàn)證f(-x)=f(x)或f(-x)=-f(x)

  (3)得出結(jié)論

  由學(xué)生小結(jié)判斷奇偶性的步驟之后,提出新的問(wèn)題:函數(shù)按奇偶性如何分類?既奇又偶的函數(shù)是不是只有一個(gè)?試舉例說(shuō)明。

  4.布置作業(yè):

  六.目標(biāo)檢測(cè)設(shè)計(jì)

  學(xué)案上的題型主要包括奇偶性函數(shù)的判斷及應(yīng)用

  七.教學(xué)反思:(從兩方面)

  1.思成功

  一:是通過(guò)設(shè)計(jì)富有挑戰(zhàn)性的問(wèn)題來(lái)呈現(xiàn)背景,通過(guò)問(wèn)題的探究和自主學(xué)習(xí)來(lái)獲取相關(guān)概念,實(shí)現(xiàn)了 “教學(xué)邏輯”與“學(xué)習(xí)邏輯”的連通、“知識(shí)邏輯”與“認(rèn)知邏輯”的連通;二:是在老師創(chuàng)設(shè)的情境中,每個(gè)學(xué)生都積極投入探究過(guò)程,學(xué)生在疑惑中探索,在探索中思考,在思考中發(fā)現(xiàn),大部分學(xué)生積極性高漲,通過(guò)看別人怎樣觀察,

  聽(tīng)別人怎樣介紹,也學(xué)到了知識(shí).

  2.思不足

  學(xué)生練習(xí):在教學(xué)過(guò)程中應(yīng)多注意學(xué)生的.活動(dòng),由單一的問(wèn)答式轉(zhuǎn)化為多方位的考察,以采用

  學(xué)生板演或者把學(xué)生練習(xí)投影到屏幕上讓全班學(xué)生糾正等方式,更好的考察學(xué)生掌握情況。

  語(yǔ)言組織:

  在講授過(guò)程中還要注意到說(shuō)話語(yǔ)速,語(yǔ)言組織等講授技巧,應(yīng)該用平緩的語(yǔ)氣講授,語(yǔ)言描述要簡(jiǎn)練易懂,不能拖泥帶水。

  教學(xué)環(huán)節(jié)(的完整):

  在授課過(guò)程中要注意到教學(xué)環(huán)節(jié)設(shè)計(jì),我們的教學(xué)過(guò)程有復(fù)習(xí)引入、講授新課、例題講解、學(xué)生練習(xí)、課時(shí)小結(jié)、布置作業(yè)等幾個(gè)重要的環(huán)節(jié),由于時(shí)間的關(guān)系沒(méi)有來(lái)得及小結(jié)造成教學(xué)設(shè)計(jì)不完善。在以后的教學(xué)過(guò)程中要注意這些環(huán)節(jié)。

  以上是我對(duì)這節(jié)課以后的教學(xué)反思,還有很多地方做的還不完善,我要在以后的教學(xué)中努力改進(jìn)這些錯(cuò)誤,以便更好的適應(yīng)教學(xué),努力使自己的教學(xué)更上一層樓。

高中數(shù)學(xué)說(shuō)課稿6

  1、教學(xué)目標(biāo):

  一、借助單位圓理解任意角的三角函數(shù)的定義。

  二、根據(jù)三角函數(shù)的定義,能夠判斷三角函數(shù)值的符號(hào)。

  三、通過(guò)學(xué)生積極參與知識(shí)的"發(fā)現(xiàn)"與"形成"的過(guò)程,培養(yǎng)合情猜測(cè)的能力,從中感悟數(shù)學(xué)概念的嚴(yán)謹(jǐn)性與科學(xué)性。

  四、讓學(xué)生在任意角三角函數(shù)概念的形成過(guò)程中,體會(huì)函數(shù)思想,體會(huì)數(shù)形結(jié)合思想。

  2、教學(xué)重點(diǎn)與難點(diǎn):

  重點(diǎn):任意角的正弦、余弦、正切的定義;三角函數(shù)值的符號(hào)。

  難點(diǎn):任意角的三角函數(shù)概念的建構(gòu)過(guò)程。

  授課過(guò)程:

  一、引入

  在我們的現(xiàn)實(shí)世界中的許多運(yùn)動(dòng)變化都有循環(huán)往復(fù)、周而復(fù)始的現(xiàn)象,這種變化規(guī)律稱為周期性。如何用數(shù)學(xué)的方法來(lái)刻畫(huà)這種變化?從這節(jié)課開(kāi)始,我們要來(lái)學(xué)習(xí)刻畫(huà)這種規(guī)律的數(shù)學(xué)模型之一――三角函數(shù)。

  二、創(chuàng)設(shè)情境

  三角函數(shù)是與角有關(guān)的函數(shù),在學(xué)習(xí)任意角概念時(shí),我們知道在直角坐標(biāo)系中研究角,可以給學(xué)習(xí)帶來(lái)許多方便,比如我們可以根據(jù)角終邊的位置把它們進(jìn)行歸類,現(xiàn)在大家考慮:若在直角坐標(biāo)系中來(lái)研究銳角,則銳角三角函數(shù)又可怎樣定義呢?

  學(xué)生情況估計(jì):學(xué)生可能會(huì)提出兩種定義的方式,一種定義為邊之比,另一種定義在比值中引入了終邊上的一點(diǎn)P的坐標(biāo)。

  問(wèn)題:

  1、銳角三角函數(shù)能否表示成第二種比值方式?

  2、點(diǎn)P能否取在終邊上的其它位置?為什么?

  3、點(diǎn)P在哪個(gè)位置,比值會(huì)更簡(jiǎn)潔?(引出單位圓的定義)。指出sina=mP的函數(shù)依舊表示一個(gè)比值,不過(guò)其分母為1而已。

  練習(xí):計(jì)算的各三角函數(shù)值。

  三、任意角的三角函數(shù)的定義

  角的概念已經(jīng)推廣道了任意角,那么三角函數(shù)的定義在任意角的范圍里改怎么定義呢?

  嘗試:根據(jù)銳角三角函數(shù)的定義,你能嘗試著給出任意角三角函數(shù)的定義嗎?

  評(píng)價(jià)學(xué)生給出的定義。給出任意角三角函數(shù)的定義。

  四、解析任意角三角函數(shù)的定義

  三角函數(shù)首先是函數(shù)。你能從函數(shù)觀點(diǎn)解析三角函數(shù)嗎?(定義域)

  對(duì)于確定的角a,上面三個(gè)函數(shù)值都是唯一確定的,所以,正弦、余弦、正切都是以角為自變量,以單位圓上點(diǎn)的坐標(biāo)或坐標(biāo)的比值為函數(shù)值的函數(shù),我們將它們統(tǒng)稱為三角函數(shù)。由于角的集合和實(shí)數(shù)集之間可以建立一一對(duì)應(yīng)的關(guān)系,三角函數(shù)可以看成是自變量為實(shí)數(shù)的函數(shù)。

  五、三角函數(shù)的應(yīng)用。

  1、已知角,求a的三角函數(shù)值。

  2、已知角a終邊上的一點(diǎn)P(-3,-4),求各三角函數(shù)值。

  以上兩道書(shū)上的例題,讓學(xué)生自習(xí)看書(shū),學(xué)生看書(shū)的同時(shí),老師提出問(wèn)題:

  1、已知角如何求三角函數(shù)值?

  2、利用角a的終邊上任意一點(diǎn)的坐標(biāo)也可以定義三角函數(shù),你能給出這種定義嗎?(這種定義與課本中給出的定義各有什么特點(diǎn)?)

  3、變式:已知角a終邊上點(diǎn)P(-3b,-4b),(b0),求角a的各三角函數(shù)值。

  4、探究:三角函數(shù)的值在各象限的符號(hào)。

  六、小結(jié)及作業(yè)

  教案設(shè)計(jì)說(shuō)明:

  新教材的教學(xué)理念之一是讓學(xué)生去體驗(yàn)新知識(shí)的發(fā)生過(guò)程,這節(jié)《任意角三角函數(shù)》的教案,主要圍繞這一點(diǎn)來(lái)設(shè)計(jì)。

  首先,角的概念推廣了,那么銳角三角函數(shù)的定義是否也該推廣到任意角的三角函數(shù)的定義呢?通過(guò)這個(gè)問(wèn)題,讓學(xué)生體會(huì)到新知識(shí)的發(fā)生是可能的,自然的。

  其次,到底應(yīng)該怎樣去合理定義任意角的三角函數(shù)呢?讓學(xué)生提出自己的想法,同時(shí)讓學(xué)生去辨證這個(gè)想法是否是科學(xué)的?因?yàn)橐粋(gè)概念是嚴(yán)謹(jǐn)?shù),科學(xué)的,不能隨心所欲地編造,必須去論證它的合理性,至少這種概念不能和銳角三角函數(shù)的定義有所沖突。在這個(gè)立-破的過(guò)程中,讓學(xué)生去體驗(yàn)一個(gè)新的數(shù)學(xué)概念可能是如何形成,在形成的過(guò)程中可以從哪些角度加以科學(xué)的辯思。這樣也有助于學(xué)生對(duì)任意角三角函數(shù)概念的理解。

  再次,讓學(xué)生充分體會(huì)在任意角三角函數(shù)定義的推廣中,是如何將直角三角形這個(gè)"形"的問(wèn)題,轉(zhuǎn)換到直角坐標(biāo)系下點(diǎn)的坐標(biāo)這個(gè)"數(shù)"的過(guò)程的。培養(yǎng)數(shù)形結(jié)合的思想。

高中數(shù)學(xué)說(shuō)課稿7

  【一】教學(xué)背景分析

  1.教材結(jié)構(gòu)分析

  《圓的方程》安排在高中數(shù)學(xué)第二冊(cè)(上)第七章第六節(jié).圓作為常見(jiàn)的簡(jiǎn)單幾何圖形,在實(shí)際生活和生產(chǎn)實(shí)踐中有著廣泛的應(yīng)用.圓的方程屬于解析幾何學(xué)的基礎(chǔ)知識(shí),是研究二次曲線的開(kāi)始,對(duì)后續(xù)直線與圓的位置關(guān)系、圓錐曲線等內(nèi)容的學(xué)習(xí),無(wú)論在知識(shí)上還是方法上都有著積極的意義,所以本節(jié)內(nèi)容在整個(gè)解析幾何中起著承前啟后的作用.

  2.學(xué)情分析

  圓的方程是學(xué)生在初中學(xué)習(xí)了圓的概念和基本性質(zhì)后,又掌握了求曲線方程的一般方法的基礎(chǔ)上進(jìn)行研究的.但由于學(xué)生學(xué)習(xí)解析幾何的時(shí)間還不長(zhǎng)、學(xué)習(xí)程度較淺,且對(duì)坐標(biāo)法的運(yùn)用還不夠熟練,在學(xué)習(xí)過(guò)程中難免會(huì)出現(xiàn)困難.另外學(xué)生在探究問(wèn)題的能力,合作交流的意識(shí)等方面有待加強(qiáng).

  根據(jù)上述教材結(jié)構(gòu)與內(nèi)容分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)和心理特征,我制定如下教學(xué)目標(biāo):

  3.教學(xué)目標(biāo)

  (1) 知識(shí)目標(biāo):①掌握?qǐng)A的標(biāo)準(zhǔn)方程;

  ②會(huì)由圓的標(biāo)準(zhǔn)方程寫(xiě)出圓的半徑和圓心坐標(biāo),能根據(jù)條件寫(xiě)出圓的標(biāo)準(zhǔn)方程;

 、劾脠A的標(biāo)準(zhǔn)方程解決簡(jiǎn)單的實(shí)際問(wèn)題.

  (2) 能力目標(biāo):①進(jìn)一步培養(yǎng)學(xué)生用代數(shù)方法研究幾何問(wèn)題的能力;

  ②加深對(duì)數(shù)形結(jié)合思想的理解和加強(qiáng)對(duì)待定系數(shù)法的運(yùn)用;

 、墼鰪(qiáng)學(xué)生用數(shù)學(xué)的意識(shí).

  (3) 情感目標(biāo):①培養(yǎng)學(xué)生主動(dòng)探究知識(shí)、合作交流的意識(shí);

 、谠隗w驗(yàn)數(shù)學(xué)美的過(guò)程中激發(fā)學(xué)生的學(xué)習(xí)興趣.

  根據(jù)以上對(duì)教材、教學(xué)目標(biāo)及學(xué)情的分析,我確定如下的教學(xué)重點(diǎn)和難點(diǎn):

  4. 教學(xué)重點(diǎn)與難點(diǎn)

  (1)重點(diǎn):圓的標(biāo)準(zhǔn)方程的求法及其應(yīng)用.

  (2)難點(diǎn): ①會(huì)根據(jù)不同的已知條件求圓的標(biāo)準(zhǔn)方程;

 、谶x擇恰當(dāng)?shù)淖鴺?biāo)系解決與圓有關(guān)的實(shí)際問(wèn)題.

  為使學(xué)生能達(dá)到本節(jié)設(shè)定的教學(xué)目標(biāo),我再?gòu)慕谭ê蛯W(xué)法上進(jìn)行分析:

  好學(xué)教育:

  【二】教法學(xué)法分析

  1.教法分析 為了充分調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性,本節(jié)課采用“啟發(fā)式”問(wèn)題教學(xué)法,用環(huán)環(huán)相扣的問(wèn)題將探究活動(dòng)層層深入,使教師總是站在學(xué)生思維的最近發(fā)展區(qū)上.另外我恰當(dāng)?shù)睦枚嗝襟w課件進(jìn)行輔助教學(xué),借助信息技術(shù)創(chuàng)設(shè)實(shí)際問(wèn)題的情境既能激發(fā)學(xué)生的學(xué)習(xí)興趣,又直觀的引導(dǎo)了學(xué)生建模的過(guò)程.

  2.學(xué)法分析 通過(guò)推導(dǎo)圓的標(biāo)準(zhǔn)方程,加深對(duì)用坐標(biāo)法求軌跡方程的理解.通過(guò)求圓的標(biāo)準(zhǔn)方程,理解必須具備三個(gè)獨(dú)立的條件才可以確定一個(gè)圓.通過(guò)應(yīng)用圓的標(biāo)準(zhǔn)方程,熟悉用待定系數(shù)法求的過(guò)程. 下面我就對(duì)具體的教學(xué)過(guò)程和設(shè)計(jì)加以說(shuō)明:

  【三】教學(xué)過(guò)程與設(shè)計(jì)

  整個(gè)教學(xué)過(guò)程是由七個(gè)問(wèn)題組成的問(wèn)題鏈驅(qū)動(dòng)的,共分為五個(gè)環(huán)節(jié):

  創(chuàng)設(shè)情境 啟迪思維 深入探究 獲得新知 應(yīng)用舉例 鞏固提高

  反饋訓(xùn)練 形成方法 小結(jié)反思 拓展引申

  下面我從縱橫兩方面敘述我的教學(xué)程序與設(shè)計(jì)意圖.

  首先:縱向敘述教學(xué)過(guò)程

  (一)創(chuàng)設(shè)情境——啟迪思維

  問(wèn)題一 已知隧道的截面是半徑為4m的半圓,車輛只能在道路中心線一側(cè)行駛,一輛寬為2.7m,高為3m的貨車能不能駛?cè)脒@個(gè)隧道?

  通過(guò)對(duì)這個(gè)實(shí)際問(wèn)題的探究,把學(xué)生的思維由用勾股定理求線段CD的長(zhǎng)度轉(zhuǎn)移為用曲線的方程來(lái)解決.一方面幫助學(xué)生回顧了舊知——求軌跡方程的一般方法,另一方面,在得到汽車不能通過(guò)的結(jié)論的同時(shí)學(xué)生自己推導(dǎo)出了圓心在原點(diǎn),半徑為4的圓的標(biāo)準(zhǔn)方程,從而很自然的進(jìn)入了本課的主題.用實(shí)際問(wèn)題創(chuàng)設(shè)問(wèn)題情境,讓學(xué)生感受到問(wèn)題來(lái)源于實(shí)際,應(yīng)用于實(shí)際,激發(fā)了學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)欲望.這樣獲取的知識(shí),不但易于保持,而且易于遷移.

  通過(guò)對(duì)問(wèn)題一的探究,抓住了學(xué)生的注意力,把學(xué)生的思維引到用坐標(biāo)法研究圓的方程上來(lái),此時(shí)再把問(wèn)題深入,進(jìn)入第二環(huán)節(jié).

  (二)深入探究——獲得新知

  問(wèn)題二 1.根據(jù)問(wèn)題一的探究能不能得到圓心在原點(diǎn),半徑為的圓的方程?

  2.如果圓心在,半徑為時(shí)又如何呢?

  好學(xué)教育:

  這一環(huán)節(jié)我首先讓學(xué)生對(duì)問(wèn)題一進(jìn)行歸納,得到圓心在原點(diǎn),半徑為4的圓的標(biāo)準(zhǔn)方程后,引導(dǎo)學(xué)生歸納出圓心在原點(diǎn),半徑為r的圓的標(biāo)準(zhǔn)方程.然后再讓學(xué)生對(duì)圓心不在原點(diǎn)的情況進(jìn)行探究.我預(yù)設(shè)了三種方法等待著學(xué)生的探究結(jié)果,分別是:坐標(biāo)法、圖形變換法、向量平移法.

  得到圓的標(biāo)準(zhǔn)方程后,我設(shè)計(jì)了由淺入深的三個(gè)應(yīng)用平臺(tái),進(jìn)入第三環(huán)節(jié).

  (三)應(yīng)用舉例——鞏固提高

  I.直接應(yīng)用 內(nèi)化新知

  問(wèn)題三 1.寫(xiě)出下列各圓的標(biāo)準(zhǔn)方程:

  (1)圓心在原點(diǎn),半徑為3;

  (2)經(jīng)過(guò)點(diǎn),圓心在點(diǎn).

  2.寫(xiě)出圓的圓心坐標(biāo)和半徑.

  我設(shè)計(jì)了兩個(gè)小問(wèn)題,第一題是直接或間接的給出圓心坐標(biāo)和半徑求圓的標(biāo)準(zhǔn)方程,第二題是給出圓的標(biāo)準(zhǔn)方程求圓心坐標(biāo)和半徑,這兩題比較簡(jiǎn)單,可以安排學(xué)生口答完成,目的是先讓學(xué)生熟練掌握?qǐng)A心坐標(biāo)、半徑與圓的標(biāo)準(zhǔn)方程之間的關(guān)系,為后面探究圓的切線問(wèn)題作準(zhǔn)備.

  II.靈活應(yīng)用 提升能力

  問(wèn)題四 1.求以點(diǎn)為圓心,并且和直線相切的圓的方程.

  2.求過(guò)點(diǎn),圓心在直線上且與軸相切的圓的方程.

  3.已知圓的方程為,求過(guò)圓上一點(diǎn)的切線方程.

  你能歸納出具有一般性的結(jié)論嗎?

  已知圓的方程是,經(jīng)過(guò)圓上一點(diǎn)的切線的方程是什么?

  我設(shè)計(jì)了三個(gè)小問(wèn)題,第一個(gè)小題有了剛剛解決問(wèn)題三的基礎(chǔ),學(xué)生會(huì)很快求出半徑,根據(jù)圓心坐標(biāo)寫(xiě)出圓的標(biāo)準(zhǔn)方程.第二個(gè)小題有些困難,需要引導(dǎo)學(xué)生應(yīng)用待定系數(shù)法確定圓心坐標(biāo)和半徑再求解,從而理解必須具備三個(gè)獨(dú)立的條件才可以確定一個(gè)圓.第三個(gè)小題解決方法較多,我預(yù)設(shè)了四種方法再一次為學(xué)生的發(fā)散思維創(chuàng)設(shè)了空間.最后我讓學(xué)生由第三小題的結(jié)論進(jìn)行歸納、猜想,在論證經(jīng)過(guò)圓上一點(diǎn)圓的切線方程的過(guò)程中,又一次模擬了真理發(fā)現(xiàn)的過(guò)程,使探究氣氛達(dá)到高潮.

  III.實(shí)際應(yīng)用 回歸自然

  問(wèn)題五 如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度AB=20m,拱高OP=4m,在建造時(shí)每隔4m需用一個(gè)支柱支撐,求支柱的長(zhǎng)度(精確到0.01m).

  好學(xué)教育:

  我選用了教材的例3,它是待定系數(shù)法求出圓的三個(gè)參數(shù)的又一次應(yīng)用,同時(shí)也與引例相呼應(yīng),使學(xué)生形成解決實(shí)際問(wèn)題的一般方法,培養(yǎng)了學(xué)生建模的習(xí)慣和用數(shù)學(xué)的意識(shí).

  (四)反饋訓(xùn)練——形成方法

  問(wèn)題六 1.求過(guò)原點(diǎn)和點(diǎn),且圓心在直線上的圓的標(biāo)準(zhǔn)方程.

  2.求圓過(guò)點(diǎn)的切線方程.

  3.求圓過(guò)點(diǎn)的切線方程.

  接下來(lái)是第四環(huán)節(jié)——反饋訓(xùn)練.這一環(huán)節(jié)中,我設(shè)計(jì)三個(gè)小題作為鞏固性訓(xùn)練,給學(xué)生一塊“用武”之地,讓每一位同學(xué)體驗(yàn)學(xué)習(xí)數(shù)學(xué)的樂(lè)趣,成功的喜悅,找到自信,增強(qiáng)學(xué)習(xí)數(shù)學(xué)的愿望與信心.另外第3題是我特意安排的一道求過(guò)圓外一點(diǎn)的圓的切線方程,由于學(xué)生剛剛歸納了過(guò)圓上一點(diǎn)圓的切線方程,因此很容易產(chǎn)生思維的負(fù)遷移,另外這道題目有兩解,學(xué)生容易漏掉斜率不存在的情況,這時(shí)引導(dǎo)學(xué)生用數(shù)形結(jié)合的思想,結(jié)合初中已有的圓的知識(shí)進(jìn)行判斷,這樣的設(shè)計(jì)對(duì)培養(yǎng)學(xué)生思維的嚴(yán)謹(jǐn)性具有良好的效果.

  (五)小結(jié)反思——拓展引申

  1.課堂小結(jié)

  把圓的標(biāo)準(zhǔn)方程與過(guò)圓上一點(diǎn)圓的切線方程加以小結(jié),提煉數(shù)形結(jié)合的思想和待定系數(shù)的方法 ①圓心為,半徑為r 的圓的標(biāo)準(zhǔn)方程為:

  圓心在原點(diǎn)時(shí),半徑為r 的圓的標(biāo)準(zhǔn)方程為:.

  ②已知圓的方程是,經(jīng)過(guò)圓上一點(diǎn)的切線的方程是:.

  2.分層作業(yè)

  (A)鞏固型作業(yè):教材P81-82:(習(xí)題7.6)1,2,4.(B)思維拓展型作業(yè):試推導(dǎo)過(guò)圓上一點(diǎn)的切線方程.

  3.激發(fā)新疑

  問(wèn)題七 1.把圓的標(biāo)準(zhǔn)方程展開(kāi)后是什么形式?

  2.方程表示什么圖形?

  在本課的結(jié)尾設(shè)計(jì)這兩個(gè)問(wèn)題,作為對(duì)這節(jié)課內(nèi)容的鞏固與延伸,讓學(xué)生體會(huì)知識(shí)的起點(diǎn)與終點(diǎn)都蘊(yùn)涵著問(wèn)題,舊的問(wèn)題解決了,新的問(wèn)題又產(chǎn)生了.在知識(shí)的拓展中再次掀起學(xué)生探究的熱情.另外它為下節(jié)課研究圓的一般方程作了重要的準(zhǔn)備.

  以上是我縱向的教學(xué)過(guò)程及簡(jiǎn)單的設(shè)計(jì)意圖,接下來(lái),我從三個(gè)方面橫向的進(jìn)一步闡述我的教學(xué)設(shè)計(jì): 橫向闡述教學(xué)設(shè)計(jì)

  (一)突出重點(diǎn) 抓住關(guān)鍵 突破難點(diǎn)

  好學(xué)教育:

  求圓的標(biāo)準(zhǔn)方程既是本節(jié)課的教學(xué)重點(diǎn)也是難點(diǎn),為此我布設(shè)了由淺入深的學(xué)習(xí)環(huán)境,先讓學(xué)生熟悉圓心、半徑與圓的標(biāo)準(zhǔn)方程之間的關(guān)系,逐步理解三個(gè)參數(shù)的重要性,自然形成待定系數(shù)法的解題思路,在突出重點(diǎn)的同時(shí)突破了難點(diǎn).

  第二個(gè)教學(xué)難點(diǎn)就是解決實(shí)際應(yīng)用問(wèn)題,這是學(xué)生固有的難題,主要是因?yàn)閼?yīng)用問(wèn)題的題目冗長(zhǎng),學(xué)生很難根據(jù)問(wèn)題情境構(gòu)建數(shù)學(xué)模型,缺乏解決實(shí)際問(wèn)題的信心,為此我首先用一道題目簡(jiǎn)潔、貼近生活的實(shí)例進(jìn)行引入,激發(fā)學(xué)生的求知欲,同時(shí)我借助多媒體課件的演示,引導(dǎo)學(xué)生真正走入問(wèn)題的情境之中,并從中抽象出數(shù)學(xué)模型,從而消除畏難情緒,增強(qiáng)了信心.最后再形成應(yīng)用圓的標(biāo)準(zhǔn)方程解決實(shí)際問(wèn)題的一般模式,并嘗試應(yīng)用該模式分析和解決第二個(gè)應(yīng)用問(wèn)題——問(wèn)題五.這樣的設(shè)計(jì),使學(xué)生在解決問(wèn)題的同時(shí),形成了方法,難點(diǎn)自然突破.

  (二)學(xué)生主體 教師主導(dǎo) 探究主線

  本節(jié)課的設(shè)計(jì)用問(wèn)題做鏈,環(huán)環(huán)相扣,使學(xué)生的探究活動(dòng)貫穿始終.從圓的標(biāo)準(zhǔn)方程的推導(dǎo)到應(yīng)用都是在問(wèn)題的指引、我的指導(dǎo)下,由學(xué)生探究完成的.另外,我重點(diǎn)設(shè)計(jì)了兩次思維發(fā)散點(diǎn),分別是問(wèn)題二和問(wèn)題四的第三問(wèn),要求學(xué)生分組討論,合作交流,為學(xué)生設(shè)立充分的探究空間,學(xué)生在交流成果的過(guò)程中,既體驗(yàn)了科學(xué)研究和真理發(fā)現(xiàn)的復(fù)雜與艱辛,又在我的適度引導(dǎo)、側(cè)面幫助、不斷肯定下順利完成了探究活動(dòng)并走向成功,在一個(gè)個(gè)問(wèn)題的驅(qū)動(dòng)下,高效的完成本節(jié)的學(xué)習(xí)任務(wù).

  (三)培養(yǎng)思維 提升能力 激勵(lì)創(chuàng)新

  為了培養(yǎng)學(xué)生的理性思維,我分別在問(wèn)題一和問(wèn)題四中,設(shè)計(jì)了兩次由特殊到一般的學(xué)習(xí)思路,培養(yǎng)學(xué)生的歸納概括能力.在問(wèn)題的設(shè)計(jì)中,我利用一題多解的探究,縱向挖掘知識(shí)深度,橫向加強(qiáng)知識(shí)間的聯(lián)系,培養(yǎng)了學(xué)生的創(chuàng)新精神,并且使學(xué)生的有效思維量加大,隨時(shí)對(duì)所學(xué)知識(shí)和方法產(chǎn)生有意注意,使能力與知識(shí)的形成相伴而行.

  以上是我對(duì)這節(jié)課的教學(xué)預(yù)設(shè),具體的教學(xué)過(guò)程還要根據(jù)學(xué)生在課堂中的具體情況適當(dāng)調(diào)整,向生成性課堂進(jìn)行轉(zhuǎn)變.最后我以赫爾巴特的一句名言結(jié)束我的說(shuō)課,發(fā)揮我們的創(chuàng)造性,力爭(zhēng)“使教育過(guò)程成為一種藝術(shù)的事業(yè)”.

高中數(shù)學(xué)說(shuō)課稿8

  一、教材分析:

  1、教材的地位與作用。

  本節(jié)內(nèi)容是在學(xué)生學(xué)習(xí)了“事件的可能性的基礎(chǔ)上來(lái)學(xué)習(xí)如何預(yù)測(cè)不確定事件(隨機(jī)事件)發(fā)生的可能性的大小。”用概率預(yù)測(cè)隨機(jī)發(fā)生的可能性大小,在日常生活、自然、科技領(lǐng)域有著廣泛的應(yīng)用,學(xué)習(xí)本單元知識(shí),無(wú)論是今后繼續(xù)深造(高中學(xué)習(xí)概率的乘法定理)還是參加社會(huì)實(shí)踐活動(dòng)都是十分必要的。概率的概念比較抽象,概率的定義學(xué)生較難理解。

  在教材的處理上,采取小單元教學(xué),本節(jié)課安排讓學(xué)生了解求隨機(jī)事件概率的兩種方法,目的是讓學(xué)生能夠比較系統(tǒng)地理解概率的意義及求概率的方法,為下面學(xué)習(xí)求比較復(fù)雜的情況的概率打下基礎(chǔ)。

  2、重點(diǎn)與難點(diǎn)。

  重點(diǎn):對(duì)概率意義的理解,通過(guò)多次重復(fù)實(shí)驗(yàn),用頻率預(yù)測(cè)概率的方法,以及用列舉法求概率的方法。

  難點(diǎn):對(duì)概率意義的理解和用列舉法求概率過(guò)程中在各種可能性相同條件下某一事件可能發(fā)生的總數(shù)及總的結(jié)果數(shù)的分析。

  二、目的分析:

  知識(shí)與技能:掌握用頻率預(yù)測(cè)概率和用列舉法求概率方法。

  過(guò)程與方法:組織學(xué)生自主探究,合作交流,引導(dǎo)學(xué)生觀察試驗(yàn)和統(tǒng)計(jì)的結(jié)果,進(jìn)而進(jìn)行分析、歸納、總結(jié),了解并感受概率的定義的過(guò)程,引導(dǎo)學(xué)生從數(shù)學(xué)的視角觀察客觀世界,用數(shù)學(xué)的思維思考客觀世界,以數(shù)學(xué)的語(yǔ)言描述客觀世界。

  情感態(tài)度價(jià)值觀:學(xué)生經(jīng)歷觀察、分析、歸納、確認(rèn)等數(shù)學(xué)活動(dòng),感受數(shù)學(xué)活動(dòng)充滿了探索性與創(chuàng)造性,感受量變與質(zhì)變的對(duì)立統(tǒng)一規(guī)律,同時(shí)為概率的精準(zhǔn)、新穎、獨(dú)特的思維方法所震撼,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情,增強(qiáng)對(duì)數(shù)學(xué)價(jià)值觀的認(rèn)識(shí)。

  三、教法、學(xué)法分析:

  引導(dǎo)學(xué)生自主探究、合作交流、觀察分析、歸納總結(jié),讓學(xué)生經(jīng)歷知識(shí)(概率定義計(jì)算公式)的產(chǎn)生和發(fā)展過(guò)程,讓學(xué)生在數(shù)學(xué)活動(dòng)中學(xué)習(xí)數(shù)學(xué)、掌握數(shù)學(xué),并能應(yīng)用數(shù)學(xué)解決現(xiàn)實(shí)生活中的實(shí)際問(wèn)題,教師是學(xué)生學(xué)習(xí)的組織者、合作者和指導(dǎo)者,精心設(shè)計(jì)教學(xué)情境,有序組織學(xué)生活動(dòng),讓課堂充滿生機(jī)活力,體現(xiàn)“教” 為“學(xué)”服務(wù)這一宗旨。

  四、教學(xué)過(guò)程分析:

  1、引導(dǎo)學(xué)生探究

  精心設(shè)計(jì)問(wèn)題一,學(xué)生通過(guò)對(duì)問(wèn)題一的探究,一方面復(fù)習(xí)前面學(xué)過(guò)的“確定事件和不確定事件”的知識(shí),為學(xué)好本節(jié)內(nèi)容理清知識(shí)障礙,二是讓學(xué)生明確為什么要學(xué)習(xí)概率(如何預(yù)測(cè)隨機(jī)事件可能性發(fā)生大小)。引導(dǎo)學(xué)生對(duì)問(wèn)題二的探究與觀察實(shí)驗(yàn)數(shù)據(jù),使學(xué)生了解概率這一重要概念的實(shí)際背景,感受并相信隨機(jī)事件的發(fā)生中存在著統(tǒng)計(jì)規(guī)律性,感受數(shù)學(xué)規(guī)律的真實(shí)的發(fā)現(xiàn)過(guò)程。

  2、歸納概括

  學(xué)生從試驗(yàn)中得到的統(tǒng)計(jì)數(shù)字及概率呈現(xiàn)穩(wěn)定在某一數(shù)值附近這一規(guī)律,讓學(xué)生明確概率定義的由來(lái)。

  引導(dǎo)學(xué)生重新對(duì)問(wèn)題一和問(wèn)題二的探究,分析某事件發(fā)生的各種可能性在全部可能發(fā)生結(jié)果中所占比例,得到用列舉法求概率的公式,引導(dǎo)學(xué)生進(jìn)行理性思維,邏輯分析,既培養(yǎng)學(xué)生的分析問(wèn)題能力,又讓學(xué)生明確用列舉法求概率這一簡(jiǎn)便快捷方法的合理性。

  P(A)= = = (m

  3、舉例應(yīng)用

 、乓龑(dǎo)學(xué)生對(duì)教材書(shū)例題、問(wèn)題一、問(wèn)題二中問(wèn)題的進(jìn)一步分析與探究,讓學(xué)生掌握用列舉法求概率的方法。

 、埔龑(dǎo)學(xué)生對(duì)練習(xí)中的問(wèn)題思考與探究,鞏固對(duì)概率公式的應(yīng)用及加深對(duì)概率意義的理解。

  深化發(fā)展

  ⑴設(shè)置3個(gè)小題目,引導(dǎo)學(xué)生歸納、分析、總結(jié),加深對(duì)知識(shí)與方法的理解,并學(xué)會(huì)靈活運(yùn)用。

 、谱寣W(xué)生設(shè)計(jì)活動(dòng)內(nèi)容,對(duì)知識(shí)進(jìn)行升華和拓展,引導(dǎo)學(xué)生創(chuàng)造性地運(yùn)用知識(shí)思考問(wèn)題和解決問(wèn)題,從而培養(yǎng)學(xué)生的創(chuàng)新意識(shí)和創(chuàng)新能力。

高中數(shù)學(xué)說(shuō)課稿9

  開(kāi)始:各位專家領(lǐng)導(dǎo), 好!

  今天我將要為大家講的課題是

  首先,我對(duì)本節(jié)教材進(jìn)行一些分析

  一、教材結(jié)構(gòu)與內(nèi)容簡(jiǎn)析

  本節(jié)內(nèi)容在全書(shū)及章節(jié)的地位:《 》是高中數(shù)學(xué)新教材第 冊(cè)( )第 章第 節(jié)。在此之前,學(xué)生已學(xué)習(xí)了

  ,這為過(guò)渡到本節(jié)的學(xué)習(xí)起著鋪墊作用。本節(jié)內(nèi)容是 部分,因此,在 中,占據(jù) 的地位。

  數(shù)學(xué)思想方法分析:作為一名數(shù)學(xué)老師,不僅要傳授給學(xué)生數(shù)學(xué)知識(shí),更重要的是傳授給學(xué)生數(shù)學(xué)思想、數(shù)學(xué)意識(shí),因此本節(jié)課在教學(xué)中力圖向?qū)W生:

  二、 教學(xué)目標(biāo)

  根據(jù)上述教材結(jié)構(gòu)與內(nèi)容分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征,制定如下教學(xué)目標(biāo):

  1 基礎(chǔ)知識(shí)目標(biāo):

  2 能力訓(xùn)練目標(biāo):

  3 創(chuàng)新素質(zhì)目標(biāo):

  4 個(gè)性品質(zhì)目標(biāo):

  三、 教學(xué)重點(diǎn)、難點(diǎn)、關(guān)鍵

  本著課程標(biāo)準(zhǔn),在吃透教材基礎(chǔ)上,我確立了如下的教學(xué)重點(diǎn)、難點(diǎn)

  重點(diǎn): 通過(guò) 突出重點(diǎn)

  難點(diǎn): 通過(guò) 突破難點(diǎn)

  關(guān)鍵:

  下面,為了講清重點(diǎn)、難點(diǎn),使學(xué)生能達(dá)到本節(jié)設(shè)定的教學(xué)目標(biāo),我再?gòu)慕谭ê蛯W(xué)法上談?wù)劊?/p>

  四、 教法

  數(shù)學(xué)是一門培養(yǎng)人的思維,發(fā)展人的思維的重要學(xué)科,因此,在教學(xué)中,不僅要使學(xué)生

  “知其然”而且要使學(xué)生“知其所以然”,

  我們?cè)谝詭熒葹橹黧w,又為客體的原則下,展現(xiàn)獲取知識(shí)和方法的思維過(guò)程;诒竟(jié)課的特點(diǎn):

  ,應(yīng)著重采用 的教學(xué)方法。即:

  五、 學(xué)法

  我們常說(shuō):“現(xiàn)代的文盲不是不識(shí)字的人,而是沒(méi)有掌握學(xué)習(xí)方法的人”,因而在教學(xué)中要特別重視學(xué)法的指導(dǎo)。

  1、理論:

  2、實(shí)踐:

  3、能力:

  最后我來(lái)具體談一談這一堂課的教學(xué)過(guò)程:

  六、 教學(xué)程序及設(shè)想

  1、由 引入:

  把教學(xué)內(nèi)容轉(zhuǎn)化為具有潛在意義的問(wèn)題,讓學(xué)生產(chǎn)生強(qiáng)烈的問(wèn)題意識(shí),使學(xué)生的整個(gè)學(xué)習(xí)過(guò)程成為“猜想”,繼而緊張地沉思,期待尋找理由和證明過(guò)程。

  在實(shí)際情況下進(jìn)行學(xué)習(xí),可以使學(xué)生利用已有知識(shí)與經(jīng)驗(yàn),同化和索引出當(dāng)前學(xué)習(xí)的新知識(shí),這樣獲取的知識(shí),不但易于保持,而且易于遷移到陌生的問(wèn)題情境中。

  對(duì)于本題:

  2、由實(shí)例得出本課新的知識(shí)點(diǎn)是:

  3、講解例題。

  我們?cè)谥v解例題時(shí),不僅在于怎樣解,更在于為什么這樣解,而及時(shí)對(duì)解題方法和規(guī)律進(jìn)行概括,有利于發(fā)展學(xué)生的思維能力。在題中:

  4、能力訓(xùn)練。

  課后練習(xí)

  使學(xué)生能鞏固羨慕自覺(jué)運(yùn)用所學(xué)知識(shí)與解題思想方法。

  5、總結(jié)結(jié)論,強(qiáng)化認(rèn)識(shí)。

  知識(shí)性內(nèi)容的小結(jié),可把課堂教學(xué)傳授的知識(shí)盡快化為學(xué)生的素質(zhì);數(shù)學(xué)思想方法的小結(jié),可使學(xué)生更深刻地理解數(shù)學(xué)思想方法在解題中的地位和應(yīng)用,并且逐漸培養(yǎng)學(xué)生的良好的個(gè)性品質(zhì)目標(biāo)。

  6、變式延伸,進(jìn)行重構(gòu)。

  重視課本例題,適當(dāng)對(duì)題目進(jìn)行引申,使例題的作用更加突出,有利于學(xué)生對(duì)知識(shí)的串聯(lián)、累積、加工,從而達(dá)到舉一反三的效果。

  7、板書(shū)。

  8、布置作業(yè)。

  針對(duì)學(xué)生素質(zhì)的差異進(jìn)行分層訓(xùn)練,既使學(xué)生掌握基礎(chǔ)知識(shí),又使學(xué)有佘力的學(xué)生有所提高,從而達(dá)到拔尖和“減負(fù)”的目的。

  結(jié)束:說(shuō)課是教師面對(duì)同行和其它聽(tīng)眾口頭講述具體課題的教學(xué)設(shè)想及其根據(jù)的新的教學(xué)研究形式。以上,我僅從說(shuō)教材,說(shuō)學(xué)情,說(shuō)教法,說(shuō)學(xué)法,說(shuō)教學(xué)程序上說(shuō)明了“教什么”和“怎么教”,闡明了“為什么這樣教”。說(shuō)課對(duì)我們大家仍是新事物,今后我也將進(jìn)一步說(shuō)好課,并希望各位專家領(lǐng)導(dǎo)對(duì)本堂說(shuō)課提出寶貴意見(jiàn)。

  注意時(shí)間掌握

  六、注意靈活導(dǎo)入新知識(shí)點(diǎn)。

  電腦課件

  使用投影

  根據(jù)時(shí)間進(jìn)行增刪

高中數(shù)學(xué)說(shuō)課稿10

  今天我說(shuō)課的題目是《函數(shù)的單調(diào)性》,下面我將圍繞本節(jié)課“教什么?”、“怎樣教?”以及“為什么這樣教?”三個(gè)問(wèn)題,從教材分析、教學(xué)目標(biāo)分析、教學(xué)重難點(diǎn)分析、教法與學(xué)法、教學(xué)過(guò)程五方面逐一加以分析和說(shuō)明。

  一、說(shuō)教材

  1、教材的地位和作用

  本節(jié)內(nèi)容選自北師大版高中數(shù)學(xué)必修1,第二章第3節(jié)。函數(shù)是高中數(shù)學(xué)的課程,它是描述事物運(yùn)動(dòng)變化的模型,而函數(shù)的單調(diào)性是函數(shù)的一大特征,它為我們之后的學(xué)習(xí)奠定重要基礎(chǔ)。

  2、學(xué)情分析

  本節(jié)課的學(xué)生是高一學(xué)生,他們?cè)诔踔须A段,通過(guò)一次函數(shù)、二次函數(shù)、反比例函數(shù)的學(xué)習(xí)已經(jīng)對(duì)函數(shù)的增減性有了初步的感性認(rèn)識(shí)。在高中階段,用符號(hào)語(yǔ)言刻畫(huà)圖形語(yǔ)言,用定量分析解釋定性結(jié)果,有利于培養(yǎng)學(xué)生的理性思維,為后續(xù)函數(shù)的學(xué)習(xí)作準(zhǔn)備,也為利用倒數(shù)研究單調(diào)性的相關(guān)知識(shí)奠定了基礎(chǔ)。

  教學(xué)目標(biāo)分析

  基于以上對(duì)教材和學(xué)情的分析以及新課標(biāo)教學(xué)理念,我將教學(xué)目標(biāo)分為以下三個(gè)部分:

  1、知識(shí)與技能(1)理解函數(shù)的單調(diào)性和單調(diào)函數(shù)的意義;

 。2)會(huì)判斷和證明簡(jiǎn)單函數(shù)的單調(diào)性。

  2、過(guò)程與方法

 。1)培養(yǎng)從概念出發(fā),進(jìn)一步研究性質(zhì)的意識(shí)及能力;

 。2)體會(huì)數(shù)形結(jié)合、分類討論的數(shù)學(xué)思想。

  3、情感態(tài)度與價(jià)值觀

  由合適的例子引發(fā)學(xué)生探求數(shù)學(xué)知識(shí)的欲望,突出學(xué)生的主觀能動(dòng)性,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。

  三、教學(xué)重難點(diǎn)分析

  通過(guò)以上對(duì)教材和學(xué)生的分析以及教學(xué)目標(biāo),我將本節(jié)課的重難點(diǎn)

  重點(diǎn):

  函數(shù)單調(diào)性的概念,判斷和證明簡(jiǎn)單函數(shù)的單調(diào)性。

  難點(diǎn):

  1、函數(shù)單調(diào)性概念的認(rèn)知

 。1)自然語(yǔ)言到符號(hào)語(yǔ)言的轉(zhuǎn)化;

 。2)常量到變量的轉(zhuǎn)化。

  2、應(yīng)用定義證明單調(diào)性的代數(shù)推理論證。

  四、教法與學(xué)法分析

  1、教法分析

  基于以上對(duì)教材、學(xué)情的分析以及新課標(biāo)的教學(xué)理念,本節(jié)課我采用啟發(fā)式教學(xué)、多媒體輔助教學(xué)和討論法。學(xué)生可以在多媒體中感受到數(shù)學(xué)在生活中的應(yīng)用,啟發(fā)式教學(xué)和討論法發(fā)散學(xué)生思維,培養(yǎng)學(xué)生善于思考的能力。

  2、學(xué)法分析

  新課改理念告訴我們,學(xué)生不僅要學(xué)知識(shí),更重要的是要學(xué)會(huì)怎樣學(xué)習(xí),為終生學(xué)習(xí)奠定扎實(shí)的基礎(chǔ)。所以本節(jié)課我將引導(dǎo)學(xué)生通過(guò)合作交流、自主探索的方法理解函數(shù)的單調(diào)性及特征。

  五、教學(xué)過(guò)程

  為了更好的實(shí)現(xiàn)本課的三維目標(biāo),并突破重難點(diǎn),我設(shè)計(jì)以下五個(gè)環(huán)節(jié)來(lái)進(jìn)行我的教學(xué)。

 。ㄒ唬┲R(shí)導(dǎo)入

  溫故而知新,我將先從之前學(xué)習(xí)的知識(shí)引入,給出一些函數(shù),比如y=x、y=-x、y=|x|,讓學(xué)生作出這些函數(shù)的圖像,然后讓學(xué)生討論這些函數(shù)圖像是上升的還是下降的,由此引入到我的新課。在這個(gè)過(guò)程中不僅可以檢查學(xué)生掌握基本初等函數(shù)圖像的情況,而且符合學(xué)生的認(rèn)知結(jié)構(gòu),通過(guò)學(xué)生自主探究,從知識(shí)產(chǎn)生、發(fā)展的過(guò)程中構(gòu)建新概念,有利于激發(fā)學(xué)生的思維和學(xué)習(xí)的積極主動(dòng)性。

  (二)講授新課

  1.問(wèn)題:分別做出函數(shù)y=x2,y=x+2的圖像,指出上面的函數(shù)圖象在哪個(gè)區(qū)間是上升的,在哪個(gè)區(qū)間是下降的?

  通過(guò)學(xué)生熟悉的圖像,及時(shí)引導(dǎo)學(xué)生觀察,函數(shù)圖像上A點(diǎn)的運(yùn)動(dòng)情況,引導(dǎo)學(xué)生能用自然語(yǔ)言描述出,隨著x增大時(shí)圖像變化規(guī)律。讓學(xué)生大膽的去說(shuō),老師逐步修正、完善學(xué)生的說(shuō)法,最后給出正確答案。

  2、觀察函數(shù)y=x2隨自變量x變化的情況,設(shè)置啟發(fā)式問(wèn)題:

 。1)在y軸的右側(cè)部分圖象具有什么特點(diǎn)?

 。2)如果在y軸右側(cè)部分取兩個(gè)點(diǎn)(x1,y1),(x2,y2),當(dāng)x1< p="">

  (3)如何用數(shù)學(xué)符號(hào)語(yǔ)言來(lái)描述這個(gè)規(guī)律?

  教師補(bǔ)充:這時(shí)我們就說(shuō)函數(shù)y=x2在(0,+∞)上是增函數(shù)。

 。4)反過(guò)來(lái),如果y=f(x)在(0,+∞)上是增函數(shù),我們能不能得到自變量與函數(shù)值的變化規(guī)律呢?

  類似地分析圖象在y軸的左側(cè)部分。

  通過(guò)對(duì)以上問(wèn)題的分析,從正、反兩方面領(lǐng)會(huì)函數(shù)單調(diào)性。師生共同總結(jié)出單調(diào)增函數(shù)的定義,并解讀定義中的關(guān)鍵詞,如:區(qū)間內(nèi),任意,當(dāng)x1< p="">

  仿照單調(diào)增函數(shù)定義,由學(xué)生說(shuō)出單調(diào)減函數(shù)的定義。

  教師總結(jié)歸納單調(diào)性和單調(diào)區(qū)間的定義。注意強(qiáng)調(diào):函數(shù)的單調(diào)性是函數(shù)在定義域某個(gè)區(qū)間上的局部性質(zhì),也就是說(shuō),一個(gè)函數(shù)在不同的區(qū)間上可以有不同的單調(diào)性。

 。ㄎ覍⒔o出函數(shù)y=x2,并畫(huà)出這個(gè)函數(shù)的圖像,讓學(xué)生觀察函數(shù)圖像的特點(diǎn),讓他們描述函數(shù)圖像的增減性,慢慢得到函數(shù)單調(diào)性的概念。在這個(gè)過(guò)程中,學(xué)生把對(duì)圖像的感性認(rèn)識(shí)轉(zhuǎn)化為了數(shù)學(xué)關(guān)系,這種從特殊到一般的學(xué)習(xí)過(guò)程有利于學(xué)生對(duì)概念的理解)

 。ㄈ╈柟叹毩(xí)

  1練習(xí)1:說(shuō)出函數(shù)f(x)=的單調(diào)區(qū)間,并指明在該區(qū)間上的單調(diào)性。x

  練習(xí)2:練習(xí)2:判斷下列說(shuō)法是否正確

 、俣x在R上的函數(shù)f(x)滿足f(2)>f(1),則函數(shù)是R上的增函數(shù)。

 、诙x在R上的函數(shù)f(x)滿足f(2)>f(1),則函數(shù)是R上不是減函數(shù)。

  1③已知函數(shù)y=,因?yàn)閒(-1)< p="">

  1我將給出一些具體的函數(shù),如y=,f(x)=3x+2讓學(xué)生說(shuō)出函數(shù)的單調(diào)區(qū)間,并指明在該區(qū)間x

  上的單調(diào)性。通過(guò)這種練習(xí)的方式,幫助學(xué)生鞏固對(duì)知識(shí)的掌握。

 。ㄋ模w納總結(jié)

  我先讓學(xué)生進(jìn)行小結(jié),函數(shù)單調(diào)性定義,判斷函數(shù)單調(diào)性的方法(圖像、定義),然后教師進(jìn)行補(bǔ)充,在這樣一個(gè)過(guò)程中既有利于學(xué)生鞏固知識(shí),也有利于教師對(duì)學(xué)生的學(xué)習(xí)情況有一定的了解,為下一節(jié)課的教學(xué)過(guò)程做好準(zhǔn)備。

 。ㄎ澹┎贾米鳂I(yè)

  必做題:習(xí)題2-3A組第2,4,5題。

  選做題:習(xí)題2-3B組第2題。

  新課程理念告訴我們,不同的人在數(shù)學(xué)上可以獲得不同的發(fā)展,因此要設(shè)計(jì)不同程度要求的習(xí)題。

高中數(shù)學(xué)說(shuō)課稿11

  一、說(shuō)課分析

  1.《指數(shù)函數(shù)》在教材中的地位、作用和特點(diǎn)

  《指數(shù)函數(shù)》是人教版高中數(shù)學(xué)(必修)第一冊(cè)第二章“函數(shù)”的第六節(jié)內(nèi)容,是在學(xué)習(xí)了《指數(shù)》一節(jié)內(nèi)容之后編排的。通過(guò)本節(jié)課的學(xué)習(xí),既可以對(duì)指數(shù)和函數(shù)的概念等知識(shí)進(jìn)一步鞏固和深化,又可以為后面進(jìn)一步學(xué)習(xí)對(duì)數(shù)、對(duì)數(shù)函數(shù)尤其是利用互為反函數(shù)的圖象間的關(guān)系來(lái)研究對(duì)數(shù)函數(shù)的性質(zhì)打下堅(jiān)實(shí)的概念和圖象基礎(chǔ),又因?yàn)椤吨笖?shù)函數(shù)》是進(jìn)入高中以后學(xué)生遇到的第一個(gè)系統(tǒng)研究的函數(shù),對(duì)高中階段研究對(duì)數(shù)函數(shù)、三角函數(shù)等完整的函數(shù)知識(shí),初步培養(yǎng)函數(shù)的應(yīng)用意識(shí)打下了良好的學(xué)習(xí)基礎(chǔ),所以《指數(shù)函數(shù)》不僅是本章《函數(shù)》的重點(diǎn)內(nèi)容,也是高中學(xué)段的主要研究?jī)?nèi)容之一,有著不可替代的重要作用。

  此外,《指數(shù)函數(shù)》的知識(shí)與我們的日常生產(chǎn)、生活和科學(xué)研究有著緊密的聯(lián)系,尤其體現(xiàn)在細(xì)胞、貸款利率的計(jì)算和考古中的年代測(cè)算等方面,因此學(xué)習(xí)這部分知識(shí)還有著廣泛的現(xiàn)實(shí)意義。本節(jié)內(nèi)容的特點(diǎn)之一是概念性強(qiáng),特點(diǎn)之二是凸顯了數(shù)學(xué)圖形在研究函數(shù)性質(zhì)時(shí)的重要作用。

  2.教學(xué)目標(biāo)、重點(diǎn)和難點(diǎn)

  通過(guò)初中學(xué)段的學(xué)習(xí)和高中對(duì)集合、函數(shù)等知識(shí)的系統(tǒng)學(xué)習(xí),學(xué)生對(duì)函數(shù)和圖象的關(guān)系已經(jīng)構(gòu)建了一定的認(rèn)知結(jié)構(gòu),主要體現(xiàn)在三個(gè)方面:

  知識(shí)維度:對(duì)正比例函數(shù)、反比例函數(shù)、一次函數(shù),二次函數(shù)等最簡(jiǎn)單的函數(shù)概念和性質(zhì)已有了初步認(rèn)識(shí),能夠從初中運(yùn)動(dòng)變化的角度認(rèn)識(shí)函數(shù)初步轉(zhuǎn)化到從集合與對(duì)應(yīng)的觀點(diǎn)來(lái)認(rèn)識(shí)函數(shù)。

  技能維度:學(xué)生對(duì)采用“描點(diǎn)法”描繪函數(shù)圖象的方法已基本掌握,能夠?yàn)檠芯俊吨笖?shù)函數(shù)》的性質(zhì)做好準(zhǔn)備。

  素質(zhì)維度:由觀察到抽象的數(shù)學(xué)活動(dòng)過(guò)程已有一定的體會(huì),已初步了解了數(shù)形結(jié)合的思想。

  鑒于對(duì)學(xué)生已有的知識(shí)基礎(chǔ)和認(rèn)知能力的分析,根據(jù)《教學(xué)大綱》的要求,我確定本節(jié)課的教學(xué)目標(biāo)、教學(xué)重點(diǎn)和難點(diǎn)如下:

  (1)知識(shí)目標(biāo):①掌握指數(shù)函數(shù)的概念;②掌握指數(shù)函數(shù)的圖象和性質(zhì);③能初步利用指數(shù)函數(shù)的概念解決實(shí)際問(wèn)題;

  (2)技能目標(biāo):①滲透數(shù)形結(jié)合的基本數(shù)學(xué)思想方法②培養(yǎng)學(xué)生觀察、聯(lián)想、類比、猜測(cè)、歸納的能力;

  (3)情感目標(biāo):①體驗(yàn)從特殊到一般的學(xué)習(xí)規(guī)律,認(rèn)識(shí)事物之間的普遍聯(lián)系與相互轉(zhuǎn)化,培養(yǎng)學(xué)生用聯(lián)系的觀點(diǎn)看問(wèn)題②通過(guò)教學(xué)互動(dòng)促進(jìn)師生情感,激發(fā)學(xué)生的學(xué)習(xí)興趣,提高學(xué)生抽象、概括、分析、綜合的能力③領(lǐng)會(huì)數(shù)學(xué)科學(xué)的應(yīng)用價(jià)值。

  (4)教學(xué)重點(diǎn):指數(shù)函數(shù)的圖象和性質(zhì)。

  (5)教學(xué)難點(diǎn):指數(shù)函數(shù)的圖象性質(zhì)與底數(shù)a的關(guān)系。

  突破難點(diǎn)的關(guān)鍵:尋找新知生長(zhǎng)點(diǎn),建立新舊知識(shí)的聯(lián)系,在理解概念的基礎(chǔ)上充分結(jié)合圖象,利用數(shù)形結(jié)合來(lái)掃清障礙。

  二、說(shuō)課設(shè)計(jì)

  由于《指數(shù)函數(shù)》這節(jié)課的特殊地位,在本節(jié)課的教法設(shè)計(jì)中,我力圖通過(guò)這一節(jié)課的教學(xué)達(dá)到不僅使學(xué)生初步理解并能簡(jiǎn)單應(yīng)用指數(shù)函數(shù)的知識(shí),更期望能引領(lǐng)學(xué)生掌握研究初等函數(shù)圖象性質(zhì)的一般思路和方法,為今后研究其它的函數(shù)做好準(zhǔn)備,從而達(dá)到培養(yǎng)學(xué)生學(xué)習(xí)能力的目的,我根據(jù)自己對(duì)“誘思探究”教學(xué)模式和“情景式”教學(xué)模式的認(rèn)識(shí),將二者結(jié)合起來(lái),主要突出了幾個(gè)方面:

  1.創(chuàng)設(shè)問(wèn)題情景.按照指數(shù)函數(shù)的在生活中的實(shí)際背景給出兩個(gè)實(shí)例,充分調(diào)動(dòng)學(xué)生的學(xué)習(xí)興趣,激發(fā)學(xué)生的探究心理,順利引入課題,而這兩個(gè)例子又恰好為研究指數(shù)函數(shù)中底數(shù)大于1和底數(shù)大于0小于1的圖象做好了準(zhǔn)備。

  2.強(qiáng)化“指數(shù)函數(shù)”概念.引導(dǎo)學(xué)生結(jié)合指數(shù)的有關(guān)概念來(lái)歸納出指數(shù)函數(shù)的定義,并向?qū)W生指出指數(shù)函數(shù)的形式特點(diǎn),請(qǐng)學(xué)生思考對(duì)于底數(shù)a是否需要限制,如不限制會(huì)有什么問(wèn)題出現(xiàn),這樣避免了學(xué)生對(duì)于底數(shù)a范圍分類的不清楚,也為研究指數(shù)函數(shù)的圖象做了“分類討論”的鋪墊。

  3.突出圖象的作用.在數(shù)學(xué)學(xué)習(xí)過(guò)程中,圖形始終使我們需要借助的重要輔助手段。一位數(shù)學(xué)家曾經(jīng)說(shuō)過(guò)“數(shù)離形時(shí)少直觀,形離數(shù)時(shí)難入微”,而在研究指數(shù)函數(shù)的性質(zhì)時(shí),更是直接由圖象觀察得出性質(zhì),因此圖象發(fā)揮了主要的作用。

  4.注意數(shù)學(xué)與生活和實(shí)踐的聯(lián)系.數(shù)學(xué)的本質(zhì)是來(lái)源于生活,服務(wù)于實(shí)踐。在課堂教學(xué)的引入、例題的講解和課外知識(shí)的拓展部分,都介紹了與指數(shù)函數(shù)息息相關(guān)的生活問(wèn)題,力圖使學(xué)生了解到數(shù)學(xué)的基礎(chǔ)學(xué)科作用,培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用意識(shí)。

  三、學(xué)法指導(dǎo)

  本節(jié)課是在學(xué)習(xí)完“指數(shù)”的概念和運(yùn)算后編排的,針對(duì)學(xué)生實(shí)際情況,我主要在以下幾個(gè)方面做了嘗試:

  1.再現(xiàn)原有認(rèn)知結(jié)構(gòu)。在引入兩個(gè)生活實(shí)例后,請(qǐng)學(xué)生回憶有關(guān)指數(shù)的概念,幫助學(xué)生再現(xiàn)原有認(rèn)知結(jié)構(gòu),為理解指數(shù)函數(shù)的概念做好準(zhǔn)備。

  2.領(lǐng)會(huì)常見(jiàn)數(shù)學(xué)思想方法。在借助圖象研究指數(shù)函數(shù)的性質(zhì)時(shí)會(huì)遇到分類討論、數(shù)形結(jié)合等基本數(shù)學(xué)思想方法,這些方法將會(huì)貫穿整個(gè)高中的數(shù)學(xué)學(xué)習(xí)。

  3.在互相交流和自主探究中獲得發(fā)展。在生活實(shí)例的課堂導(dǎo)入、指數(shù)函數(shù)的性質(zhì)研究、例題與訓(xùn)練、課內(nèi)小節(jié)等教學(xué)環(huán)節(jié)中都安排了學(xué)生的討論、分組、交流等活動(dòng),讓學(xué)生變被動(dòng)的接受和記憶知識(shí)為在合作學(xué)習(xí)的樂(lè)趣中主動(dòng)地建構(gòu)新知識(shí)的框架和體系,從而完成知識(shí)的內(nèi)化過(guò)程。

  4.注意學(xué)習(xí)過(guò)程的循序漸進(jìn)。在概念、圖象、性質(zhì)、應(yīng)用、拓展的過(guò)程中按照先易后難的順序?qū)訉舆f進(jìn),讓學(xué)生感到有挑戰(zhàn)、有收獲,跳一跳,夠得著,不同難度的題目設(shè)計(jì)將盡可能照顧到課堂學(xué)生的個(gè)體差異。

  四、程序設(shè)計(jì)

  在設(shè)計(jì)本節(jié)課的教學(xué)過(guò)程中,本著遵循學(xué)生的認(rèn)知規(guī)律、讓學(xué)生去經(jīng)歷知識(shí)的形成與發(fā)展過(guò)程的原則,我設(shè)計(jì)了如下的教學(xué)程序,啟發(fā)學(xué)生逐步發(fā)現(xiàn)和認(rèn)識(shí)指數(shù)函數(shù)的圖象和性質(zhì)。

  1.創(chuàng)設(shè)情景、導(dǎo)入新課

  教師活動(dòng):①用電腦展示兩個(gè)實(shí)例,第一個(gè)是計(jì)算機(jī)價(jià)格下降問(wèn)題,第二個(gè)是生物中細(xì)胞的例子,②將學(xué)生按奇數(shù)列、偶數(shù)列分組。

  學(xué)生活動(dòng):①分別寫(xiě)出計(jì)算機(jī)價(jià)格y與經(jīng)過(guò)月份x的關(guān)系式和細(xì)胞個(gè)數(shù)y與次數(shù)x的關(guān)系式,并互相交流;②回憶指數(shù)的概念;③歸納指數(shù)函數(shù)的概念;④分析出對(duì)指數(shù)函數(shù)底數(shù)討論的必要性以及分類的方法。

  設(shè)計(jì)意圖:通過(guò)生活實(shí)例激發(fā)學(xué)生的學(xué)習(xí)動(dòng)機(jī),,掃清由概念不清而造成的知識(shí)障礙,培養(yǎng)學(xué)生思維的主動(dòng)性,為突破難點(diǎn)做好準(zhǔn)備;

  2.啟發(fā)誘導(dǎo)、探求新知

  教師活動(dòng):①給出兩個(gè)簡(jiǎn)單的指數(shù)函數(shù)并要求學(xué)生畫(huà)它們的圖象②在準(zhǔn)備好的小黑板上規(guī)范地畫(huà)出這兩個(gè)指數(shù)函數(shù)的圖象③板書(shū)指數(shù)函數(shù)的性質(zhì)。

  學(xué)生活動(dòng):①畫(huà)出兩個(gè)簡(jiǎn)單的指數(shù)函數(shù)圖象②交流、討論③歸納出研究函數(shù)性質(zhì)涉及的方面④總結(jié)出指數(shù)函數(shù)的性質(zhì)。

  設(shè)計(jì)意圖:讓學(xué)生動(dòng)手作簡(jiǎn)單的指數(shù)函數(shù)的圖象對(duì)深刻理解本節(jié)課的內(nèi)容有著一定的促進(jìn)作用,在學(xué)生完成基本作圖之后,教師再利用課前已列表、建立坐標(biāo)系的小黑板展示準(zhǔn)確的作圖方法,達(dá)到進(jìn)一步規(guī)范學(xué)生的作圖習(xí)慣的目的,然后借助“函數(shù)作圖器”用多媒體將指數(shù)函數(shù)的圖象推廣到一般情況,學(xué)生就會(huì)很自然的通過(guò)觀察圖象總結(jié)出指數(shù)函數(shù)的性質(zhì),同時(shí)對(duì)于底數(shù)的討論也就變得順理成章。

  3.鞏固新知、反饋回授

  教師活動(dòng):①板書(shū)例1②板書(shū)例2第一問(wèn)③介紹有關(guān)考古的拓展知識(shí)。

高中數(shù)學(xué)說(shuō)課稿12

各位教師:

  今天我說(shuō)課的題目是《必修》4第二章第二單元中“平面向量的線性運(yùn)算”的第一節(jié)課《向量的加法》,我從以下幾個(gè)方面闡述本課的教學(xué)設(shè)計(jì)。

  一、教材分析:

  《向量的加法》是《必修》4第二章第二單元中“平面向量的線性運(yùn)算”的第一節(jié)課。本節(jié)內(nèi)容有向量加法的平行四邊形法則、三角形法則及應(yīng)用,向量加法的運(yùn)算律及應(yīng)用,大約需要1課時(shí)。向量的加法是向量的線性運(yùn)算中最基本的一種運(yùn)算,向量的加法及其幾何意義為后繼學(xué)習(xí)向量的減法運(yùn)算及其幾何意義、向量的數(shù)乘運(yùn)算及其幾何意義奠定了基礎(chǔ);其中三角形法則適用于求任意多個(gè)向量的和,在空間向量與立體幾何中有很普遍的應(yīng)用。所以本課在“平面向量”及“空間向量”中有很重要的地位。

  二、學(xué)情分析:

  學(xué)生在上節(jié)課中學(xué)習(xí)了向量的定義及表示,相等向量,平行向量等概念,知道向量可以自由移動(dòng),這是學(xué)習(xí)本節(jié)內(nèi)容的基礎(chǔ)。學(xué)生對(duì)數(shù)的運(yùn)算了如指掌,并且在物理中學(xué)過(guò)力的合成、位移的合成等矢量的加法,所以向量的加法可通過(guò)類比數(shù)的加法、以所學(xué)的物理模型為背景引入,這樣做有利于學(xué)生更好地理解向量加法的意義,準(zhǔn)確把握兩個(gè)加法法則的特點(diǎn)。

  三、教學(xué)目的:

  1、通過(guò)對(duì)向量加法的探究,使學(xué)生掌握向量加法的概念,結(jié)合物理學(xué)實(shí)際理解向量加法的意義。能正確領(lǐng)會(huì)向量加法的平行四邊形法則和三角形法則的幾何意義,并能運(yùn)用法則作出兩個(gè)已知向量的和向量。

  2、在應(yīng)用活動(dòng)中,理解向量加法滿足交換律和結(jié)合律以及表述兩個(gè)運(yùn)算律的幾何意義。掌握有特殊位置關(guān)系的兩個(gè)向量之和,比如共線向量,共起點(diǎn)向量、共終點(diǎn)向量等。

  3、通過(guò)本節(jié)的學(xué)習(xí),培養(yǎng)學(xué)生類比、遷移、分類、歸納等數(shù)學(xué)方面的能力。

  四、教學(xué)重、難點(diǎn)

  重點(diǎn):向量的加法法則。探究向量的加法法則并正確應(yīng)用是本課的重點(diǎn)。兩個(gè)加法法則各有特點(diǎn),聯(lián)系緊密,你中有我,我中有你,實(shí)質(zhì)相同,但是三角形法則適用范圍更加廣泛,且簡(jiǎn)便易行,所以是詳講內(nèi)容,平行四邊形法則在本課中所占份量略少于三角形法則。

  難點(diǎn):對(duì)三角形法則的理解;方向相反的兩個(gè)向量的加法。主要是讓學(xué)生認(rèn)識(shí)到三角形法則的實(shí)質(zhì)是:將已知向量首尾相接,而不是表示向量的有向線段之間必須構(gòu)成三角形。

  五、教學(xué)方法

  本節(jié)采用以下教學(xué)方法:1、類比:由數(shù)的加法運(yùn)算類比向量的加法運(yùn)算。2、探究:由力的合成引入平行四邊形法則,在法則的運(yùn)用中觀察圖形得出三角形法則,探求共線向量的加法,發(fā)現(xiàn)三角形法則適用于任意向量相加;通過(guò)圖形,觀察得出向量加法滿足交換律、結(jié)合律等,這些都體現(xiàn)探究式教學(xué)法的運(yùn)用。3、講解與練習(xí):對(duì)兩個(gè)法則特點(diǎn)的分析,例題都采取了引導(dǎo)與講解的方法,學(xué)生課堂完成教材中的練習(xí)。4、多媒體技術(shù)的運(yùn)用,能直觀地表現(xiàn)向量的平移,相等向量的意義,更能說(shuō)清兩個(gè)法則的幾何意義及運(yùn)算律。

  六、數(shù)學(xué)思想的體現(xiàn):

  1、分類的思想:總的來(lái)說(shuō)本課中向量的加法分為不共線向量及共線向量?jī)煞N形式,共線向量又分為方向相同與方向相反兩種情形,然后專門對(duì)零向量與任意向量相加作了規(guī)定,這樣對(duì)任意向量的加法都做了討論,線索清楚。

  2、類比思想:使之與數(shù)的加法進(jìn)行類比,使學(xué)生對(duì)向量的加法不致于太陌生,既有似曾相識(shí)的感覺(jué),又能從對(duì)比中看出兩者的不同,效果較好。

  3、歸納思想:主要體現(xiàn)在以下三個(gè)環(huán)節(jié)①學(xué)完平行四邊形法則和三角形法則后,歸納總結(jié),對(duì)不共線向量相加,兩個(gè)法則都可以選用。②由共線向量的加法總結(jié)出三角形法則適用于任意兩個(gè)向量的相加,而三角形法則僅適用于不共線向量相加。③對(duì)向量加法的結(jié)合律和探討中,又使學(xué)生發(fā)現(xiàn)了三角形法則還適用于任意多個(gè)向量的加法。歸納思想在這三個(gè)環(huán)節(jié)中的運(yùn)用,使得學(xué)生對(duì)兩個(gè)加法法則,尤其是三角形法則的理解,步步深入。

  七、教學(xué)過(guò)程:

  1、回顧舊知:本節(jié)要進(jìn)行向量的平移,且對(duì)向量加法分共線與不共線兩種情況,所以要復(fù)習(xí)向量、相等向量、共線向量等概念,這些都是新課學(xué)習(xí)中必要的知識(shí)鋪墊。

  2、引入新課:

 。1)平行四邊形法則的引入。

  學(xué)生在物理學(xué)中雖然接觸過(guò)位移的合成,但是并沒(méi)有形成三角形法則的概念;而對(duì)平行四邊形法則學(xué)生已學(xué)過(guò),很熟悉。所以我決定由力的合成引入向量加法的平行四邊形法則。平行四邊形法則的特點(diǎn)是起點(diǎn)相同,但是物理中力的合成是在有相同的作用點(diǎn)的條件下合成的,引入到數(shù)學(xué)中向量加法的平行四邊形法則,所給出的圖形也是現(xiàn)成的平行四邊形,而學(xué)生剛學(xué)完相等向量,對(duì)相等向量的概念還沒(méi)有深刻的認(rèn)識(shí),易產(chǎn)生誤解:表示兩個(gè)已知向量的有向線段的起點(diǎn)必須在一起才能用平行四邊形法則,不在一起不能用。這時(shí)要通過(guò)講解例1,使學(xué)生認(rèn)識(shí)到可以通過(guò)平移向量,使表示兩個(gè)向量的有向線段有共同的起點(diǎn)。這一點(diǎn)對(duì)理解及運(yùn)用法則求兩向量的和很重要。

  設(shè)計(jì)意圖:本著從學(xué)生最熟悉、離學(xué)生最近的知識(shí)經(jīng)驗(yàn)為接入點(diǎn),用學(xué)生熟知的方法來(lái)解決新的問(wèn)題——向量的加法,這樣新中有舊,學(xué)生容易接受,也使學(xué)科間的滲透發(fā)揮了作用,加深了學(xué)生對(duì)向量加法的平行四邊形法則的“起點(diǎn)相同”這一特點(diǎn)的認(rèn)識(shí),例1的講解使學(xué)生認(rèn)識(shí)到當(dāng)表示向量的有向線段的起點(diǎn)不在一起時(shí),須把起點(diǎn)移到一起,至此才能使學(xué)生完成對(duì)平行四邊形法則理解真正到位。

 。2)三角形法則的引入。三角形法則沒(méi)有按照教材中利用位移的合成引入,而是從前面所講的平行四邊形法則的圖形中直接引入(如圖)。

  所以這種把兩個(gè)向量相加的方法稱為三角形法則。接下來(lái)用幻燈片完整展示三角形法則,同時(shí)法則的作法敘述、作圖過(guò)程對(duì)學(xué)生也起到了示例的作用。于是前面的例1還可以利用三角形法則來(lái)做。

  這時(shí),總結(jié)出兩個(gè)不共線向量求和時(shí),平行四邊形法則與三角形法則都可以用。

  設(shè)計(jì)意圖:由平行四邊形法則的圖形引入三角形法則,可以很清楚地使學(xué)生從向何意義上認(rèn)識(shí)到兩個(gè)法則之間的密切聯(lián)系,理解它們的實(shí)質(zhì),而且銜接自然,能夠使學(xué)生對(duì)比地得出兩個(gè)法則的特點(diǎn)與實(shí)質(zhì),并對(duì)兩個(gè)法則的特點(diǎn)有較深刻的印象。

  (3)共線向量的加法

  方向相同的兩個(gè)向量相加,對(duì)學(xué)生來(lái)說(shuō)較易完成,“將它們接在一起,取它們的方向及長(zhǎng)度之和,作為和向量的方向與長(zhǎng)度!币龑(dǎo)學(xué)生分析作法,結(jié)果發(fā)現(xiàn)還是運(yùn)用了三角形法則:首尾相接,方向由第一個(gè)向量的起點(diǎn)指向第二個(gè)向量的終點(diǎn)。

  方向相反的兩個(gè)向量相加,對(duì)學(xué)生來(lái)說(shuō)是個(gè)難點(diǎn),首先從作圖上不知道怎樣做。但是學(xué)生學(xué)過(guò)有理數(shù)加法中的異號(hào)兩數(shù)相加:“異號(hào)兩數(shù)相加,用較大的絕對(duì)值減去較小的絕對(duì)值,符號(hào)取絕對(duì)值較大的數(shù)的符號(hào)!鳖惐犬愄(hào)兩數(shù)相加,他們會(huì)用較長(zhǎng)的模減去較短的模,方向取模較長(zhǎng)的向量的方向。具體做法由老師引導(dǎo)學(xué)生嘗試運(yùn)用三角形法則去做,發(fā)現(xiàn)結(jié)論正確。

  反思過(guò)程,學(xué)生自然會(huì)想到方向相同的兩個(gè)向量相加,類似于同號(hào)兩數(shù)相加。這說(shuō)明兩個(gè)共線向量相加依然可用三角形法則。對(duì)有如下規(guī)定:

  +

  =

  +

  =

  通過(guò)以上幾個(gè)環(huán)節(jié)的討論,可以作個(gè)簡(jiǎn)單的小結(jié):兩個(gè)不共線向量相加,可采用平行四邊形法則或三角形法則,而兩個(gè)共線向量相加在本課所學(xué)方法中只能用三角形法則,說(shuō)明三角形法則適用于任意兩個(gè)向量相加。

  設(shè)計(jì)意圖:通過(guò)對(duì)共線向量加法的探討,拓寬了學(xué)生對(duì)三角形法則的認(rèn)識(shí),使得不同位置的向量相加都有了依據(jù),并且采用類比的方法,使學(xué)生對(duì)共線向量的加法,尤其是方向相反的兩個(gè)向量的加法更易于理解,可以化解難點(diǎn)。

 。4)向量加法的運(yùn)算律

 、俳粨Q律:交換律是利用平行四邊形法則的圖形,又結(jié)合三角形法則得出,理解起來(lái)沒(méi)什么困難,再一次強(qiáng)化了學(xué)生對(duì)兩個(gè)法則特點(diǎn)及實(shí)質(zhì)的認(rèn)識(shí)。

 、诮Y(jié)合律:結(jié)合律是通過(guò)三個(gè)向量首尾相接,先加前兩個(gè)再與第三個(gè)向量相加,和先加后兩個(gè)向量再與第一個(gè)向量相加所得結(jié)果相同。

  接下來(lái)是對(duì)應(yīng)的兩個(gè)練習(xí),運(yùn)用交換律與結(jié)合律計(jì)算向量的和。

  設(shè)計(jì)意圖:運(yùn)算律的引入給加法運(yùn)算帶來(lái)方便,從后面的練習(xí)中學(xué)生能夠體會(huì)到這點(diǎn)。由結(jié)合律還使學(xué)生發(fā)現(xiàn),多個(gè)向量相加,同樣可以運(yùn)用三角形法則:將所加向量首尾相接,和向量的方向是由第一個(gè)向量的起點(diǎn)指向最后一個(gè)向量的終點(diǎn)。這樣使學(xué)生明白,三角形法則適用于任意多個(gè)向量相加。

  3、小結(jié)

  先由學(xué)生小結(jié),檢查學(xué)生對(duì)本課重要知識(shí)的認(rèn)識(shí),也給學(xué)生一個(gè)概括本節(jié)知識(shí)的機(jī)會(huì),然后用課件展示小結(jié)內(nèi)容,使學(xué)生印象更深。

 。1)平行四邊形法則:起點(diǎn)相同,適用于不共線向量的求和。

 。2)三角形法則首尾相接,適用于任意多個(gè)向量的求和。

 。3)運(yùn)算律

  交換律:

  +

  =

  +

  結(jié)合律:(

  +

 。+

  =

  +(

  +

  )

  4、作業(yè):P91,A組1、2、3。

  《向量的加法》評(píng)課稿

  本節(jié)所授內(nèi)容基本與原先設(shè)想一致,評(píng)略得當(dāng),重點(diǎn)突出,難點(diǎn)化解。在兩個(gè)加法則的引入、講解及運(yùn)用的處理方法、時(shí)間安排都把握得比較好,能夠引導(dǎo)學(xué)生積極主動(dòng)地探索平行四邊形法則和三角形法則,使學(xué)生對(duì)兩個(gè)加法法則形成了正確的認(rèn)識(shí),留下了深刻的印象,通過(guò)反饋練習(xí),可以看出學(xué)生對(duì)兩個(gè)法則的運(yùn)用掌握的比較好,比較完整地實(shí)現(xiàn)了教學(xué)目標(biāo)。

  本節(jié)課的教學(xué)方法運(yùn)用比較合理:采取了類比、探究、講練結(jié)合及多媒體技術(shù)等多種方法。對(duì)數(shù)學(xué)課來(lái)說(shuō),本節(jié)課最顯著的特點(diǎn)是將全部板書(shū)都移到了課件上,對(duì)我來(lái)說(shuō),是一次嘗試,因?yàn)橐郧,我認(rèn)為數(shù)學(xué)課沒(méi)必要用課件,對(duì)全部利用課件上課更是不能接受。但是這次講課改變了我的看法。從學(xué)生的反饋情況來(lái)看,這樣處理對(duì)教學(xué)效果沒(méi)有什么不良影響,反而使學(xué)生能更直觀地理解兩個(gè)加法法則和運(yùn)算律,通過(guò)課件中的向量的平移,加深了學(xué)生對(duì)上節(jié)課所學(xué)的“相等向量”的概念的理解,也加大了課堂容量,還沒(méi)有擁擠之感。從學(xué)生對(duì)內(nèi)容小結(jié)的敘述看,沒(méi)有板書(shū),并沒(méi)有妨礙本節(jié)內(nèi)容在學(xué)生腦海中留下的印象。原先的設(shè)計(jì)中,板書(shū)設(shè)計(jì)也有,打在教案的后面。

  通過(guò)這節(jié)課的講授,我收獲很多:首先,從課程的構(gòu)思上,沒(méi)有按照教參建議及網(wǎng)上普遍的編排方法先講三角形法則,而是先由學(xué)生學(xué)過(guò)的力的合成引入了平行四邊形法則,由此又引入三角形法則,效果也不錯(cuò)?梢(jiàn),對(duì)教材的處理確實(shí)要根據(jù)學(xué)生情況,靈活裁剪,不能生搬硬套。

  其次,通過(guò)這節(jié)課我感到,對(duì)有些與圖形聯(lián)系較多的課程,使用課件講解簡(jiǎn)便易行,關(guān)鍵是要根據(jù)教學(xué)設(shè)計(jì)制作合適的課件,并且合理使用。

  本節(jié)缺憾也很多。首先,學(xué)生活動(dòng)還是偏少,沒(méi)有充分、全面地調(diào)動(dòng)學(xué)生熱情。其次,語(yǔ)言不夠精煉,有時(shí)比較啰嗦,也耽誤了時(shí)間,第三,學(xué)生發(fā)言時(shí),好打斷學(xué)生,總覺(jué)得學(xué)生說(shuō)得不清楚,搶學(xué)生話頭,打擊了學(xué)生課堂參與的積極性,很不好。

  以上是我對(duì)這節(jié)課的反思,不到之處,請(qǐng)大家指點(diǎn)。

高中數(shù)學(xué)說(shuō)課稿13

  一、教材地位與作用

  本節(jié)知識(shí)是必修五第一章《解三角形》的第一節(jié)內(nèi)容,與初中學(xué)習(xí)的三角形的邊和角的基本關(guān)系有密切的聯(lián)系與判定三角形的全等也有密切聯(lián)系,在日常生活和工業(yè)生產(chǎn)中也時(shí)常有解三角形的問(wèn)題,而且解三角形和三角函數(shù)聯(lián)系在高考當(dāng)中也時(shí)?家恍┙獯痤}。因此,正弦定理的知識(shí)非常重要。

  二、學(xué)情分析

  作為高一學(xué)生,同學(xué)們已經(jīng)掌握了基本的三角函數(shù),特別是在一些特殊三角形中,而學(xué)生們?cè)诮鉀Q任意三角形的邊與角問(wèn)題,就比較困難。

  教學(xué)重點(diǎn):正弦定理的內(nèi)容,正弦定理的證明及基本應(yīng)用。

  教學(xué)難點(diǎn):正弦定理的探索及證明,已知兩邊和其中一邊的對(duì)角解三角形時(shí)判斷解的個(gè)數(shù)。

  根據(jù)我的教學(xué)內(nèi)容與學(xué)情分析以及教學(xué)重難點(diǎn),我制定了如下幾點(diǎn)教學(xué)目標(biāo)

  教學(xué)目標(biāo)分析:

  知識(shí)目標(biāo):理解并掌握正弦定理的證明,運(yùn)用正弦定理解三角形。

  能力目標(biāo):探索正弦定理的證明過(guò)程,用歸納法得出結(jié)論。

  情感目標(biāo):通過(guò)推導(dǎo)得出正弦定理,讓學(xué)生感受數(shù)學(xué)公式的整潔對(duì)稱美和數(shù)學(xué)的實(shí)際應(yīng)用價(jià)值。

  三、教法學(xué)法分析

  教法:采用探究式課堂教學(xué)模式,在教師的啟發(fā)引導(dǎo)下,以學(xué)生獨(dú)立自主和合作交流為前提,以“正弦定理的發(fā)現(xiàn)”為基本探究?jī)?nèi)容,以生活實(shí)際為參照對(duì)象,讓學(xué)生的思維由問(wèn)題開(kāi)始,到猜想的得出,猜想的探究,定理的推導(dǎo),并逐步得到深化。

  學(xué)法:指導(dǎo)學(xué)生掌握“觀察——猜想——證明——應(yīng)用”這一思維方法,采取個(gè)人、小組、集體等多種解難釋疑的嘗試活動(dòng),將自己所學(xué)知識(shí)應(yīng)用于對(duì)任意三角形性質(zhì)的探究。讓學(xué)生在問(wèn)題情景中學(xué)習(xí),觀察,類比,思考,探究,動(dòng)手嘗試相結(jié)合,增強(qiáng)學(xué)生由特殊到一般的數(shù)學(xué)思維能力,鍥而不舍的求學(xué)精神。

  四、教學(xué)過(guò)程

  (一)創(chuàng)設(shè)情境,布疑激趣

  “興趣是最好的老師”,如果一節(jié)課有個(gè)好的開(kāi)頭,那就意味著成功了一半,本節(jié)課由一個(gè)實(shí)際問(wèn)題引入,“工人師傅的一個(gè)三角形的模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長(zhǎng)為1m,想修好這個(gè)零件,但他不知道AC和BC的長(zhǎng)度是多少好去截料,你能幫師傅這個(gè)忙嗎?”激發(fā)學(xué)生幫助別人的熱情和學(xué)習(xí)的興趣,從而進(jìn)入今天的學(xué)習(xí)課題。

  (二)探尋特例,提出猜想

  1.激發(fā)學(xué)生思維,從自身熟悉的特例(直角三角形)入手進(jìn)行研究,發(fā)現(xiàn)正弦定理。

  2.那結(jié)論對(duì)任意三角形都適用嗎?指導(dǎo)學(xué)生分小組用刻度尺、量角器、計(jì)算器等工具對(duì)一般三角形進(jìn)行驗(yàn)證。

  3.讓學(xué)生總結(jié)實(shí)驗(yàn)結(jié)果,得出猜想:

  在三角形中,角與所對(duì)的邊滿足關(guān)系

  這為下一步證明樹(shù)立信心,不斷的使學(xué)生對(duì)結(jié)論的認(rèn)識(shí)從感性逐步上升到理性。

  (三)邏輯推理,證明猜想

  1.強(qiáng)調(diào)將猜想轉(zhuǎn)化為定理,需要嚴(yán)格的理論證明。

  2.鼓勵(lì)學(xué)生通過(guò)作高轉(zhuǎn)化為熟悉的直角三角形進(jìn)行證明。

  3.提示學(xué)生思考哪些知識(shí)能把長(zhǎng)度和三角函數(shù)聯(lián)系起來(lái),繼而思考向量分析層面,用數(shù)量積作為工具證明定理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。

  4.思考是否還有其他的方法來(lái)證明正弦定理,布置課后練習(xí),提示,做三角形的外接圓構(gòu)造直角三角形,或用坐標(biāo)法來(lái)證明。

  (四)歸納總結(jié),簡(jiǎn)單應(yīng)用

  1.讓學(xué)生用文字?jǐn)⑹稣叶ɡ恚龑?dǎo)學(xué)生發(fā)現(xiàn)定理具有對(duì)稱和諧美,提升對(duì)數(shù)學(xué)美的享受。

  2.正弦定理的內(nèi)容,討論可以解決哪幾類有關(guān)三角形的問(wèn)題。

  3.運(yùn)用正弦定理求解本節(jié)課引入的三角形零件邊長(zhǎng)的問(wèn)題。自己參與實(shí)際問(wèn)題的解決,能激發(fā)學(xué)生知識(shí)后用于實(shí)際的價(jià)值觀。

  (五)講解例題,鞏固定理

  1.例1:在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形。

  例1簡(jiǎn)單,結(jié)果為唯一解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對(duì)邊,都可利用正弦定理來(lái)解三角形。

  2.例2:在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形。

  例2較難,使學(xué)生明確,利用正弦定理求角有兩種可能。要求學(xué)生熟悉掌握已知兩邊和其中一邊的對(duì)角時(shí)解三角形的各種情形。完了把時(shí)間交給學(xué)生。

  (六)課堂練習(xí),提高鞏固

  1.在△ABC中,已知下列條件,解三角形。

  (1)A=45°,C=30°,c=10cm(2)A=60°,B=45°,c=20cm

  2.在△ABC中,已知下列條件,解三角形。

  (1)a=20cm,b=11cm,B=30°(2)c=54cm,b=39cm,C=115°

  學(xué)生板演,老師巡視,及時(shí)發(fā)現(xiàn)問(wèn)題,并解答。

  (七)小結(jié)反思,提高認(rèn)識(shí)

  通過(guò)以上的研究過(guò)程,同學(xué)們主要學(xué)到了那些知識(shí)和方法?你對(duì)此有何體會(huì)?

  1.用向量證明了正弦定

  理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。

  2.它表述了三角形的邊與對(duì)角的正弦值的關(guān)系。

  3.定理證明分別從直角、銳角、鈍角出發(fā),運(yùn)用分類討論的思想。

  (從實(shí)際問(wèn)題出發(fā),通過(guò)猜想、實(shí)驗(yàn)、歸納等思維方法,最后得到了推導(dǎo)出正弦定理。我們研究問(wèn)題的突出特點(diǎn)是從特殊到一般,我們不僅收獲著結(jié)論,而且整個(gè)探索過(guò)程我們也掌握了研究問(wèn)題的一般方法。在強(qiáng)調(diào)研究性學(xué)習(xí)方法,注重學(xué)生的主體地位,調(diào)動(dòng)學(xué)生積極性,使數(shù)學(xué)教學(xué)成為數(shù)學(xué)活動(dòng)的教學(xué)。)

  (八)任務(wù)后延,自主探究

  如果已知一個(gè)三角形的兩邊及其夾角,要求第三邊,怎么辦?發(fā)現(xiàn)正弦定理不適用了,那么自然過(guò)渡到下一節(jié)內(nèi)容,余弦定理。布置作業(yè),預(yù)習(xí)下一節(jié)內(nèi)容。

高中數(shù)學(xué)說(shuō)課稿14

  一、說(shuō)教材

  1.從在教材中的地位與作用來(lái)看

  《等比數(shù)列的前n項(xiàng)和》是數(shù)列這一章中的一個(gè)重要內(nèi)容,它不僅在現(xiàn)實(shí)生活中有著廣泛的實(shí)際應(yīng)用,如儲(chǔ)蓄、分期付款的有關(guān)計(jì)算等等,而且公式推導(dǎo)過(guò)程中所滲透的類比、化歸、分類討論、整體變換和方程等思想方法,都是學(xué)生今后學(xué)習(xí)和工作中必備的數(shù)學(xué)素養(yǎng).

  2.從學(xué)生認(rèn)知角度看

  從學(xué)生的思維特點(diǎn)看,很容易把本節(jié)內(nèi)容與等差數(shù)列前n項(xiàng)和從公式的形成、特點(diǎn)等方面進(jìn)行類比,這是積極因素,應(yīng)因勢(shì)利導(dǎo).不利因素是:本節(jié)公式的推導(dǎo)與等差數(shù)列前n項(xiàng)和公式的推導(dǎo)有著本質(zhì)的不同,這對(duì)學(xué)生的思維是一個(gè)突破,另外,對(duì)于q=1這一特殊情況,學(xué)生往往容易忽視,尤其是在后面使用的過(guò)程中容易出錯(cuò).

  3.學(xué)情分析

  教學(xué)對(duì)象是剛進(jìn)入高中的學(xué)生,雖然具有一定的分析問(wèn)題和解決問(wèn)題的能力,邏輯思維能力也初步形成,但由于年齡的原因,思維盡管活躍、敏捷,卻缺乏冷靜、深刻,因此片面、不嚴(yán)謹(jǐn).

  4.重點(diǎn)、難點(diǎn)

  教學(xué)重點(diǎn):公式的推導(dǎo)、公式的特點(diǎn)和公式的運(yùn)用.

  教學(xué)難點(diǎn):公式的推導(dǎo)方法和公式的靈活運(yùn)用.

  公式推導(dǎo)所使用的“錯(cuò)位相減法”是高中數(shù)學(xué)數(shù)列求和方法中最常用的方法之一,它蘊(yùn)含了重要的數(shù)學(xué)思想,所以既是重點(diǎn)也是難點(diǎn).

  二、說(shuō)目標(biāo)

  知識(shí)與技能目標(biāo):

  理解并掌握等比數(shù)列前n項(xiàng)和公式的推導(dǎo)過(guò)程、公式的特點(diǎn),在此基礎(chǔ)上能初步應(yīng)用公式解決與之有關(guān)的問(wèn)題.

  過(guò)程與方法目標(biāo):

  通過(guò)對(duì)公式推導(dǎo)方法的探索與發(fā)現(xiàn),向?qū)W生滲透特殊到一般、類比與轉(zhuǎn)化、分類討論等數(shù)學(xué)思想,培養(yǎng)學(xué)生觀察、比較、抽象、概括等邏輯思維能力和逆向思維的能力.

  情感與態(tài)度價(jià)值觀:

  通過(guò)對(duì)公式推導(dǎo)方法的探索與發(fā)現(xiàn),優(yōu)化學(xué)生的思維品質(zhì),滲透事物之間等價(jià)轉(zhuǎn)化和理論聯(lián)系實(shí)際的辯證唯物主義觀點(diǎn).

  三、說(shuō)過(guò)程

  學(xué)生是認(rèn)知的主體,設(shè)計(jì)教學(xué)過(guò)程必須遵循學(xué)生的認(rèn)知規(guī)律,盡可能地讓學(xué)生去經(jīng)歷知識(shí)的形成與發(fā)展過(guò)程,結(jié)合本節(jié)課的特點(diǎn),我設(shè)計(jì)了如下的教學(xué)過(guò)程:

  1.創(chuàng)設(shè)情境,提出問(wèn)題

  在古印度,有個(gè)名叫西薩的人,發(fā)明了國(guó)際象棋,當(dāng)時(shí)的印度國(guó)王大為贊賞,對(duì)他說(shuō):我可以滿足你的任何要求.西薩說(shuō):請(qǐng)給我棋盤(pán)的64個(gè)方格上,第一格放1粒小麥,第二格放2粒,第三格放4粒,往后每一格都是前一格的兩倍,直至第64格.國(guó)王令宮廷數(shù)學(xué)家計(jì)算,結(jié)果出來(lái)后,國(guó)王大吃一驚.為什么呢?

  設(shè)計(jì)意圖:設(shè)計(jì)這個(gè)情境目的是在引入課題的同時(shí)激發(fā)學(xué)生的興趣,調(diào)動(dòng)學(xué)習(xí)的積極性.故事內(nèi)容緊扣本節(jié)課的主題與重點(diǎn).

  此時(shí)我問(wèn):同學(xué)們,你們知道西薩要的是多少粒小麥嗎?引導(dǎo)學(xué)生寫(xiě)出麥粒總數(shù).帶著這樣的問(wèn)題,學(xué)生會(huì)動(dòng)手算了起來(lái),他們想到用計(jì)算器依次算出各項(xiàng)的值,然后再求和.這時(shí)我對(duì)他們的這種思路給予肯定.

  設(shè)計(jì)意圖:在實(shí)際教學(xué)中,由于受課堂時(shí)間限制,教師舍不得花時(shí)間讓學(xué)生去做所謂的“無(wú)用功”,急急忙忙地拋出“錯(cuò)位相減法”,這樣做有悖學(xué)生的認(rèn)知規(guī)律:求和就想到相加,這是合乎邏輯順理成章的事,教師為什么不相加而馬上相減呢?在整個(gè)教學(xué)關(guān)鍵處學(xué)生難以轉(zhuǎn)過(guò)彎來(lái),因而在教學(xué)中應(yīng)舍得花時(shí)間營(yíng)造知識(shí)形成過(guò)程的氛圍,突破學(xué)生學(xué)習(xí)的障礙.同時(shí),形成繁難的情境激起了學(xué)生的求知欲,迫使學(xué)生急于尋求解決問(wèn)題的新方法,為后面的教學(xué)埋下伏筆.

  2.師生互動(dòng),探究問(wèn)題

  在肯定他們的思路后,我接著問(wèn):1,2,22,…,263是什么數(shù)列?有何特征?應(yīng)歸結(jié)為什么數(shù)學(xué)問(wèn)題呢?

  探討1:,記為(1)式,注意觀察每一項(xiàng)的特征,有何聯(lián)系?(學(xué)生會(huì)發(fā)現(xiàn),后一項(xiàng)都是前一項(xiàng)的2倍)

  探討2:如果我們把每一項(xiàng)都乘以2,就變成了它的后一項(xiàng),(1)式兩邊同乘以2則有,記為(2)式.比較(1)(2)兩式,你有什么發(fā)現(xiàn)?

  設(shè)計(jì)意圖:留出時(shí)間讓學(xué)生充分地比較,等比數(shù)列前n項(xiàng)和的公式推導(dǎo)關(guān)鍵是變“加”為“減”,在教師看來(lái)這是“天經(jīng)地義”的,但在學(xué)生看來(lái)卻是“不可思議”的,因此教學(xué)中應(yīng)著力在這兒做文章,從而抓住培養(yǎng)學(xué)生的辯證思維能力的良好契機(jī).

  經(jīng)過(guò)比較、研究,學(xué)生發(fā)現(xiàn):(1)、(2)兩式有許多相同的項(xiàng),把兩式相減,相同的項(xiàng)就消去了,得到:.老師指出:這就是錯(cuò)位相減法,并要求學(xué)生縱觀全過(guò)程,反思:為什么(1)式兩邊要同乘以2呢?

  設(shè)計(jì)意圖:經(jīng)過(guò)繁難的計(jì)算之苦后,突然發(fā)現(xiàn)上述解法,不禁驚呼:真是太簡(jiǎn)潔了!讓學(xué)生在探索過(guò)程中,充分感受到成功的情感體驗(yàn),從而增強(qiáng)學(xué)習(xí)數(shù)學(xué)的興趣和學(xué)好數(shù)學(xué)的信心.

  3.類比聯(lián)想,解決問(wèn)題

  這時(shí)我再順勢(shì)引導(dǎo)學(xué)生將結(jié)論一般化,

  這里,讓學(xué)生自主完成,并喊一名學(xué)生上黑板,然后對(duì)個(gè)別學(xué)生進(jìn)行指導(dǎo).

  設(shè)計(jì)意圖:在教師的指導(dǎo)下,讓學(xué)生從特殊到一般,從已知到未知,步步深入,讓學(xué)生自己探究公式,從而體驗(yàn)到學(xué)習(xí)的愉快和成就感.

  對(duì)不對(duì)?這里的q能不能等于1?等比數(shù)列中的公比能不能為1?q=1時(shí)是什么數(shù)列?此時(shí)sn=?(這里引導(dǎo)學(xué)生對(duì)q進(jìn)行分類討論,得出公式,同時(shí)為后面的例題教學(xué)打下基礎(chǔ).)

  再次追問(wèn):結(jié)合等比數(shù)列的通項(xiàng)公式an=a1qn-1,如何把sn用a1、an、q表示出來(lái)?(引導(dǎo)學(xué)生得出公式的另一形式)

  設(shè)計(jì)意圖:通過(guò)反問(wèn)精講,一方面使學(xué)生加深對(duì)知識(shí)的認(rèn)識(shí),完善知識(shí)結(jié)構(gòu),另一方面使學(xué)生由簡(jiǎn)單地模仿和接受,變?yōu)閷?duì)知識(shí)的主動(dòng)認(rèn)識(shí),從而進(jìn)一步提高分析、類比和綜合的能力.這一環(huán)節(jié)非常重要,盡管時(shí)間有時(shí)比較少,甚至僅僅幾句話,然而卻有畫(huà)龍點(diǎn)睛之妙用.

  4.討論交流,延伸拓展

高中數(shù)學(xué)說(shuō)課稿15

  一、教材分析

  集合概念及其基本理論,稱為集合論,是近、現(xiàn)代數(shù)學(xué)的一個(gè)重要的基礎(chǔ),一方面,許多重要的數(shù)學(xué)分支,都建立在集合理論的基礎(chǔ)上。另一方面,集合論及其所反映的數(shù)學(xué)思想,在越來(lái)越廣泛的領(lǐng)域種得到應(yīng)用。

  本節(jié)課主要分為兩個(gè)部分,一是理解集合的定義及一些基本特征。二是掌握集合與元素之間的關(guān)系。

  二、教學(xué)目標(biāo)

  1、學(xué)習(xí)目標(biāo)

 。1)通過(guò)實(shí)例,了解集合的含義,體會(huì)元素與集合之間的關(guān)系以及理解“屬

  于”關(guān)系;

 。2)能選擇自然語(yǔ)言、圖形語(yǔ)言、集合語(yǔ)言(列舉法或描述法)描述不同的具體問(wèn)題,感受集合語(yǔ)言的意義和作用;

  2、能力目標(biāo)

 。1)能夠把一句話一個(gè)事件用集合的方式表示出來(lái)。

 。2)準(zhǔn)確理解集合與及集合內(nèi)的元素之間的關(guān)系。

  3、情感目標(biāo)

  通過(guò)本節(jié)的把實(shí)際事件用集合的方式表示出來(lái),從而培養(yǎng)數(shù)學(xué)敏感性,了 解到數(shù)學(xué)于生活中。

  三、教學(xué)重點(diǎn)與難點(diǎn)

  重點(diǎn) 集合的基本概念與表示方法;

  難點(diǎn) 運(yùn)用集合的兩種常用表示方法———列舉法與描述法,正確表示一些簡(jiǎn)單的集合;

  四、教學(xué)方法

 。1)本課將采用探究式教學(xué),讓學(xué)生主動(dòng)去探索,激發(fā)學(xué)生的學(xué)習(xí)興趣。并分層教學(xué),這樣可顧及到全體學(xué)生,達(dá)到優(yōu)生得到培養(yǎng),后進(jìn)生也有所收獲的效果;

  (2)學(xué)生在老師的引導(dǎo)下,通過(guò)閱讀教材,自主學(xué)習(xí)、思考、交流、討論和概括,從而完成本節(jié)課的教學(xué)目標(biāo)。

  五、學(xué)習(xí)方法

  (1)主動(dòng)學(xué)習(xí)法:舉出例子,提出問(wèn)題,讓學(xué)生在獲得感性認(rèn)識(shí)的同時(shí),

  教師層層深入,啟發(fā)學(xué)生積極思維,主動(dòng)探索知識(shí),培養(yǎng)學(xué)生思維想象 的綜合能力。

  (2)反饋補(bǔ)救法:在練習(xí)中,注意觀察學(xué)生對(duì)學(xué)習(xí)的反饋情況,以實(shí)現(xiàn)“培

  優(yōu)扶差,滿足不同!

  六、教學(xué)思路

  具體的思路如下

  復(fù)習(xí)的引入:講一些集合的相關(guān)數(shù)學(xué)及相關(guān)數(shù)學(xué)家的經(jīng)歷故事!這可以讓學(xué)生更加了解數(shù)學(xué)史從何使學(xué)生對(duì)數(shù)學(xué)更加感興趣,有助于上課的效率!因?yàn)闀r(shí)間關(guān)系這里我就不說(shuō)相關(guān)數(shù)學(xué)史咯。

  一、 引入課題

  軍訓(xùn)前學(xué)校通知:8月15日8點(diǎn),高一年段在體育館集合進(jìn)行軍訓(xùn)動(dòng)員;試問(wèn)這個(gè)通知的對(duì)象是全體的高一學(xué)生還是個(gè)別學(xué)生?

  在這里,集合是我們常用的一個(gè)詞語(yǔ),我們感興趣的是問(wèn)題中某些特定(是高一而不是高二、高三)對(duì)象的總體,而不是個(gè)別的對(duì)象,為此,我們將學(xué)習(xí)一個(gè)新的概念——集合,即是一些研究對(duì)象的總體。

  二、 正體部分

  學(xué)生閱讀教材,并思考下列問(wèn)題:

 。1)集合有那些概念?

 。2)集合有那些符號(hào)?

 。3)集合中元素的特性是什么?

 。4)如何給集合分類?

  (一)集合的有關(guān)概念

 。1)對(duì)象:我們可以感覺(jué)到的客觀存在以及我們思想中的事物或抽象符號(hào),

  都可以稱作對(duì)象.

 。2)集合:把一些能夠確定的不同的對(duì)象看成一個(gè)整體,就說(shuō)這個(gè)整體是由

  這些對(duì)象的全體構(gòu)成的集合.

 。3)元素:集合中每個(gè)對(duì)象叫做這個(gè)集合的元素.

  集合通常用大寫(xiě)的拉丁字母表示,如A、B、C、??元素通常用小寫(xiě)的拉丁字母表示,如a、b、c、??

  1. 思考:課本P3的思考題,并再列舉一些集合例子和不能構(gòu)成集合的例子,

  對(duì)學(xué)生的例子予以討論、點(diǎn)評(píng),進(jìn)而講解下面的問(wèn)題。

  2、元素與集合的關(guān)系

 。1)屬于:如果a是集合A的元素,就說(shuō)a屬于A,記作a∈A。(舉例)集合A={2,3,4,6,9}a=2 因此我們知道 a∈A

 。2)不屬于:如果a不是集合A的元素,就說(shuō)a不屬于A,記作a?A

  要注意“∈”的方向,不能把a(bǔ)∈A顛倒過(guò)來(lái)寫(xiě). (舉例)

  集合A={3,4,6,9}a=2 因此我們知道a?A

  3、集合中元素的特性

  (1)確定性:給定一個(gè)集合,任何對(duì)象是不是這個(gè)集合的元素是確定的了.

 。2)互異性:集合中的元素一定是不同的.

  (3)無(wú)序性:集合中的元素沒(méi)有固定的順序.

  4、集合分類

  根據(jù)集合所含元素個(gè)屬不同,可把集合分為如下幾類:

 。1)把不含任何元素的集合叫做空集Ф

  (2)含有有限個(gè)元素的集合叫做有限集

 。3)含有無(wú)窮個(gè)元素的集合叫做無(wú)限集

  注:應(yīng)區(qū)分?,{?},{0},0等符號(hào)的含義

  5、常用數(shù)集及其表示方法

 。1)非負(fù)整數(shù)集(自然數(shù)集):全體非負(fù)整數(shù)的集合.記作N

  (2)正整數(shù)集:非負(fù)整數(shù)集內(nèi)排除0的集.記作N*或N+

 。3)整數(shù)集:全體整數(shù)的集合.記作Z

 。4)有理數(shù)集:全體有理數(shù)的集合.記作Q

  (5)實(shí)數(shù)集:全體實(shí)數(shù)的集合.記作R

  注:(1)自然數(shù)集包括數(shù)0.

 。2)非負(fù)整數(shù)集內(nèi)排除0的集.記作N*或N+,Q、Z、R等其它數(shù)集內(nèi)排

  除0的集,也這樣表示,例如,整數(shù)集內(nèi)排除0的集,表示成Z*

  (二)集合的表示方法

  我們可以用自然語(yǔ)言來(lái)描述一個(gè)集合,但這將給我們帶來(lái)很多不便,除此之外還常用列舉法和描述法來(lái)表示集合。

 。1) 列舉法:把集合中的元素一一列舉出來(lái),寫(xiě)在大括號(hào)內(nèi)。

  如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},?;

  例1.(課本例1)

  思考2,引入描述法

  說(shuō)明:集合中的元素具有無(wú)序性,所以用列舉法表示集合時(shí)不必考慮元素的順序。

 。2) 描述法:把集合中的元素的公共屬性描述出來(lái),寫(xiě)在大括號(hào){}內(nèi)。 具體方法:在大括號(hào)內(nèi)先寫(xiě)上表示這個(gè)集合元素的一般符號(hào)及取值(或變化)范圍,再畫(huà)一條豎線,在豎線后寫(xiě)出這個(gè)集合中元素所具有的共同特征。

  如:{x|x-3>2},{(x,y)|y=x2+1},{直角三角形},?;

  例2.(課本例2)

  說(shuō)明:(課本P5最后一段)

  思考3:(課本P6思考) 強(qiáng)調(diào):描述法表示集合應(yīng)注意集合的代表元素

  {(x,y)|y= x2+3x+2}與 {y|y= x2+3x+2}不同,只要不引起誤解,集合的代表元素也可省略,例如:{整數(shù)},即代表整數(shù)集Z。

  辨析:這里的{ }已包含“所有”的意思,所以不必寫(xiě){全體整數(shù)}。下列寫(xiě)法{實(shí)數(shù)集},{R}也是錯(cuò)誤的。

  說(shuō)明:列舉法與描述法各有優(yōu)點(diǎn),應(yīng)該根據(jù)具體問(wèn)題確定采用哪種表示法,要注意,一般集合中元素較多或有無(wú)限個(gè)元素時(shí),不宜采用列舉法。

  (三)課堂練習(xí)(課本P6練習(xí))

  三、 歸納小結(jié)與作業(yè)

  本節(jié)課從實(shí)例入手,非常自然貼切地引出集合與集合的概念,并且結(jié)合實(shí)例對(duì)集合的概念作了說(shuō)明,然后介紹了集合的常用表示方法,包括列舉法、描述法。

  書(shū)面作業(yè):習(xí)題1.1,第1- 4題

【高中數(shù)學(xué)說(shuō)課稿】相關(guān)文章:

高中數(shù)學(xué)的說(shuō)課稿11-04

高中數(shù)學(xué)《集合》說(shuō)課稿10-31

高中數(shù)學(xué)的說(shuō)課稿范文04-29

高中數(shù)學(xué)集合說(shuō)課稿11-12

高中數(shù)學(xué)實(shí)驗(yàn)說(shuō)課稿11-26

高中數(shù)學(xué)必修說(shuō)課稿11-25

高中數(shù)學(xué)面試說(shuō)課稿11-18

高中數(shù)學(xué)函數(shù)的說(shuō)課稿11-17

高中數(shù)學(xué)的優(yōu)秀說(shuō)課稿12-04

高中數(shù)學(xué)全套說(shuō)課稿12-05