高中高三數(shù)學(xué)說(shuō)課稿(5篇)
作為一位杰出的教職工,常常需要準(zhǔn)備說(shuō)課稿,說(shuō)課稿有助于學(xué)生理解并掌握系統(tǒng)的知識(shí)。說(shuō)課稿應(yīng)該怎么寫(xiě)呢?以下是小編精心整理的高中高三數(shù)學(xué)說(shuō)課稿,歡迎閱讀與收藏。
高中高三數(shù)學(xué)說(shuō)課稿1
一、教學(xué)目標(biāo)
(一)知識(shí)與技能
1、進(jìn)一步熟練掌握求動(dòng)點(diǎn)軌跡方程的基本方法。
2、體會(huì)數(shù)學(xué)實(shí)驗(yàn)的直觀性、有效性,提高幾何畫(huà)板的操作能力。
。ǘ┻^(guò)程與方法
1、培養(yǎng)學(xué)生觀察能力、抽象概括能力及創(chuàng)新能力。
2、體會(huì)感性到理性、形象到抽象的思維過(guò)程。
3、強(qiáng)化類(lèi)比、聯(lián)想的方法,領(lǐng)會(huì)方程、數(shù)形結(jié)合等思想。
。ㄈ┣楦袘B(tài)度價(jià)值觀
1、感受動(dòng)點(diǎn)軌跡的動(dòng)態(tài)美、和諧美、對(duì)稱(chēng)美。
2、樹(shù)立競(jìng)爭(zhēng)意識(shí)與合作精神,感受合作交流帶來(lái)的成功感,樹(shù)立自信心,激發(fā)提出問(wèn)題和解決問(wèn)題的勇氣。
二、教學(xué)重點(diǎn)與難點(diǎn)
教學(xué)重點(diǎn):運(yùn)用類(lèi)比、聯(lián)想的方法探究不同條件下的軌跡。
教學(xué)難點(diǎn):圖形、文字、符號(hào)三種語(yǔ)言之間的過(guò)渡。
三、、教學(xué)方法和手段
教學(xué)方法:觀察發(fā)現(xiàn)、啟發(fā)引導(dǎo)、合作探究相結(jié)合的教學(xué)方法。啟發(fā)引導(dǎo)學(xué)生積極思考并對(duì)學(xué)生的思維進(jìn)行調(diào)控,幫助學(xué)生優(yōu)化思維過(guò)程,在此基礎(chǔ)上,提供給學(xué)生交流的機(jī)會(huì),幫助學(xué)生對(duì)自己的思維進(jìn)行組織和澄清,并能清楚地、準(zhǔn)確地表達(dá)自己的數(shù)學(xué)思維。
教學(xué)手段:利用網(wǎng)絡(luò)教室,四人一機(jī),多媒體教學(xué)手段。通過(guò)上述教學(xué)手段,一方面:再現(xiàn)知識(shí)產(chǎn)生的過(guò)程,通過(guò)多媒體動(dòng)態(tài)演示,突破學(xué)生在舊知和新知形成過(guò)程中的障礙(靜態(tài)到動(dòng)態(tài));另一方面:節(jié)省了時(shí)間,提高了課堂教學(xué)的效率,激發(fā)了學(xué)生學(xué)習(xí)的興趣。
教學(xué)模式:重點(diǎn)中學(xué)實(shí)施素質(zhì)教育的課堂模式“創(chuàng)設(shè)情境、激發(fā)情感、主動(dòng)發(fā)現(xiàn)、主動(dòng)發(fā)展”。
四、教學(xué)過(guò)程
1、創(chuàng)設(shè)情景,引入課題
生活中我們四處可見(jiàn)軌跡曲線的影子。
演示:這是美麗的城市夜景圖。
演示:許多人認(rèn)為天體運(yùn)行的軌跡都是圓錐曲線,研究表明,天體數(shù)目越多,軌跡種類(lèi)也越多。
演示建筑中也有許多美麗的軌跡曲線。
設(shè)計(jì)意圖:讓學(xué)生感受數(shù)學(xué)就在我們身邊,感受軌跡,曲線的動(dòng)態(tài)美、和諧美、對(duì)稱(chēng)美,激發(fā)學(xué)習(xí)興趣。
2、激發(fā)情感,引導(dǎo)探索
靠在墻角的梯子滑落了,如果梯子上站著一個(gè)人,我們不禁會(huì)想,這個(gè)人是直直的摔下去呢?還是劃了一條優(yōu)美的曲線飛出去呢?我們把這個(gè)問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題就是新教材高二上冊(cè)88頁(yè)20題,也就是這里的例題1。
高中高三數(shù)學(xué)說(shuō)課稿2
一、學(xué)習(xí)目標(biāo)
1.知識(shí)目標(biāo):研究曲線的切線,從幾何學(xué)的角度了解導(dǎo)數(shù)概念的背景,明確瞬時(shí)變化率就是導(dǎo)數(shù),掌握求曲線切線斜率的一般方法。
2.能力目標(biāo):通過(guò)嫦娥一號(hào)繞月探測(cè)衛(wèi)星變軌瞬間的瞬時(shí)速度和運(yùn)動(dòng)的方向?yàn)楸尘埃瑥臉O限入手,培養(yǎng)學(xué)生的創(chuàng)新意識(shí)和數(shù)形轉(zhuǎn)化能力。
3.情感目標(biāo):通過(guò)運(yùn)動(dòng)的觀點(diǎn),體會(huì)曲線切線的內(nèi)涵,挖掘數(shù)形關(guān)系,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情。
二、教學(xué)重點(diǎn)
曲線切線的概念形成,導(dǎo)數(shù)公式的理解和運(yùn)用。
三、教學(xué)難點(diǎn)
理解曲線切線的形成是通過(guò)逼近的方法得出的。引導(dǎo)學(xué)生在平均變化率的基礎(chǔ)上探求瞬時(shí)變化率。
四、教學(xué)過(guò)程
1.新課引入,創(chuàng)設(shè)情景
①(大屏幕顯示)嫦娥一號(hào)繞月探測(cè)衛(wèi)星運(yùn)行軌跡以及四次變軌的全過(guò)程。
、谟懻搯(wèn)題:()衛(wèi)星在每次變軌的瞬間不僅有瞬時(shí)速度,而且要研究它運(yùn)動(dòng)的方向。引出本節(jié)課主要研究的課題——曲線的切線。
2.概念形成,提出問(wèn)題
、(大屏幕顯示)分析衛(wèi)星在變軌瞬間與變軌前的位置關(guān)系,引出曲線的割線。
②由運(yùn)動(dòng)的觀點(diǎn)、極限的思想,歸納出曲線切線的概念。以及求曲線切線斜率的一種方法。
3.轉(zhuǎn)換角度,分析問(wèn)題
、僖朐隽康母拍睿谇C上取P(x0、y0)及鄰近的一點(diǎn)Q(x0+△x,y0+△y),過(guò)P、Q兩點(diǎn)作割線,分別過(guò)P、Q作y軸,x軸的垂線相交于點(diǎn)M,設(shè)割線PQ的傾斜角β,.
②割線斜率用增量表示的形式不變。(大屏幕顯示)改變P的鄰近點(diǎn)Q的位置、曲線的類(lèi)型、傾斜角的'性質(zhì),發(fā)現(xiàn)tanβ表示的形式始終不變。左、右鄰近點(diǎn)的討論,為下面說(shuō)明極限的存在做準(zhǔn)備。
4.歸納總結(jié),解決問(wèn)題
、(大屏幕顯示)由于△x可正可負(fù),
但△x≠0,研究△x無(wú)限趨近于0,
用極限的觀點(diǎn)導(dǎo)出曲線切線的斜率。
、谟懻搯(wèn)題:引導(dǎo)學(xué)生將這一運(yùn)動(dòng)過(guò)程轉(zhuǎn)化為已學(xué)的代數(shù)問(wèn)題。
k==
點(diǎn)評(píng)公式,重點(diǎn)強(qiáng)調(diào)平均變化率和瞬時(shí)變化率之間的關(guān)系,提出導(dǎo)數(shù)。同時(shí)引導(dǎo)學(xué)生歸納出求曲線切線斜率的一般方法和步驟
5.例題剖析,深化問(wèn)題
例:曲線的方程f(x)=x2+1求此曲線在點(diǎn)P(1,2)處的切線的方程
6.學(xué)生演板,落實(shí)問(wèn)題
①已知曲線y=2x2上一點(diǎn)A(1,2),求
(1)點(diǎn)A處的切線的斜率;
(2)點(diǎn)A處的切線的方程。
、谇笄y=x2+1在點(diǎn)P(-2,5)處的切線方程。
7.課堂小結(jié)
8.作業(yè)
P125第6、7、8、9題
高中高三數(shù)學(xué)說(shuō)課稿3
一、教材分析
本節(jié)課是在學(xué)習(xí)了軸對(duì)稱(chēng)圖形以及全等三角形的判定的基礎(chǔ)上進(jìn)行的,主要學(xué)習(xí)等腰三角形的“等邊對(duì)等角”和“等腰三角形的三線合一”兩個(gè)性質(zhì)。本節(jié)內(nèi)容是對(duì)前面知識(shí)的深化和應(yīng)用,它的性質(zhì)定理不僅是證明角相等、線段相等及兩直線互相垂直的依據(jù),而且也是后繼學(xué)習(xí)線段垂直平分線、等腰梯形的預(yù)備知識(shí)。因此,本節(jié)內(nèi)容在教材中處于非常重要的地位,起著承前啟后的作用。
二、教學(xué)目的
(一)知識(shí)目標(biāo):知道等腰三角形的定義及相關(guān)概念,理解等腰三角形的性質(zhì),會(huì)利用等腰三角形的性質(zhì)進(jìn)行簡(jiǎn)單的推理、判斷和計(jì)算。
(二)能力目標(biāo):通過(guò)實(shí)踐,觀察,證明等腰三角形性質(zhì),發(fā)展學(xué)生合情推理和演繹推理能力,通過(guò)運(yùn)用等腰三角形的性質(zhì)解決有關(guān)問(wèn)題,提高分析問(wèn)題、解決問(wèn)題能力。
(三)情感目標(biāo):在實(shí)際操作動(dòng)手中激發(fā)學(xué)生的學(xué)習(xí)興趣,體驗(yàn)幾何發(fā)現(xiàn)的樂(lè)趣,從而增強(qiáng)學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的意識(shí)。
三、教學(xué)重、難點(diǎn)
(一)重點(diǎn):等腰三角形的性質(zhì)的探究及應(yīng)用
(二)難點(diǎn):等腰三角形“三線合一”性質(zhì)的運(yùn)用
四、教學(xué)方法
(一)教法:本節(jié)課采用了教具直觀教學(xué)法,聯(lián)想發(fā)現(xiàn)教學(xué)法,設(shè)疑思考法,逐步滲透法和師生交際相結(jié)合的方法。
(二)學(xué)法:本節(jié)課主要引導(dǎo)學(xué)生從已知的、熟悉的知識(shí)入手,讓學(xué)生自己在某一種環(huán)境下不知不覺(jué)中運(yùn)用舊知識(shí)的鑰匙去打開(kāi)新知識(shí)的大門(mén),進(jìn)入新知識(shí)的領(lǐng)域,從不同角度去分析、解決新問(wèn)題,發(fā)掘不同層次學(xué)生的不同能力,從而達(dá)到發(fā)展學(xué)生思維能力和自學(xué)能力的目的,發(fā)掘?qū)W生的創(chuàng)新精神。
五、教學(xué)過(guò)程
(一)創(chuàng)設(shè)情景,引入新知
我們學(xué)過(guò)三角形,你都知道哪些特殊的三角形?今天我們來(lái)學(xué)習(xí)其中的一種特殊的三角形----等腰三角形。
等腰三角形的有關(guān)概念,軸對(duì)稱(chēng)圖形的有關(guān)概念。
提問(wèn):等腰三角形是不是軸對(duì)稱(chēng)圖形?什么是它的對(duì)稱(chēng)軸?
(二)實(shí)驗(yàn)探索,大膽猜想
教師演示(模型)等腰三角形是軸對(duì)稱(chēng)圖形的實(shí)驗(yàn),并讓學(xué)生做同樣的實(shí)驗(yàn),引導(dǎo)學(xué)生觀察重合部分,發(fā)現(xiàn)等腰三角形的一些性質(zhì)。
(三)證明猜想,形成定理
讓學(xué)生由實(shí)驗(yàn)或演示指出各自的發(fā)現(xiàn),并加以引導(dǎo),用規(guī)范的數(shù)學(xué)語(yǔ)言進(jìn)行逐條歸納,最后得出等腰三角形的性質(zhì)定理1、2。
1.性質(zhì)定理1:
等腰三角形的兩個(gè)底角相等
在△ABC中,∵AB=AC()∴∠B=∠C()
2.性質(zhì)定理2:
等腰三角形的頂角平分線、底邊上的中線和高線互相重合
(1)∵AB=AC∠1=∠2()∴BD=DCAD⊥BC()
(2)∵AB=ACBD=DC()∴∠1=∠2AD⊥BC()
(3)∵AB=ACAD⊥BC于D()∴BD=DC∠1=∠2()
(四)應(yīng)用舉例,強(qiáng)化訓(xùn)練
指導(dǎo)學(xué)生表述證明過(guò)程。
思考題:等腰三角形兩腰上的中線(高線)是否相等?為什么?
(五)歸納小結(jié),布置作業(yè)
1.歸納:
(1)等腰三角形的性質(zhì)定理。
(2)等邊三角形的性質(zhì)
(3)利用等腰三角形的性質(zhì)定理可證明:兩角相等,兩線段相等,兩直線互相垂直。
(4)聯(lián)想方法要經(jīng)常運(yùn)用,對(duì)解題大有裨益。
2.作業(yè)布置:
(1)必做題:
書(shū)本課后作業(yè)
(2)選做題:搜集日常生活中應(yīng)用等腰三角形的實(shí)例,并思考這些實(shí)例運(yùn)用了等腰三角形的哪些性質(zhì)?
高中高三數(shù)學(xué)說(shuō)課稿4
高三數(shù)學(xué)二面角說(shuō)課稿
二面角說(shuō)課稿一、教材分析
1.教材的地位與作用
二面角是我們?nèi)粘I钪薪?jīng)常見(jiàn)到的、很普通的一個(gè)圖形!岸娼恰笔切戮幗滩摹稊(shù)學(xué)》第二冊(cè)(下a)中9.6的內(nèi)容,它在學(xué)生學(xué)過(guò)空間中異面角、線面角之后,又要重點(diǎn)研究的一種空間的角,它也是學(xué)生進(jìn)一步研究多面體和旋轉(zhuǎn)體的基礎(chǔ)。因此,它起著承上啟下的作用。同時(shí),通過(guò)本節(jié)課的學(xué)習(xí)也可以培養(yǎng)學(xué)生的空間想象能力和邏輯思維能力,為培養(yǎng)學(xué)生的創(chuàng)新意識(shí)和創(chuàng)新能力提供了一個(gè)良好的契機(jī)。
2.教學(xué)目標(biāo)
(1)知識(shí)目標(biāo):使學(xué)生掌握二面角的概念,二面角的平面角的定義、作法以及這些知識(shí)的初步應(yīng)用。
(2)能力目標(biāo):培養(yǎng)學(xué)生的空間想象能力、邏輯思維能力、知識(shí)遷移能力及運(yùn)用數(shù)學(xué)知識(shí)和數(shù)學(xué)方法觀察、研究現(xiàn)實(shí)現(xiàn)象的能力。
(3)德育目標(biāo):通過(guò)對(duì)實(shí)際問(wèn)題的分析、探究,激發(fā)學(xué)生的學(xué)習(xí)興趣,并讓學(xué)生明白:數(shù)學(xué)和生活是密不可分的。
(4)情感目標(biāo):在平等的教學(xué)氛圍中,通過(guò)學(xué)生之間、師生之間的交流、合作和評(píng)價(jià),拉近學(xué)生之間、師生之間的情感距離。
3.重點(diǎn)、難點(diǎn)及關(guān)鍵
重點(diǎn):二面角的平面角的定義及其作法
難點(diǎn): 面角的平面角的作法
關(guān)鍵:求作二面角的平面角
二、教學(xué)方法和手段
培養(yǎng)學(xué)生數(shù)學(xué)素質(zhì),首先數(shù)學(xué)課堂教學(xué)要素質(zhì)化,即在課堂教學(xué)過(guò)程中,加強(qiáng)知識(shí)發(fā)生過(guò)程的教學(xué),充分調(diào)動(dòng)學(xué)生思維的主動(dòng)性、積極性;有效地滲透數(shù)學(xué)思想方法,發(fā)展學(xué)生個(gè)性品質(zhì),從而達(dá)到提高學(xué)生整體的數(shù)學(xué)素養(yǎng)的目的。根據(jù)這樣的原則和所要完成的教學(xué)目標(biāo),我采用如下的教學(xué)方法和手段:
(1)教學(xué)方法:觀察發(fā)現(xiàn)、啟發(fā)引導(dǎo)、探索相結(jié)合的教學(xué)方法。啟發(fā)、引導(dǎo)學(xué)生積極的思考并對(duì)學(xué)生的思維進(jìn)行調(diào)控,幫助學(xué)生優(yōu)化思維過(guò)程;在此基礎(chǔ)上,提供給學(xué)生交流的機(jī)會(huì),學(xué)生學(xué)會(huì)對(duì)自己的數(shù)學(xué)思想進(jìn)行組織和澄清,并能清楚地、準(zhǔn)確地表達(dá)自己的數(shù)學(xué)思想;能通過(guò)對(duì)其他人的思維和策略的考察擴(kuò)展自己的數(shù)學(xué)知識(shí)和使用數(shù)學(xué)語(yǔ)言的能力。學(xué)生會(huì)自覺(jué)地、主動(dòng)地、積極地學(xué)習(xí)。
(2)教學(xué)手段:利用多媒體教學(xué)手段。多媒體以聲音、動(dòng)畫(huà)等多種形式強(qiáng)化對(duì)學(xué)生感官的刺激,這一點(diǎn)是粉筆和黑板所不能比擬的,采用這種形式,可以極大提高學(xué)生的學(xué)習(xí)興趣,加大一堂課的信息容量,使教學(xué)目標(biāo)體現(xiàn)的更完美。
三、學(xué)法指導(dǎo):觀察分析、猜想證明及類(lèi)比聯(lián)想是學(xué)法指導(dǎo)的重點(diǎn)。讓學(xué)生觀察、思考后,總結(jié)、概括、歸納的知識(shí)更有利于學(xué)生掌握;為了加深知識(shí)理解、掌握和更靈活地運(yùn)用,運(yùn)用類(lèi)比聯(lián)想去主動(dòng)的發(fā)現(xiàn)問(wèn)題、解決問(wèn)題,從而更系統(tǒng)地掌握所學(xué)知識(shí),形成新的認(rèn)知結(jié)構(gòu)和知識(shí)網(wǎng)絡(luò),讓學(xué)生真正地體會(huì)到在問(wèn)題解決中學(xué)習(xí),在交流中學(xué)習(xí)。這樣,可以增進(jìn)熱愛(ài)數(shù)學(xué)的情感,應(yīng)用數(shù)學(xué)的自信心和形成新的學(xué)習(xí)動(dòng)力。
四、教學(xué)過(guò)程
高中高三數(shù)學(xué)說(shuō)課稿5
一、教材分析:
本節(jié)課是《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)數(shù)學(xué)》(人民教育出版社、課程教材研究所A版教材)選修2-2中第§1.1.3節(jié).作為導(dǎo)數(shù)概念的下位概念課,它是在學(xué)生學(xué)習(xí)了上位概念——平均變化率,瞬時(shí)變化率,及剛剛學(xué)習(xí)了用極限定義導(dǎo)數(shù)基礎(chǔ),進(jìn)一步從幾何意義的基礎(chǔ)上理解導(dǎo)數(shù)的含義與價(jià)值,是可以充分應(yīng)用信息技術(shù)進(jìn)行概念教學(xué)與問(wèn)題探究的內(nèi)容.導(dǎo)數(shù)的幾何意義的學(xué)習(xí)為下位內(nèi)容——常見(jiàn)函數(shù)導(dǎo)數(shù)的計(jì)算,導(dǎo)數(shù)是研究函數(shù)中的應(yīng)用及研究函數(shù)曲線與直線的位置關(guān)系的基礎(chǔ).因此,導(dǎo)數(shù)的幾何意義有承前啟后的重要作用.
二、教學(xué)目標(biāo)
【知識(shí)與技能目標(biāo)】
(1)知道曲線的切線定義,理解導(dǎo)數(shù)的幾何意義;
——讓學(xué)生感知和初步理解函數(shù) 在 處的導(dǎo)數(shù) 的幾何意義就是函數(shù) 的圖像在 處的切線的斜率,即 =切線的斜率.
(2)導(dǎo)數(shù)幾何意義簡(jiǎn)單的應(yīng)用.
——用導(dǎo)數(shù)的幾何意義解釋實(shí)際生活問(wèn)題,初步體會(huì)“逼近”和“以直代曲”的數(shù)學(xué)思想方法.
【過(guò)程與方法目標(biāo)】
(1) 回顧圓錐曲線的切線的概念,復(fù)習(xí)導(dǎo)數(shù)概念,尋找 在 處的瞬時(shí)變化率的幾何意義;
(2) 觀察P7上探究問(wèn)題,利用幾何畫(huà)板進(jìn)行探究,由學(xué)生參與操作,發(fā)現(xiàn)割線 變化趨勢(shì),分析整理成結(jié)論;
(3) 通過(guò)學(xué)生經(jīng)歷或觀察感知由割線逼近“變成”切線的過(guò)程,理解導(dǎo)數(shù)的幾何意義;
(4) 高臺(tái)跳水模型中,利用導(dǎo)數(shù)的幾何意義,描述比較 在 , , 處的變化情況,達(dá)到梳理新知的目的,滲透“以直代曲”的數(shù)學(xué)思想;
(5) 通過(guò)分析導(dǎo)數(shù)的幾何意義,研究在實(shí)際生活問(wèn)題中,用區(qū)間較小的范圍的平均變化率,來(lái)解決實(shí)際問(wèn)題的瞬時(shí)變化率.
【情感態(tài)度價(jià)值觀目標(biāo)】
(1) 經(jīng)過(guò)幾何畫(huà)板演示割線“逼近”成切線過(guò)程,讓學(xué)生感受函數(shù)圖像的切線“形成”過(guò)程,獲得函數(shù)圖像的切線的意義;
(2) 利用“以直代曲”的近似替代的方法,養(yǎng)成學(xué)生分析問(wèn)題解決問(wèn)題的方法,初步體會(huì)發(fā)現(xiàn)問(wèn)題的樂(lè)趣;
(3) 增強(qiáng)學(xué)生問(wèn)題應(yīng)用意識(shí)教育,讓學(xué)生獲得學(xué)習(xí)數(shù)學(xué)的興趣與信心.
三、重點(diǎn)、難點(diǎn)
重點(diǎn):導(dǎo)數(shù)的幾何意義,導(dǎo)數(shù)的實(shí)際應(yīng)用,“以直代曲”數(shù)學(xué)思想方法.
難點(diǎn):對(duì)導(dǎo)數(shù)幾何意義的理解與掌握,在每處“附近”變化率與瞬時(shí)變化率的近似關(guān)系的理解.
關(guān)鍵:由割線 趨向切線動(dòng)態(tài)變化效果,由割線“逼近”成切線的理解.
四、教學(xué)過(guò)程
教學(xué)環(huán)節(jié)
教學(xué)內(nèi)容
師生互動(dòng)
設(shè)計(jì)意圖
【高中高三數(shù)學(xué)說(shuō)課稿】相關(guān)文章:
高中高三數(shù)學(xué)說(shuō)課稿11-04
高中高三數(shù)學(xué)說(shuō)課稿5篇11-04
高中高三數(shù)學(xué)《平面動(dòng)點(diǎn)軌跡》說(shuō)課稿08-31
高中的數(shù)學(xué)優(yōu)秀的說(shuō)課稿11-04
高中的數(shù)學(xué)優(yōu)秀說(shuō)課稿10-29
高中的數(shù)學(xué)集合說(shuō)課稿12-02