實用的高中數(shù)學(xué)說課稿范文錦集八篇
作為一名優(yōu)秀的教育工作者,很有必要精心設(shè)計一份說課稿,說課稿有助于順利而有效地開展教學(xué)活動。說課稿要怎么寫呢?以下是小編整理的高中數(shù)學(xué)說課稿8篇,歡迎閱讀,希望大家能夠喜歡。
高中數(shù)學(xué)說課稿 篇1
尊敬的各位專家、評委:
大家好!
我是盧龍縣木井中學(xué)數(shù)學(xué)教師xx,我今天說課的題目是:人教A版普通高中課程標(biāo)準(zhǔn)實驗教科書 數(shù)學(xué)必修5第一章第一節(jié)的第一課時《正弦定理》,依據(jù)新課程標(biāo)準(zhǔn)對教材的要求,結(jié)合我對教材的理解,我將從以下幾個方面說明我的設(shè)計和構(gòu)思。
一、教材分析
“解三角形”既是高中數(shù)學(xué)的基本內(nèi)容,又有較強(qiáng)的應(yīng)用性,在這次課程改革中,被保留下來,并獨(dú)立成為一章。這部分內(nèi)容從知識體系上看,應(yīng)屬于三角函數(shù)這一章,從研究方法上看,也可以歸屬于向量應(yīng)用的一方面。從某種意義講,這部分內(nèi)容是用代數(shù)方法解決幾何問題的典型內(nèi)容之一。而本課“正弦定理”,作為單元的起始課,是在學(xué)生已有的三角函數(shù)及向量知識的基礎(chǔ)上,通過對三角形邊角關(guān)系作量化探究,發(fā)現(xiàn)并掌握正弦定理(重要的解三角形工具),通過這一部分內(nèi)容的學(xué)習(xí),讓學(xué)生從“實際問題”抽象成“數(shù)學(xué)問題”的建模過程中,體驗 “觀察——猜想——證明——應(yīng)用”這一思維方法,養(yǎng)成大膽猜想、善于思考的品質(zhì)和勇于求真的精神。同時在解決問題的過程中,感受數(shù)學(xué)的力量,進(jìn)一步培養(yǎng)學(xué)生對數(shù)學(xué)的學(xué)習(xí)興趣和“用數(shù)學(xué)”的意識。
二、學(xué)情分析
我所任教的學(xué)校是我縣一所農(nóng)村普通中學(xué),大多數(shù)學(xué)生基礎(chǔ)薄弱,對“一些重要的數(shù)學(xué)思想和數(shù)學(xué)方法”的應(yīng)用意識和技能還不高。但是,大多數(shù)學(xué)生對數(shù)學(xué)的興趣較高,比較喜歡數(shù)學(xué),尤其是象本節(jié)課這樣與實際生活聯(lián)系比較緊密的內(nèi)容,相信學(xué)生能夠積極配合,有比較不錯的表現(xiàn)。
三、教學(xué)目標(biāo)
1、知識和技能:在創(chuàng)設(shè)的問題情境中,引導(dǎo)學(xué)生發(fā)現(xiàn)正弦定理的內(nèi)容,推證正弦定理及簡單運(yùn)用正弦定理解決一些簡單的解三角形問題。
過程與方法:學(xué)生參與解題方案的探索,嘗試應(yīng)用觀察——猜想——證明——應(yīng)用”等思想方法,尋求最佳解決方案,從而引發(fā)學(xué)生對現(xiàn)實世界的一些數(shù)學(xué)模型進(jìn)行思考。
情感、態(tài)度、價值觀:培養(yǎng)學(xué)生合情合理探索數(shù)學(xué)規(guī)律的數(shù)學(xué)思想方法,通過平面幾何、三角形函數(shù)、正弦定理、向量的數(shù)量積等知識間的聯(lián)系來體現(xiàn)事物之間的普遍聯(lián)系與辯證統(tǒng)一。同時,通過實際問題的探討、解決,讓學(xué)生體驗學(xué)習(xí)成就感,增強(qiáng)數(shù)學(xué)學(xué)習(xí)興趣和主動性,鍛煉探究精神。樹立“數(shù)學(xué)與我有關(guān),數(shù)學(xué)是有用的,我要用數(shù)學(xué),我能用數(shù)學(xué)”的理念。
2、教學(xué)重點、難點
教學(xué)重點:正弦定理的發(fā)現(xiàn)與證明;正弦定理的簡單應(yīng)用。
教學(xué)難點:正弦定理證明及應(yīng)用。
四、教學(xué)方法與手段
為了更好的達(dá)成上面的教學(xué)目標(biāo),促進(jìn)學(xué)習(xí)方式的轉(zhuǎn)變,本節(jié)課我準(zhǔn)備采用“問題教學(xué)法”,即由教師以問題為主線組織教學(xué),利用多媒體和實物投影儀等教學(xué)手段來激發(fā)興趣、突出重點,突破難點,提高課堂效率,并引導(dǎo)學(xué)生采取自主探究與相互合作相結(jié)合的學(xué)習(xí)方式參與到問題解決的過程中去,從中體驗成功與失敗,從而逐步建立完善的認(rèn)知結(jié)構(gòu)。
五、教學(xué)過程
為了很好地完成我所確定的教學(xué)目標(biāo),順利地解決重點,突破難點,同時本著貼近生活、貼近學(xué)生、貼近時代的原則,我設(shè)計了這樣的教學(xué)過程:
(一)創(chuàng)設(shè)情景,揭示課題
問題1:寧靜的夜晚,明月高懸,當(dāng)你仰望夜空,欣賞這美好夜色的時候,會不會想要知道:那遙不可及的月亮離我們究竟有多遠(yuǎn)呢?
1671年兩個法國天文學(xué)家首次測出了地月之間的距離大約為 385400km,你知道他們當(dāng)時是怎樣測出這個距離的嗎?
問題2:在現(xiàn)在的高科技時代,要想知道某座山的高度,沒必要親自去量,只需水平飛行的飛機(jī)從山頂一過便可測出,你知道這是為什么嗎?還有,交通警察是怎樣測出正在公路上行駛的汽車的速度呢?要想解決這些問題, 其實并不難,只要你學(xué)好本章內(nèi)容即可掌握其原理。(板書課題《解三角形》)
[設(shè)計說明]引用教材本章引言,制造知識與問題的沖突,激發(fā)學(xué)生學(xué)習(xí)本章知識的興趣。
(二)特殊入手,發(fā)現(xiàn)規(guī)律
問題3:在初中,我們已經(jīng)學(xué)習(xí)了《銳角三角函數(shù)和解直角三角形》這一章,老師想試試你的實力,請你根據(jù)初中知識,解決這樣一個問題。在Rt⊿ABC中sinA= ,sinB= ,sinC= ,由此,你能把這個直角三角形中的所有的邊和角用一個表達(dá)式表示出來嗎?
引導(dǎo)啟發(fā)學(xué)生發(fā)現(xiàn)特殊情形下的正弦定理
(三)類比歸納,嚴(yán)格證明
問題4:本題屬于初中問題,而且比較簡單,不夠刺激,現(xiàn)在如果我為難為難你,讓你也當(dāng)一回老師,如果有個學(xué)生把條件中的Rt⊿ABC不小心寫成了銳角⊿ABC,其它沒有變,你說這個結(jié)論還成立嗎?
[設(shè)計說明]此時放手讓學(xué)生自己完成,如果感覺自己解決有困難,學(xué)生也可以前后桌或同桌結(jié)組研究,鼓勵學(xué)生用不同的方法證明這個結(jié)論,在巡視的過程中讓不同方法的學(xué)生上黑板展示,如果沒有用向量的學(xué)生,教師引導(dǎo)提示學(xué)生能否用向量完成證明。
問題5:好根據(jù)剛才我們的研究,說明這一結(jié)論在直角三角形和銳角三角形中都成立,于是,我們是否有了更為大膽的猜想,把條件中的銳角⊿ABC改為角鈍角⊿ABC,其它不變,這個結(jié)論仍然成立?我們光說成立不行,必須有能力進(jìn)行嚴(yán)格的理論證明,你有這個能力嗎?下面我希望你能用實力告訴我,開始。(啟發(fā)引導(dǎo)學(xué)生用多種方法加以研究證明,尤其是向量法,在下節(jié)余弦定理的證明中還要用,因此務(wù)必啟發(fā)學(xué)生用向量法完成證明。)
[設(shè)計說明] 放手給學(xué)生實踐的機(jī)會和時間,使學(xué)生真正的參與到問題解決的過程中去,讓學(xué)生在學(xué)數(shù)學(xué)的實踐中去感悟和提高數(shù)學(xué)的思維方法和思維習(xí)慣。同時,考慮到有部分同學(xué)基礎(chǔ)較差,考個人或小組可能無法完成探究任務(wù),教師在學(xué)生動手的同時,通過巡查,讓提前證明出結(jié)論的同學(xué)上黑板完成,這樣做一方面肯定了先完成的同學(xué)的先進(jìn)性,鍛煉了上黑板同學(xué)的解題過程的書寫規(guī)范性,同時,也讓從無從下手的同學(xué)有個參考,不至于閑呆著浪費(fèi)時間。
問題6:由此,你能否得到一個更一般的結(jié)論?你能用比較精煉的語言把它概括一下嗎?好,這就是我們這節(jié)課研究的主要內(nèi)容,大名鼎鼎的正弦定理(此時板書課題并用紅色粉筆標(biāo)示出正弦定理內(nèi)容)
教師講解:告訴大家,其實這個大名鼎鼎的正弦定理是由伊朗著名的天文學(xué)家阿布爾─威發(fā)﹝940-998﹞首先發(fā)現(xiàn)與證明的。中亞細(xì)亞人阿爾比魯尼﹝973-1048﹞給三角形的正弦定理作出了一個證明。也有說正弦定理的證明是13世紀(jì)的阿塞拜疆人納速拉丁在系統(tǒng)整理前人成就的基礎(chǔ)上得出的。不管怎樣,我們說在1000年以前,人們就發(fā)現(xiàn)了這個充滿著數(shù)學(xué)美的結(jié)論,不能不說也是人類數(shù)學(xué)史上的一個奇跡。老師希望21世紀(jì)的你能在今后的學(xué)習(xí)中也研究出一個被后人景仰的某某定理來,到那時我也就成了數(shù)學(xué)家的老師了。當(dāng)然,老師的希望能否變成現(xiàn)實,就要看大家的了。
[設(shè)計說明] 通過本段內(nèi)容的講解,滲透一些數(shù)學(xué)史的內(nèi)容,對學(xué)生不僅有數(shù)學(xué)美得熏陶,更能激發(fā)學(xué)生學(xué)習(xí)科學(xué)文化知識的熱情。
(四)強(qiáng)化理解,簡單應(yīng)用
下面請大家看我們的教材2-3頁到例題1上邊,并自學(xué)解三角形定義。
[設(shè)計說明] 讓學(xué)生看看書,放慢節(jié)奏,有利于學(xué)生消化和吸收剛才的內(nèi)容,同時教師可以利用這段時間對個別學(xué)困生進(jìn)行輔導(dǎo),以減少掉隊的同學(xué)數(shù)量,同時培養(yǎng)學(xué)生養(yǎng)成自覺看書的好習(xí)慣。
我們學(xué)習(xí)了正弦定理之后,你覺得它有什么應(yīng)用?在三角形中他能解決那些問題呢? 我們先小試牛刀,來一個簡單的問題:
問題7:(教材例題1)⊿ABC中,已知A=30,B=75,a=40cm,解三角形。
(本題簡單,找兩位同學(xué)上黑板完成,其他同學(xué)在底下練習(xí)本上完成,同學(xué)可以小聲音討論,完成后教師根據(jù)學(xué)生實踐中發(fā)現(xiàn)的問題給予必要的講評)
[設(shè)計說明] 充分給學(xué)生自己動手的時間和機(jī)會,由于本題是唯一解,為將來學(xué)生感悟什么情況下三角形有唯一解創(chuàng)造條件。
強(qiáng)化練習(xí)
讓全體同學(xué)限時完成教材4頁練習(xí)第一題,找兩位同學(xué)上黑板。
問題8:(教材例題2)在⊿ABC中a=20cm,b=28cm,A=30,解三角形。
[設(shè)計說明]例題2較難,目的是使學(xué)生明確,利用正弦定理有兩種可能,同時,引導(dǎo)學(xué)生對比例題1研究,在什么情況下解三角形有唯一解?為什么?對學(xué)有余力的同學(xué)鼓勵他們自學(xué)探究與發(fā)現(xiàn)教材8頁得內(nèi)容:《解三角形的進(jìn)一步討論》
(五)小結(jié)歸納,深化拓展
1、正弦定理
2、正弦定理的證明方法
3、正弦定理的應(yīng)用
4、涉及的數(shù)學(xué)思想和方法。
[設(shè)計說明] 師生共同總結(jié)本節(jié)課的收獲的同時,引導(dǎo)學(xué)生學(xué)會自己總結(jié),讓學(xué)生進(jìn)一步回顧和體會知識的形成、發(fā)展、完善的過程。
(六)布置作業(yè),鞏固提高
1、教材10頁習(xí)題1.1A組第1題。
2、學(xué)有余力的同學(xué)探究10頁B組第1題,體會正弦定理的其他證明方法。
證明:設(shè)三角形外接圓的半徑是R,則a=2RsinA,b=2RsinB, c=2RsinC
[設(shè)計說明] 對不同水平的學(xué)生設(shè)計不同梯度的作業(yè),尊重學(xué)生的個性差異,有利于因材施教的教學(xué)原則的貫徹。
高中數(shù)學(xué)說課稿 篇2
我將從教學(xué)理念;教材分析;教學(xué)目標(biāo);教學(xué)過程;教法、學(xué)法;教學(xué)評價六個方面來陳述我對本節(jié)課的設(shè)計方案。
一、教學(xué)理念
新的課程標(biāo)準(zhǔn)明確指出“數(shù)學(xué)是人類文化的重要組成部分,構(gòu)成了公民所必須具備的一種基本素質(zhì)。”其含義就是:我們不僅要重視數(shù)學(xué)的應(yīng)用價值,更要注重其思維價值和人文價值。
因此,創(chuàng)造性地使用教材,積極開發(fā)、利用各種教學(xué)資源,創(chuàng)設(shè)教學(xué)情境,讓學(xué)生通過主動參與、積極思考、與人合作交流和創(chuàng)新等過程,獲得情感、能力、知識的全面發(fā)展。本節(jié)課力圖打破常規(guī),充分體現(xiàn)以學(xué)生為本,全方位培養(yǎng)、提高學(xué)生素質(zhì),實現(xiàn)課程觀念、教學(xué)方式、學(xué)習(xí)方式的轉(zhuǎn)變。
二、教材分析
三角函數(shù)是中學(xué)數(shù)學(xué)的重要內(nèi)容之一,它既是解決生產(chǎn)實際問題的工具,又是學(xué)習(xí)高等數(shù)學(xué)及其它學(xué)科的基礎(chǔ)。本節(jié)課是在學(xué)習(xí)了任意角的三角函數(shù),兩角和與差的三角函數(shù)以及正、余弦函數(shù)的圖象和性質(zhì)后,進(jìn)一步研究函數(shù)y=Asin(ωx+φ)的簡圖的畫法,由此揭示這類函數(shù)的圖象與正弦曲線的關(guān)系,以及A、ω、φ的物理意義,并通過圖象的變化過程,進(jìn)一步理解正、余弦函數(shù)的性質(zhì),它是研究函數(shù)圖象變換的一個延伸,也是研究函數(shù)性質(zhì)的一個直觀反映。共3課時,本節(jié)課是繼學(xué)習(xí)完振幅、周期、初相變換后的第二課時。
本節(jié)課倡導(dǎo)學(xué)生自主探究,在教師的引導(dǎo)下,通過五點作圖法正確找出函數(shù)y=sinx到y(tǒng)=sin(ωx+φ)的圖象變換規(guī)律是本節(jié)課的重點。
難點是對周期變換、相位變換先后順序調(diào)整后,將影響圖象平移量的理解。因此,分析清不管哪種順序變換,都是對一個字母x而言的變換成為突破本節(jié)課教學(xué)難點的關(guān)鍵。
依據(jù)《課標(biāo)》,根據(jù)本節(jié)課內(nèi)容和學(xué)生的實際,我確定如下教學(xué)目標(biāo)。
三、教學(xué)目標(biāo)
。壑R與技能]
通過“五點作圖法”正確找出函數(shù)y=sinx到y(tǒng)=sin(ωx+φ)的圖象變換規(guī)律,能用五點作圖法和圖象變換法畫出函數(shù)y=Asin(ωx+φ)的簡圖,能舉一反三地畫出函數(shù)y=Asin(ωx+φ)+k和y=Acos(ωx+φ)的簡圖。
。圻^程與方法]
通過引導(dǎo)學(xué)生對函數(shù)y=sinx到y(tǒng)=sin(ωx+φ)的圖象變換規(guī)律的探索,讓學(xué)生體會到由簡單到復(fù)雜,特殊到一般的化歸思想;并通過對周期變換、相位變換先后順序調(diào)整后,將影響圖象變換這一難點的突破,讓學(xué)生學(xué)會抓住問題的主要矛盾來解決問題的基本思想方法。
。矍楦袘B(tài)度與價值觀]
課堂中,通過對問題的自主探究,培養(yǎng)學(xué)生的獨(dú)立意識和獨(dú)立思考能力;小組交流中,學(xué)會合作意識;在解決問題的難點時,培養(yǎng)學(xué)生解決問題抓主要矛盾的思想。在問題逐步深入的研究中喚起學(xué)生追求真理,樂于創(chuàng)新的情感需求,引發(fā)學(xué)生渴求知識的強(qiáng)烈愿望,樹立科學(xué)的人生觀、價值觀。
四、教學(xué)過程(六問三練)
1、設(shè)置情境
《函數(shù)y=Asin(ωx+φ)的圖象(第二課時)》說課稿。
高中數(shù)學(xué)說課稿 篇3
大家好,今天我向大家說課的題目是《正弦定理》。下面我將從以下幾個方面介紹我這堂課的教學(xué)設(shè)計。
一 教材分析
本節(jié)知識是必修五第一章《解三角形》的第一節(jié)內(nèi)容,與初中學(xué)習(xí)的三角形的邊和角的基本關(guān)系有密切的聯(lián)系與判定三角形的全等也有密切聯(lián)系,在日常生活和工業(yè)生產(chǎn)中也時常有解三角形的問題,而且解三角形和三角函數(shù)聯(lián)系在高考當(dāng)中也時?家恍┙獯痤}。因此,正弦定理和余弦定理的知識非常重要。
根據(jù)上述教材內(nèi)容分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征及原有知識水平,制定如下教學(xué)目標(biāo):
認(rèn)知目標(biāo):在創(chuàng)設(shè)的問題情境中,引導(dǎo)學(xué)生發(fā)現(xiàn)正弦定理的內(nèi)容,推證正弦定理及簡單運(yùn)用正弦定理與三角形的內(nèi)角和定理解斜三角形的兩類問題。
能力目標(biāo):引導(dǎo)學(xué)生通過觀察,推導(dǎo),比較,由特殊到一般歸納出正弦定理,培養(yǎng)學(xué)生的創(chuàng)新意識和觀察與邏輯思維能力,能體會用向量作為數(shù)形結(jié)合的工具,將幾何問題轉(zhuǎn)化為代數(shù)問題。
情感目標(biāo):面向全體學(xué)生,創(chuàng)造平等的教學(xué)氛圍,通過學(xué)生之間、師生之間的交流、合作和評價,調(diào)動學(xué)生的主動性和積極性,給學(xué)生成功的體驗,激發(fā)學(xué)生學(xué)習(xí)的興趣。
教學(xué)重點:正弦定理的內(nèi)容,正弦定理的證明及基本應(yīng)用。
教學(xué)難點:正弦定理的探索及證明,已知兩邊和其中一邊的對角解三角形時判斷解的個數(shù)。
二 教法
根據(jù)教材的內(nèi)容和編排的特點,為是更有效地突出重點,空破難點,以學(xué)業(yè)生的發(fā)展為本,遵照學(xué)生的認(rèn)識規(guī)律,本講遵照以教師為主導(dǎo),以學(xué)生為主體,訓(xùn)練為主線的指導(dǎo)思想, 采用探究式課堂教學(xué)模式,即在教學(xué)過程中,在教師的啟發(fā)引導(dǎo)下,以學(xué)生獨(dú)立自主和合作交流為前提,以“正弦定理的發(fā)現(xiàn)”為基本探究內(nèi)容,以生活實際為參照對象,讓學(xué)生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導(dǎo),并逐步得到深化。突破重點的手段:抓住學(xué)生情感的興奮點,激發(fā)他們的興趣,鼓勵學(xué)生大膽猜想,積極探索,以及及時地鼓勵,使他們知難而進(jìn)。另外,抓知識選擇的切入點,從學(xué)生原有的認(rèn)知水平和所需的知識特點入手,教師在學(xué)生主體下給以適當(dāng)?shù)奶崾竞椭笇?dǎo)。突破難點的方法:抓住學(xué)生的能力線聯(lián)系方法與技能使學(xué)生較易證明正弦定理,另外通過例題和練習(xí)來突破難點
三 學(xué)法:
指導(dǎo)學(xué)生掌握“觀察——猜想——證明——應(yīng)用”這一思維方法,采取個人、小組、集體等多種解難釋疑的嘗試活動,將自己所學(xué)知識應(yīng)用于對任意三角形性質(zhì)的探究。讓學(xué)生在問題情景中學(xué)習(xí),觀察,類比,思考,探究,概括,動手嘗試相結(jié)合,體現(xiàn)學(xué)生的主體地位,增強(qiáng)學(xué)生由特殊到一般的數(shù)學(xué)思維能力,形成了實事求是的科學(xué)態(tài)度,增強(qiáng)了鍥而不舍的求學(xué)精神。
四 教學(xué)過程
第一:創(chuàng)設(shè)情景,大概用2分鐘
第二:實踐探究,形成概念,大約用25分鐘
第三:應(yīng)用概念,拓展反思,大約用13分鐘
。ㄒ唬﹦(chuàng)設(shè)情境,布疑激趣
“興趣是最好的老師”,如果一節(jié)課有個好的開頭,那就意味著成功了一半,本節(jié)課由一個實際問題引入,“工人師傅的一個三角形的模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長為1m,想修好這個零件,但他不知道AC和BC的長度是多少好去截料,你能幫師傅這個忙嗎?”激發(fā)學(xué)生幫助別人的熱情和學(xué)習(xí)的興趣,從而進(jìn)入今天的學(xué)習(xí)課題。
。ǘ┨綄ぬ乩,提出猜想
1.激發(fā)學(xué)生思維,從自身熟悉的特例(直角三角形)入手進(jìn)行研究,發(fā)現(xiàn)正弦定理。
2.那結(jié)論對任意三角形都適用嗎?指導(dǎo)學(xué)生分小組用刻度尺、量角器、計算器等工具對一般三角形進(jìn)行驗證。
3.讓學(xué)生總結(jié)實驗結(jié)果,得出猜想:
在三角形中,角與所對的邊滿足關(guān)系
這為下一步證明樹立信心,不斷的使學(xué)生對結(jié)論的認(rèn)識從感性逐步上升到理性。
。ㄈ┻壿嬐评,證明猜想
1.強(qiáng)調(diào)將猜想轉(zhuǎn)化為定理,需要嚴(yán)格的理論證明。
2.鼓勵學(xué)生通過作高轉(zhuǎn)化為熟悉的直角三角形進(jìn)行證明。
3.提示學(xué)生思考哪些知識能把長度和三角函數(shù)聯(lián)系起來,繼而思考向量分析層面,用數(shù)量積作為工具證明定理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。
4.思考是否還有其他的方法來證明正弦定理,布置課后練習(xí),提示,做三角形的外接圓構(gòu)造直角三角形,或用坐標(biāo)法來證明
。ㄋ模w納總結(jié),簡單應(yīng)用
1.讓學(xué)生用文字?jǐn)⑹稣叶ɡ,引?dǎo)學(xué)生發(fā)現(xiàn)定理具有對稱和諧美,提升對數(shù)學(xué)美的享受。
2.正弦定理的內(nèi)容,討論可以解決哪幾類有關(guān)三角形的問題。
3.運(yùn)用正弦定理求解本節(jié)課引引入的三角形零件邊長的問題。自己參與實際問題的解決,能激發(fā)學(xué)生知識后用于實際的價值觀。
。ㄎ澹┲v解例題,鞏固定理
1.例1。在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形.
例1簡單,結(jié)果為唯一解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來解三角形。
2. 例2. 在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形.
高中數(shù)學(xué)說課稿 篇4
函數(shù)的單調(diào)性
今天我說課的題目是《函數(shù)的單調(diào)性》,下面我將圍繞本節(jié)課“教什么?”、“怎樣教?”以及“為什么這樣教?”三個問題,從教材分析、教學(xué)目標(biāo)分析、教學(xué)重難點分析、教法與學(xué)法、教學(xué)過程五方面逐一加以分析和說明。
一、說教材
1、教材的地位和作用
本節(jié)內(nèi)容選自北師大版高中數(shù)學(xué)必修1,第二章第3節(jié)。函數(shù)是高中數(shù)學(xué)的課程,它是描述事物運(yùn)動變化的模型,而函數(shù)的單調(diào)性是函數(shù)的一大特征,它為我們之后的學(xué)習(xí)奠定重要基礎(chǔ)。
2、學(xué)情分析
本節(jié)課的`學(xué)生是高一學(xué)生,他們在初中階段,通過一次函數(shù)、二次函數(shù)、反比例函數(shù)的學(xué)習(xí)已經(jīng)對函數(shù)的增減性有了初步的感性認(rèn)識。在高中階段,用符號語言刻畫圖形語言,用定量分析解釋定性結(jié)果,有利于培養(yǎng)學(xué)生的理性思維,為后續(xù)函數(shù)的學(xué)習(xí)作準(zhǔn)備,也為利用倒數(shù)研究單調(diào)性的相關(guān)知識奠定了基礎(chǔ)。
教學(xué)目標(biāo)分析
基于以上對教材和學(xué)情的分析以及新課標(biāo)教學(xué)理念,我將教學(xué)目標(biāo)分為以下三個部分:
1.知識與技能(1)理解函數(shù)的單調(diào)性和單調(diào)函數(shù)的意義;
。2)會判斷和證明簡單函數(shù)的單調(diào)性。
2.過程與方法
(1)培養(yǎng)從概念出發(fā),進(jìn)一步研究性質(zhì)的意識及能力;
。2)體會數(shù)形結(jié)合、分類討論的數(shù)學(xué)思想。
3.情感態(tài)度與價值觀
由合適的例子引發(fā)學(xué)生探求數(shù)學(xué)知識的欲望,突出學(xué)生的主觀能動性,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
三、教學(xué)重難點分析
通過以上對教材和學(xué)生的分析以及教學(xué)目標(biāo),我將本節(jié)課的重難點
重點:
函數(shù)單調(diào)性的概念,判斷和證明簡單函數(shù)的單調(diào)性。
難點:
1.函數(shù)單調(diào)性概念的認(rèn)知
(1)自然語言到符號語言的轉(zhuǎn)化;
。2)常量到變量的轉(zhuǎn)化。
2.應(yīng)用定義證明單調(diào)性的代數(shù)推理論證。
四、教法與學(xué)法分析
1、教法分析
基于以上對教材、學(xué)情的分析以及新課標(biāo)的教學(xué)理念,本節(jié)課我采用啟發(fā)式教學(xué)、多媒體輔助教學(xué)和討論法。學(xué)生可以在多媒體中感受到數(shù)學(xué)在生活中的應(yīng)用,啟發(fā)式教學(xué)和討論法發(fā)散學(xué)生思維,培養(yǎng)學(xué)生善于思考的能力。
2、學(xué)法分析
新課改理念告訴我們,學(xué)生不僅要學(xué)知識,更重要的是要學(xué)會怎樣學(xué)習(xí),為終生學(xué)習(xí)奠定扎實的基礎(chǔ)。所以本節(jié)課我將引導(dǎo)學(xué)生通過合作交流、自主探索的方法理解函數(shù)的單調(diào)性及特征。
五、教學(xué)過程
為了更好的實現(xiàn)本課的三維目標(biāo),并突破重難點,我設(shè)計以下五個環(huán)節(jié)來進(jìn)行我的教學(xué)。
。ㄒ唬┲R導(dǎo)入
溫故而知新,我將先從之前學(xué)習(xí)的知識引入,給出一些函數(shù),比如y=x、y=-x、y=|x|,讓學(xué)生作出這些函數(shù)的圖像,然后讓學(xué)生討論這些函數(shù)圖像是上升的還是下降的,由此引入到我的新課。在這個過程中不僅可以檢查學(xué)生掌握基本初等函數(shù)圖像的情況,而且符合學(xué)生的認(rèn)知結(jié)構(gòu),通過學(xué)生自主探究,從知識產(chǎn)生、發(fā)展的過程中構(gòu)建新概念,有利于激發(fā)學(xué)生的思維和學(xué)習(xí)的積極主動性。
。ǘ┲v授新課
1.問題:分別做出函數(shù)y=x2,y=x+2的圖像,指出上面的函數(shù)圖象在哪個區(qū)間是上升的,在哪個區(qū)間是下降的?
通過學(xué)生熟悉的圖像,及時引導(dǎo)學(xué)生觀察,函數(shù)圖像上A點的運(yùn)動情況,引導(dǎo)學(xué)生能用自然語言描述出,隨著x增大時圖像變化規(guī)律。讓學(xué)生大膽的去說,老師逐步修正、完善學(xué)生的說法,最后給出正確答案。
2.觀察函數(shù)y=x2隨自變量x變化的情況,設(shè)置啟發(fā)式問題:
。1)在y軸的右側(cè)部分圖象具有什么特點?
。2)如果在y軸右側(cè)部分取兩個點(x1,y1),(x2,y2),當(dāng)x1 。3)如何用數(shù)學(xué)符號語言來描述這個規(guī)律? 教師補(bǔ)充:這時我們就說函數(shù)y=x2在(0,+∞)上是增函數(shù)。 (4)反過來,如果y=f(x)在(0,+∞)上是增函數(shù),我們能不能得到自變量與函數(shù)值的變化規(guī)律呢? 類似地分析圖象在y軸的左側(cè)部分。 通過對以上問題的分析,從正、反兩方面領(lǐng)會函數(shù)單調(diào)性。師生共同總結(jié)出單調(diào)增函數(shù)的定義,并解讀定義中的關(guān)鍵詞,如:區(qū)間內(nèi),任意,當(dāng)x1 仿照單調(diào)增函數(shù)定義,由學(xué)生說出單調(diào)減函數(shù)的定義。 教師總結(jié)歸納單調(diào)性和單調(diào)區(qū)間的定義。注意強(qiáng)調(diào):函數(shù)的單調(diào)性是函數(shù)在定義域某個區(qū)間上的局部性質(zhì),也就是說,一個函數(shù)在不同的區(qū)間上可以有不同的單調(diào)性。 (我將給出函數(shù)y=x2,并畫出這個函數(shù)的圖像,讓學(xué)生觀察函數(shù)圖像的特點,讓他們描述函數(shù)圖像的增減性,慢慢得到函數(shù)單調(diào)性的概念。在這個過程中,學(xué)生把對圖像的感性認(rèn)識轉(zhuǎn)化為了數(shù)學(xué)關(guān)系,這種從特殊到一般的學(xué)習(xí)過程有利于學(xué)生對概念的理解) 。ㄈ╈柟叹毩(xí) 1練習(xí)1:說出函數(shù)f(x)=的單調(diào)區(qū)間,并指明在該區(qū)間上的單調(diào)性。x 練習(xí)2:練習(xí)2:判斷下列說法是否正確 ①定義在R上的函數(shù)f(x)滿足f(2)>f(1),則函數(shù)是R上的增函數(shù)。 、诙x在R上的函數(shù)f(x)滿足f(2)>f(1),則函數(shù)是R上不是減函數(shù)。 1③已知函數(shù)y=,因為f(-1) 1我將給出一些具體的函數(shù),如y=,f(x)=3x+2讓學(xué)生說出函數(shù)的單調(diào)區(qū)間,并指明在該區(qū)間x 上的單調(diào)性。通過這種練習(xí)的方式,幫助學(xué)生鞏固對知識的掌握。 。ㄋ模w納總結(jié) 我先讓學(xué)生進(jìn)行小結(jié),函數(shù)單調(diào)性定義,判斷函數(shù)單調(diào)性的方法(圖像、定義),然后教師進(jìn)行補(bǔ)充,在這樣一個過程中既有利于學(xué)生鞏固知識,也有利于教師對學(xué)生的學(xué)習(xí)情況有一定的了解,為下一節(jié)課的教學(xué)過程做好準(zhǔn)備。 (五)布置作業(yè) 必做題:習(xí)題2-3A組第2,4,5題。 選做題:習(xí)題2-3B組第2題。 新課程理念告訴我們,不同的人在數(shù)學(xué)上可以獲得不同的發(fā)展,因此要設(shè)計不同程度要求的習(xí)題。 二次函數(shù)的圖像說課稿 今天我說課的題目是《二次函數(shù)的圖像》,下面我將圍繞本節(jié)課“教什么?”、“怎樣教?”以及“為什么這樣教?”三個問題,從教材分析、教學(xué)目標(biāo)分析、教學(xué)重難點分析、教法與學(xué)法、課堂設(shè)計五方面逐一加以分析和說明。 一、教材分析 教材的地位和作用 本節(jié)內(nèi)容選自北師大版高中數(shù)學(xué)必修1,第二章第4.1節(jié)。二次函數(shù)的圖像在教材中起著承上啟下的作用。 學(xué)情分析 本節(jié)課的學(xué)生是高一學(xué)生,他們在初中的時候已經(jīng)學(xué)習(xí)過有關(guān)內(nèi)容,為本節(jié)課的學(xué)習(xí)打下了基礎(chǔ),另一方面,二次函數(shù)解析式中的系數(shù)由常數(shù)轉(zhuǎn)變?yōu)閰?shù),使學(xué)生對二次函數(shù)的圖像由感性認(rèn)識上升到理性認(rèn)識,能培養(yǎng)學(xué)生利用數(shù)形結(jié)合思想解決問題的能力。 二、教學(xué)目標(biāo)分析 基于以上對教材和學(xué)情的分析以及新課標(biāo)教學(xué)理念,我將教學(xué)目標(biāo)分為以下三個部分: 1.知識與技能 理解二次函數(shù)中參數(shù)a,b,c,h,k對其圖像的影響; 2.過程與方法 通過體驗對二次函數(shù)圖像平移的研究方法,能遷移到其他函數(shù)圖像的研究。 3.情感態(tài)度與價值觀 通過本節(jié)的學(xué)習(xí),進(jìn)一步體會數(shù)形結(jié)合思想的作用,感受到數(shù)學(xué)中數(shù)與形的辯證統(tǒng)一。 三、教學(xué)重難點分析 通過以上對教材和學(xué)生的分析以及教學(xué)目標(biāo),我將本節(jié)課的重難點確定如下 重點: 二次函數(shù)圖像的平移變換規(guī)律及應(yīng)用。 難點: 探索平移對函數(shù)解析式的影響及如何利用平移變換規(guī)律求函數(shù)解析式,并能把平移變換規(guī)律遷移到其他函數(shù)。 四、教法與學(xué)法分析 1、教法分析 基于以上對教材、學(xué)情的分析以及新課改的要求,本節(jié)課我采用啟發(fā)式教學(xué)、多媒體輔助教學(xué)和討論法。學(xué)生可以在多媒體中感受到數(shù)學(xué)在生活中的應(yīng)用,啟發(fā)式教學(xué)和討論法發(fā)散學(xué)生思維,培養(yǎng)學(xué)生善于思考的能力。 2、學(xué)法分析 新課改理念告訴我們,學(xué)生不僅要學(xué)知識,更重要的是要學(xué)會怎樣學(xué)習(xí),為終生學(xué)習(xí)奠定扎實的基礎(chǔ)。所以本節(jié)課我將引導(dǎo)學(xué)生通過合作交流、自主探索的方法進(jìn)行學(xué)習(xí)。 五、教學(xué)過程 為了更好的實現(xiàn)本課的三維目標(biāo),并突破重難點,我將設(shè)計以下五個環(huán)節(jié)來進(jìn)行我的教學(xué)。 。1)知識導(dǎo)入 溫故而知新,我將先從之前學(xué)習(xí)的知識引入,給出一些函數(shù),比如y=x2、y=2x2,讓學(xué)生作出這些函數(shù)的圖像,然后讓學(xué)生比較這些函數(shù)圖像的相同點和不同點,由此引入我的新課。一方面讓學(xué)生總結(jié)復(fù)習(xí)已有知識,為后面的學(xué)習(xí)做好鋪墊,另一方面,使學(xué)生在自己熟悉的問題中首先獲得解題成功的快樂體驗。 。2)講授新課 例1:畫出函數(shù)y=2x2,y=2(x+1)2,y=2(x+1)2+3的圖像 讓學(xué)生畫出他們的圖像并觀察函數(shù)圖像的特點,再讓學(xué)生與多媒體課件展示的圖像進(jìn)行對比,得出結(jié)論:若二次函數(shù)的解析式為y=ax2+bx+c,先將其化成y=a(x+h)2+k的形式,從而判斷出y=ax2+bx+c是如何由y=ax2變換得到的。 前面的練習(xí)和例題,基本涵蓋了二次函數(shù)圖像平移變換的各種情況,啟發(fā)并引導(dǎo)了學(xué)生將實例的結(jié)論進(jìn)行總結(jié),得出y=x2到y(tǒng)=ax2,y=ax2到y(tǒng)=a(x+h)2+k,y=ax2到y(tǒng)=ax2+bx+c(其中,a均不為0)的圖像變化過程,即a>0開口向上,a<0開口向下;h正左移,h負(fù)右移;k正上移,k負(fù)下移。在這個過程中,學(xué)生把對圖像的感性認(rèn)識轉(zhuǎn)化為了數(shù)學(xué)關(guān)系,這種從特殊到一般的學(xué)習(xí)過程有利于學(xué)生對概念的理解, (3)鞏固練習(xí) 我將組織學(xué)生進(jìn)行練習(xí),完成課本44頁1-3題。通過這種練習(xí)的方式,幫助學(xué)生鞏固和加深二次函數(shù)中參數(shù)對圖像的影響。 (4)歸納總結(jié) 我先讓學(xué)生進(jìn)行小結(jié),然后教師進(jìn)行補(bǔ)充,在這樣一個過程中既有利于學(xué)生鞏固知識,也有利于教師對學(xué)生的學(xué)習(xí)情況有一定的了解,可以進(jìn)行適當(dāng)反思,為下一節(jié)課的教學(xué)過程做好準(zhǔn)備。 。5)布置作業(yè) 略 一、教材分析: 《向量的加法》是《必修》4第二章第二單元中“平面向量的線性運(yùn)算”的第一節(jié)課。本節(jié)內(nèi)容有向量加法的平行四邊形法則、三角形法則及應(yīng)用,向量加法的運(yùn)算律及應(yīng)用,大約需要1課時。向量的加法是向量的線性運(yùn)算中最基本的一種運(yùn)算,向量的加法及其幾何意義為后繼學(xué)習(xí)向量的減法運(yùn)算及其幾何意義、向量的數(shù)乘運(yùn)算及其幾何意義奠定了基礎(chǔ);其中三角形法則適用于求任意多個向量的和,在空間向量與立體幾何中有很普遍的應(yīng)用。所以本課在“平面向量”及“空間向量”中有很重要的地位。 二、學(xué)情分析: 學(xué)生在上節(jié)課中學(xué)習(xí)了向量的定義及表示,相等向量,平行向量等概念,知道向量可以自由移動,這是學(xué)習(xí)本節(jié)內(nèi)容的基礎(chǔ)。學(xué)生對數(shù)的運(yùn)算了如指掌,并且在物理中學(xué)過力的合成、位移的合成等矢量的加法,所以向量的加法可通過類比數(shù)的加法、以所學(xué)的物理模型為背景引入,這樣做有利于學(xué)生更好地理解向量加法的意義,準(zhǔn)確把握兩個加法法則的特點。 三、教學(xué)目的: 1、通過對向量加法的探究,使學(xué)生掌握向量加法的概念,結(jié)合物理學(xué)實際理解向量加法的意義。能正確領(lǐng)會向量加法的平行四邊形法則和三角形法則的幾何意義,并能運(yùn)用法則作出兩個已知向量的和向量。 2、在應(yīng)用活動中,理解向量加法滿足交換律和結(jié)合律以及表述兩個運(yùn)算律的幾何意義。掌握有特殊位置關(guān)系的兩個向量之和,比如共線向量,共起點向量、共終點向量等。 3、通過本節(jié)的學(xué)習(xí),培養(yǎng)學(xué)生類比、遷移、分類、歸納等數(shù)學(xué)方面的能力。 四、教學(xué)重、難點 重點:向量的加法法則。探究向量的加法法則并正確應(yīng)用是本課的重點。兩個加法法則各有特點,聯(lián)系緊密,你中有我,我中有你,實質(zhì)相同,但是三角形法則適用范圍更加廣泛,且簡便易行,所以是詳講內(nèi)容,平行四邊形法則在本課中所占份量略少于三角形法則。 難點:對三角形法則的理解;方向相反的兩個向量的加法。主要是讓學(xué)生認(rèn)識到三角形法則的實質(zhì)是:將已知向量首尾相接,而不是表示向量的有向線段之間必須構(gòu)成三角形。 五、教學(xué)方法 本節(jié)采用以下教學(xué)方法:1、類比:由數(shù)的加法運(yùn)算類比向量的加法運(yùn)算。2、探究:由力的合成引入平行四邊形法則,在法則的運(yùn)用中觀察圖形得出三角形法則,探求共線向量的加法,發(fā)現(xiàn)三角形法則適用于任意向量相加;通過圖形,觀察得出向量加法滿足交換律、結(jié)合律等,這些都體現(xiàn)探究式教學(xué)法的運(yùn)用。3、講解與練習(xí):對兩個法則特點的分析,例題都采取了引導(dǎo)與講解的方法,學(xué)生課堂完成教材中的練習(xí)。4、多媒體技術(shù)的運(yùn)用,能直觀地表現(xiàn)向量的平移,相等向量的意義,更能說清兩個法則的幾何意義及運(yùn)算律。 六、數(shù)學(xué)思想的體現(xiàn): 1、分類的思想:總的來說本課中向量的加法分為不共線向量及共線向量兩種形式,共線向量又分為方向相同與方向相反兩種情形,然后專門對零向量與任意向量相加作了規(guī)定,這樣對任意向量的加法都做了討論,線索清楚。 2、類比思想:使之與數(shù)的加法進(jìn)行類比,使學(xué)生對向量的加法不致于太陌生,既有似曾相識的感覺,又能從對比中看出兩者的不同,效果較好。 3、歸納思想:主要體現(xiàn)在以下三個環(huán)節(jié)①學(xué)完平行四邊形法則和三角形法則后,歸納總結(jié),對不共線向量相加,兩個法則都可以選用。②由共線向量的加法總結(jié)出三角形法則適用于任意兩個向量的相加,而三角形法則僅適用于不共線向量相加。③對向量加法的結(jié)合律和探討中,又使學(xué)生發(fā)現(xiàn)了三角形法則還適用于任意多個向量的加法。歸納思想在這三個環(huán)節(jié)中的運(yùn)用,使得學(xué)生對兩個加法法則,尤其是三角形法則的理解,步步深入。 七、教學(xué)過程: 1、回顧舊知:本節(jié)要進(jìn)行向量的平移,且對向量加法分共線與不共線兩種情況,所以要復(fù)習(xí)向量、相等向量、共線向量等概念,這些都是新課學(xué)習(xí)中必要的知識鋪墊。 2、引入新課: 。1)平行四邊形法則的引入。 學(xué)生在物理學(xué)中雖然接觸過位移的合成,但是并沒有形成三角形法則的概念;而對平行四邊形法則學(xué)生已學(xué)過,很熟悉。所以我決定由力的合成引入向量加法的平行四邊形法則。平行四邊形法則的特點是起點相同,但是物理中力的合成是在有相同的作用點的條件下合成的,引入到數(shù)學(xué)中向量加法的平行四邊形法則,所給出的圖形也是現(xiàn)成的平行四邊形,而學(xué)生剛學(xué)完相等向量,對相等向量的概念還沒有深刻的認(rèn)識,易產(chǎn)生誤解:表示兩個已知向量的有向線段的起點必須在一起才能用平行四邊形法則,不在一起不能用。這時要通過講解例1,使學(xué)生認(rèn)識到可以通過平移向量,使表示兩個向量的有向線段有共同的起點。這一點對理解及運(yùn)用法則求兩向量的和很重要。 設(shè)計意圖:本著從學(xué)生最熟悉、離學(xué)生最近的知識經(jīng)驗為接入點,用學(xué)生熟知的方法來解決新的問題——向量的加法,這樣新中有舊,學(xué)生容易接受,也使學(xué)科間的滲透發(fā)揮了作用,加深了學(xué)生對向量加法的平行四邊形法則的“起點相同”這一特點的認(rèn)識,例1的講解使學(xué)生認(rèn)識到當(dāng)表示向量的有向線段的起點不在一起時,須把起點移到一起,至此才能使學(xué)生完成對平行四邊形法則理解真正到位。 。2)三角形法則的引入。三角形法則沒有按照教材中利用位移的合成引入,而是從前面所講的平行四邊形法則的圖形中直接引入(如圖)。 所以這種把兩個向量相加的方法稱為三角形法則。接下來用幻燈片完整展示三角形法則,同時法則的作法敘述、作圖過程對學(xué)生也起到了示例的作用。于是前面的例1還可以利用三角形法則來做。 這時,總結(jié)出兩個不共線向量求和時,平行四邊形法則與三角形法則都可以用。 設(shè)計意圖:由平行四邊形法則的圖形引入三角形法則,可以很清楚地使學(xué)生從向何意義上認(rèn)識到兩個法則之間的密切聯(lián)系,理解它們的實質(zhì),而且銜接自然,能夠使學(xué)生對比地得出兩個法則的特點與實質(zhì),并對兩個法則的特點有較深刻的印象。 (3)共線向量的加法 方向相同的兩個向量相加,對學(xué)生來說較易完成,“將它們接在一起,取它們的方向及長度之和,作為和向量的方向與長度!币龑(dǎo)學(xué)生分析作法,結(jié)果發(fā)現(xiàn)還是運(yùn)用了三角形法則:首尾相接,方向由第一個向量的起點指向第二個向量的終點。 方向相反的兩個向量相加,對學(xué)生來說是個難點,首先從作圖上不知道怎樣做。但是學(xué)生學(xué)過有理數(shù)加法中的異號兩數(shù)相加:“異號兩數(shù)相加,用較大 的絕對值減去較小的絕對值,符號取絕對值較大的數(shù)的符號!鳖惐犬愄杻蓴(shù)相加,他們會用較長的模減去較短的模,方向取模較長的向量的方向。具體做法由老師引導(dǎo)學(xué)生嘗試運(yùn)用三角形法則去做,發(fā)現(xiàn)結(jié)論正確。 反思過程,學(xué)生自然會想到方向相同的兩個向量相加,類似于同號兩數(shù)相加。這說明兩個共線向量相加依然可用三角形法則 通過以上幾個環(huán)節(jié)的討論,可以作個簡單的小結(jié):兩個不共線向量相加,可采用平行四邊形法則或三角形法則,而兩個共線向量相加在本課所學(xué)方法中只能用三角形法則,說明三角形法則適用于任意兩個向量相加。 設(shè)計意圖:通過對共線向量加法的探討,拓寬了學(xué)生對三角形法則的認(rèn)識,使得不同位置的向量相加都有了依據(jù),并且采用類比的方法,使學(xué)生對共線向量的加法,尤其是方向相反的兩個向量的加法更易于理解,可以化解難點。 (4)向量加法的運(yùn)算律 、俳粨Q律:交換律是利用平行四邊形法則的圖形,又結(jié)合三角 形法則得出,理解起來沒什么困難,再一次強(qiáng)化了學(xué)生對兩個法則特點及實質(zhì)的認(rèn)識。 、诮Y(jié)合律:結(jié)合律是通過三個向量首尾相接,先加前兩個再與第三個向量相加,和先加后兩個向量再與第一個向量相加所得結(jié)果相同。 接下來是對應(yīng)的兩個練習(xí),運(yùn)用交換律與結(jié)合律計算向量的和。 設(shè)計意圖:運(yùn)算律的引入給加法運(yùn)算帶來方便,從后面的練習(xí)中學(xué)生能夠體會到這點。由結(jié)合律還使學(xué)生發(fā)現(xiàn),多個向量相加,同樣可以運(yùn)用三角形法則:將所加向量首尾相接,和向量的方向是由第一個向量的起點指向最后一個向量的終點。這樣使學(xué)生明白,三角形法則適用于任意多個向量相加。 3、小結(jié) 先由學(xué)生小結(jié),檢查學(xué)生對本課重要知識的認(rèn)識,也給學(xué)生一個概括本節(jié)知識的機(jī)會,然后用課件展示小結(jié)內(nèi)容,使學(xué)生印象更深。 。1)平行四邊形法則:起點相同,適用于不共線向量的求和。 (2)三角形法則首尾相接,適用于任意多個向量的求和。 。3)運(yùn)算律 尊敬的各位評委、各位老師大家好!我說課的題目是《函數(shù)的單調(diào)性》,我將從四個方面來闡述我對這節(jié)課的設(shè)計. 一、教材分析 1、 教材的地位和作用 。1)本節(jié)課主要對函數(shù)單調(diào)性的學(xué)習(xí); 。2)它是在學(xué)習(xí)函數(shù)概念的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,同時又為基本初等函數(shù)的學(xué)習(xí)奠定了基礎(chǔ),所以他在教材中起著承前啟后的重要作用;(可以看看這一課題的前后章節(jié)來寫) 。3)它是歷年高考的熱點、難點問題 。ǜ鶕(jù)具體的課題改變就行了,如果不是熱點難點問題就刪掉) 2、 教材重、難點 重點:函數(shù)單調(diào)性的定義 難點:函數(shù)單調(diào)性的證明 重難點突破:在學(xué)生已有知識的基礎(chǔ)上,通過認(rèn)真觀察思考,并通過小組合作探究的辦法來實現(xiàn)重難點突破。(這個必須要有) 二、教學(xué)目標(biāo) 知識目標(biāo):(1)函數(shù)單調(diào)性的定義 。2)函數(shù)單調(diào)性的證明 能力目標(biāo):培養(yǎng)學(xué)生全面分析、抽象和概括的能力,以及了解由簡單到復(fù)雜,由特殊到一般的化歸思想 情感目標(biāo):培養(yǎng)學(xué)生勇于探索的精神和善于合作的意識 。ㄟ@樣的教學(xué)目標(biāo)設(shè)計更注重教學(xué)過程和情感體驗,立足教學(xué)目標(biāo)多元化) 三、教法學(xué)法分析 1、教法分析 “教必有法而教無定法”,只有方法得當(dāng)才會有效。新課程標(biāo)準(zhǔn)之處教師是教學(xué)的組織者、引導(dǎo)者、合作者,在教學(xué)過程要充分調(diào)動學(xué)生的積極性、主動性。本著這一原則,在教學(xué)過程中我主要采用以下教學(xué)方法:開放式探究法、啟發(fā)式引導(dǎo)法、小組合作討論法、反饋式評價法 2、學(xué)法分析 “授人以魚,不如授人以漁”,最有價值的知識是關(guān)于方法的只是。學(xué)生作為教學(xué)活動的主題,在學(xué)習(xí)過程中的參與狀態(tài)和參與度是影響教學(xué)效果最重要的因素。在學(xué)法選擇上,我主要采用:自主探究法、觀察發(fā)現(xiàn)法、合作交流法、歸納總結(jié)法。 。ㄇ叭糠钟脮r控制在三分鐘以內(nèi),可適當(dāng)刪減) 四、教學(xué)過程 1、以舊引新,導(dǎo)入新知 通過課前小研究讓學(xué)生自行繪制出一次函數(shù)f(x)=x和二次函數(shù)f(x)=x^2的圖像,并觀察函數(shù)圖象的特點,總結(jié)歸納。通過課上小組討論歸納,引導(dǎo)學(xué)生發(fā)現(xiàn),教師總結(jié):一次函數(shù)f(x)=x的圖像在定義域是直線上升的,而二次函數(shù)f(x)=x^2的圖像是一個曲線,在(-∞,0)上是下降的,而在(0,+∞)上是上升的。(適當(dāng)添加手勢,這樣看起來更自然) 2、創(chuàng)設(shè)問題,探索新知 緊接著提出問題,你能用二次函數(shù)f(x)=x^2表達(dá)式來描述函數(shù)在(-∞,0)的圖像?教師總結(jié),并板書,揭示函數(shù)單調(diào)性的定義,并注意強(qiáng)調(diào)可以利用作差法來判斷這個函數(shù)的單調(diào)性。 讓學(xué)生模仿剛才的表述法來描述二次函數(shù)f(x)=x^2在(0,+∞)的圖像,并找個別同學(xué)起來作答,規(guī)范學(xué)生的數(shù)學(xué)用語。 讓學(xué)生自主學(xué)習(xí)函數(shù)單調(diào)區(qū)間的定義,為接下來例題學(xué)習(xí)打好基礎(chǔ)。 3、 例題講解,學(xué)以致用 例1主要是對函數(shù)單調(diào)區(qū)間的鞏固運(yùn)用,通過觀察函數(shù)定義在(—5,5)的圖像來找出函數(shù)的單調(diào)區(qū)間。這一例題主要以學(xué)生個別回答為主,學(xué)生回答之后通過互評來糾正答案,檢查學(xué)生對函數(shù)單調(diào)區(qū)間的掌握。強(qiáng)調(diào)單調(diào)區(qū)間一般寫成半開半閉的形式 例題講解之后可讓學(xué)生自行完成課后練習(xí)4,以學(xué)生集體回答的方式檢驗學(xué)生的學(xué)習(xí)效果。 例2是將函數(shù)單調(diào)性運(yùn)用到其他領(lǐng)域,通過函數(shù)單調(diào)性來證明物理學(xué)的波意爾定理。這是歷年高考的熱點跟難點問題,這一例題要采用教師板演的方式,來對例題進(jìn)行證明,以規(guī)范總結(jié)證明步驟。一設(shè)二差三化簡四比較,注意要把f(x1)-f(x2)化簡成和差積商的形式,再比較與0的大小。 學(xué)生在熟悉證明步驟之后,做課后練習(xí)3,并以小組為單位找部分同學(xué)上臺板演,其他同學(xué)在下面自行完成,并通過自評、互評檢查證明步驟。 4、歸納小結(jié) 本節(jié)課我們主要學(xué)習(xí)了函數(shù)單調(diào)性的定義及證明過程,并在教學(xué)過程中注重培養(yǎng)學(xué)生勇于探索的精神和善于合作的意識。 5、作業(yè)布置 為了讓學(xué)生學(xué)習(xí)不同的數(shù)學(xué),我將采用分層布置作業(yè)的方式:一組 習(xí)題1.3A組1、2、3 ,二組 習(xí)題1.3A組2、3、B組1、2 6、板書設(shè)計 我力求簡潔明了地概括本節(jié)課的學(xué)習(xí)要點,讓學(xué)生一目了然。 。ㄟ@部分最重要用時六到七分鐘,其中定義講解跟例題講解一定要說明學(xué)生的活動) 五、教學(xué)評價 本節(jié)課是在學(xué)生已有知識的基礎(chǔ)上學(xué)習(xí)的,在教學(xué)過程中通過自主探究、合作交流,充分調(diào)動學(xué)生的積極性跟主動性,及時吸收反饋信息,并通過學(xué)生的自評、互評,讓內(nèi)部動機(jī)和外界刺激協(xié)調(diào)作用,促進(jìn)其數(shù)學(xué)素養(yǎng)不斷提高。 各位老師: 今天我說課的題目是《條件語句》,內(nèi)容選自于新課程人教A版必修3第一章第二節(jié),課時安排為一個課時。下面我將從教材分析、教學(xué)目標(biāo)分析、教學(xué)方法與手段分析、教學(xué)過程分析等四大方面來闡述我對這節(jié)課的分析和設(shè)計: 一、教材分析 1.教材所處的地位和作用 在此之前,學(xué)生已學(xué)習(xí)了算法的概念、程序框圖與算法的基本邏輯結(jié)構(gòu)、輸入語句、輸出語句和賦值語句,這為過渡到本節(jié)的學(xué)習(xí)起著鋪墊作用。這一節(jié)課主要的內(nèi)容為條件語句表示方法、結(jié)構(gòu)以及用法。條件語句與程序圖中的條件結(jié)構(gòu)相對應(yīng),它是五種基本算法語句中的一種,。通過本節(jié)課的學(xué)習(xí),學(xué)生將更加了解算法語句,并能用更全面的眼光看待前面學(xué)過的語句,并為以后的學(xué)習(xí)作好必要的準(zhǔn)備。本節(jié)課對學(xué)生算法語言能力、有條理的思考與清晰地表達(dá)的能力,邏輯思維能力的綜合提升具有重要作用。 2.教學(xué)的重點和難點 重點:條件語句的表示方法、結(jié)構(gòu)和用法;用條件語句表示算法。 難點:理解條件語句的表示方法、結(jié)構(gòu)和用法。 二、教學(xué)目標(biāo)分析 1.知識與技能目標(biāo): 、耪_理解條件語句的概念,并掌握其結(jié)構(gòu)。 、茣(yīng)用條件語句編寫程序。 2.過程與方法目標(biāo): ⑴通過實例,發(fā)展對解決具體問題的過程與步驟進(jìn)行分析的能力。 、仆ㄟ^模仿,操作、探索、經(jīng)歷設(shè)計算法、設(shè)計框圖、編寫程序以解決具體問題的過程,發(fā)展應(yīng)用算法的能力。 、窃诮鉀Q具體問題的過程中學(xué)習(xí)條件語句,感受算法的重要意義。 3.情感,態(tài)度和價值觀目標(biāo) 、拍芡ㄟ^具體實例,感受和體會算法思想在解決具體問題中的意義,進(jìn)一步體會算法思想的重要性,體驗算法的有效性,增進(jìn)對數(shù)學(xué)的了解,形成良好的數(shù)學(xué)學(xué)習(xí)情感,增強(qiáng)學(xué)習(xí)數(shù)學(xué)的樂趣。 、仆ㄟ^感受和認(rèn)識現(xiàn)代信息技術(shù)在解決數(shù)學(xué)問題中的重要作用和威力,形成自覺地將數(shù)學(xué)理論和現(xiàn)代信息技術(shù)結(jié)合的思想。 ⑶在編寫程序解決問題的過程中,逐步養(yǎng)成扎實嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度。 三、教學(xué)方法與手段分析 1.教學(xué)方法:根據(jù)本節(jié)內(nèi)容邏輯性強(qiáng),學(xué)生不易理解的特點,本節(jié)教學(xué)采用啟發(fā)式教學(xué),輔以觀察法、發(fā)現(xiàn)法、練習(xí)法、講解法。采用這種方法的原因是學(xué)生的邏輯能力不是很強(qiáng),只能通過對實例的認(rèn)真領(lǐng)會及一定的練習(xí)才能掌握本節(jié)知識。 2.教學(xué)手段:運(yùn)用計算機(jī)、圖形計算器輔助教學(xué) 四、教學(xué)過程分析 1.創(chuàng)設(shè)情境(約4分鐘) 首先,我要求學(xué)生們編寫程序,輸入一元二次方程 的系數(shù),輸出它的實數(shù)根。這樣可以把教學(xué)內(nèi)容轉(zhuǎn)化為具有潛在意義的問題,讓學(xué)生產(chǎn)生強(qiáng)烈的問題意識,因為要解決這一問題,根據(jù)我們之前所學(xué)的三種算法語句是無法解決的,這樣就引出今天我們所要學(xué)習(xí)的內(nèi)容。 2.探究新知(約8分鐘) 為了引入概念,我首先給出了一個基本的應(yīng)用條件語句能夠解決的例題: 例1 編寫一個程序,求實數(shù)x的絕對值。 整個過程由師生共同分析完成。老師要引導(dǎo)學(xué)生分析、研究例題中的兩個程序,既要讓學(xué)生們看到已知的三種語句,更要注意到未知的語句,即條件語句?偨Y(jié)上述例題的程序可得出條件語句的兩種一般格式,接下來由師生共同對這兩種格式進(jìn)行研究. 3.知識應(yīng)用(約15分鐘) 此環(huán)節(jié)有兩個例題 例2 編寫程序,寫出輸入兩個數(shù)a和b,將較大的數(shù)打印出來 例3 編寫程序,使任意輸入的3個整數(shù)按從大到小的順序輸出. 先把解決問題的思路用程序框圖表示出來,然后再根據(jù)程序框圖給出的算法步驟,逐步把算法用對應(yīng)的程序語句表達(dá)出來。(程序框圖先由學(xué)生討論,再統(tǒng)一,然后利用圖形計算器演示,學(xué)生會驚喜的發(fā)現(xiàn):自己也是個編程高手了!這樣可以激發(fā)學(xué)生們的學(xué)習(xí)興趣) 4.練習(xí)鞏固(約4分鐘) 課本第30頁第3題 練習(xí)可鞏固學(xué)生對知識的理解,也可在練習(xí)中發(fā)現(xiàn)問題,使問題得到及時的解決。 5.課堂小結(jié)(約5分鐘) 條件語句的步驟、結(jié)構(gòu)及功能. 知識性內(nèi)容的小結(jié),可把課堂教學(xué)傳授的知識盡快化為學(xué)生的素質(zhì);數(shù)學(xué)思想方法的小結(jié),可使學(xué)生更深刻地理解數(shù)學(xué)思想方法在解題中的地位和應(yīng)用 6.布置作業(yè) 課本練習(xí)第3、4題 [設(shè)計意圖]課后作業(yè)的布置是為了檢驗學(xué)生對本節(jié)課內(nèi)容的理解和運(yùn)用程度以及實際接受情況,并促使學(xué)生進(jìn)一步鞏固和掌握所學(xué)內(nèi)容。對作業(yè)實施分層設(shè)置,分必做和選做,利于拓展學(xué)生的自主發(fā)展的空間。 7.板書設(shè)計 1.2.2條件語句 1、條件語句的一般格式 (1)IF-THEN-ELSE語句 格式: 框圖: (2)IF-THEN語句 格式: 框圖: 2、小結(jié) 。1) 。2) 。3) 2、例1 引例 例2 例4 例3 一、教學(xué)目標(biāo) 1.掌握任意角的正弦、余弦、正切函數(shù)的定義(包括定義域、正負(fù)符號判斷);了解任意角的余切、正割、余割函數(shù)的定義. 2.經(jīng)歷從銳角三角函數(shù)定義過度到任意角三角函數(shù)定義的推廣過程,體驗三角函數(shù)概念的產(chǎn)生、發(fā)展過程.領(lǐng)悟直角坐標(biāo)系的工具功能,豐富數(shù)形結(jié)合的經(jīng)驗. 3.培養(yǎng)學(xué)生通過現(xiàn)象看本質(zhì)的唯物主義認(rèn)識論觀點,滲透事物相互聯(lián)系、相互轉(zhuǎn)化的辯證唯物主義世界觀. 4.培養(yǎng)學(xué)生求真務(wù)實、實事求是的科學(xué)態(tài)度. 二、重點、難點、關(guān)鍵 重點:任意角的正弦、余弦、正切函數(shù)的定義、定義域、(正負(fù))符號判斷法. 難點:把三角函數(shù)理解為以實數(shù)為自變量的函數(shù). 關(guān)鍵:如何想到建立直角坐標(biāo)系;六個比值的確定性(α確定,比值也隨之確定)與依賴性(比值隨著α的變化而變化). 三、教學(xué)理念和方法 教學(xué)中注意用新課程理念處理傳統(tǒng)教材,學(xué)生的數(shù)學(xué)學(xué)習(xí)活動不僅要接受、記憶、模仿和練習(xí),而且要自主探索、動手實踐、合作交流、閱讀自學(xué),師生互動,教師發(fā)揮組織者、引導(dǎo)者、合作者的作用,引導(dǎo)學(xué)生主體參與、揭示本質(zhì)、經(jīng)歷過程. 根據(jù)本節(jié)課內(nèi)容、高一學(xué)生認(rèn)知特點和我自己的教學(xué)風(fēng)格,本節(jié)課采用"啟發(fā)探索、講練結(jié)合"的方法組織教學(xué). 四、教學(xué)過程 [執(zhí)教線索: 回想再認(rèn):函數(shù)的概念、銳角三角函數(shù)定義(銳角三角形邊角關(guān)系)--問題情境:能推廣到任意角嗎?--它山之石:建立直角坐標(biāo)系(為何?)--優(yōu)化認(rèn)知:用直角坐標(biāo)系研究銳角三角函數(shù)--探索發(fā)展:對任意角研究六個比值(與角之間的關(guān)系:確定性、依賴性,滿足函數(shù)定義嗎?)--自主定義:任意角三角函數(shù)定義--登高望遠(yuǎn):三角函數(shù)的要素分析(對應(yīng)法則、定義域、值域與正負(fù)符號判定)--例題與練習(xí)--回顧小結(jié)--布置作業(yè)] 。ㄒ唬⿵(fù)習(xí)引入、回想再認(rèn) 開門見山,面對全體學(xué)生提問: 在初中我們初步學(xué)習(xí)了銳角三角函數(shù),前幾節(jié)課,我們把銳角推廣到了任意角,學(xué)習(xí)了角度制和弧度制,這節(jié)課該研究什么呢? 探索任意角的三角函數(shù)(板書課題),請同學(xué)們回想,再明確一下: 。ㄇ榫1)什么叫函數(shù)?或者說函數(shù)是怎樣定義的? 讓學(xué)生回想后再點名回答,投影顯示規(guī)范的定義,教師根據(jù)回答情況進(jìn)行修正、強(qiáng)調(diào): 傳統(tǒng)定義:設(shè)在一個變化過程中有兩個變量x與y,如果對于x的每一個值,y都有唯一確定的值和它對應(yīng),那么就說y是x的函數(shù),x叫做自變量,自變量x的取值范圍叫做函數(shù)的定義域. 現(xiàn)代定義:設(shè)A、B是非空的數(shù)集,如果按某個確定的對應(yīng)關(guān)系f,使對于集合A中的任意一個數(shù),在集合B中都有唯一確定的數(shù)f(x)和它對應(yīng),那么就稱映射?:A→B為從集合A到集合B的一個函數(shù),記作:y=f(x),x∈A,其中x叫自變量,自變量x的取值范圍A叫做函數(shù)的定義域. 設(shè)計意圖: 函數(shù)和三角函數(shù)是一般和特殊的關(guān)系,是共性和個性的關(guān)系,學(xué)生已經(jīng)學(xué)習(xí)了函數(shù)的概念,因此對三角函數(shù)的學(xué)習(xí)就是一個從一般到特殊的演繹的過程,也是以具體函數(shù)豐富函數(shù)概念的過程.教學(xué)經(jīng)驗表明:學(xué)生對函數(shù)兩種定義的記憶是有一定困難的,容易遺忘,此處讓學(xué)生對函數(shù)概念進(jìn)行回想再認(rèn),目的在于明確函數(shù)概念的本質(zhì),為演繹學(xué)習(xí)任意角三角函數(shù)概念作好知識和認(rèn)知準(zhǔn)備. 。ㄇ榫2)我們在初中通過銳角三角形的邊角關(guān)系,學(xué)習(xí)了銳角的正弦、余弦、正切等三個三角函數(shù).請回想:這三個三角函數(shù)分別是怎樣規(guī)定的? 學(xué)生口述后再投影展示,教師再根據(jù)投影進(jìn)行強(qiáng)調(diào): 設(shè)計意圖: 學(xué)生在初中學(xué)習(xí)了銳角的三角函數(shù)概念,現(xiàn)在學(xué)習(xí)任意角的三角函數(shù),又是一種推廣和拓展的過程(類似于從有理數(shù)到實數(shù)的擴(kuò)展).溫故知新,要讓學(xué)生體會知識的產(chǎn)生、發(fā)展過程,就要從源頭上開始,從學(xué)生現(xiàn)有認(rèn)知狀況開始,對銳角三角函數(shù)的復(fù)習(xí)就必不可少. 。ǘ┮熹亯|、創(chuàng)設(shè)情景 (情景3)我們已經(jīng)把銳角推廣到了任意角,銳角的三角函數(shù)概念也能推廣到任意角嗎?試試看,可以獨(dú)立思考和探索,也可以互相討論! 留時間讓學(xué)生獨(dú)立思考或自由討論,教師參與討論或巡回對學(xué)困生作啟發(fā)引導(dǎo). 能推廣嗎?怎樣推廣?針對剛才的問題點名讓學(xué)生回答.用角的對邊、臨邊、斜邊比值的說法顯然是受到阻礙了,由于4.1節(jié)已經(jīng)以直角坐標(biāo)系為工具來研究任意角了,學(xué)生一般會想到(否則教師進(jìn)行提示)繼續(xù)用直角坐標(biāo)系來研究任意角的三角函數(shù). 設(shè)計意圖: 從學(xué)生現(xiàn)有知識水平和認(rèn)知能力出發(fā),創(chuàng)設(shè)問題情景,讓學(xué)生產(chǎn)生認(rèn)知沖突,進(jìn)行必要的啟發(fā),將學(xué)生思維引上自主探索、合作交流的"再創(chuàng)造"征程. 教師對學(xué)生回答情況進(jìn)行點評后布置任務(wù)情景:請同學(xué)們用直角坐標(biāo)系重新研究銳角三角函數(shù)定義! 師生共做(學(xué)生口述,教師板書圖形和比值): 把銳角α安裝(如何安裝?角的頂點與原點重合,角的始邊與x軸非負(fù)半軸重合)在直角坐標(biāo)系中,在角α終邊上任取一點P,作Pm⊥x軸于m,構(gòu)造一個RtΔomP,則∠moP=α(銳角),設(shè)P(x,y)(x>0、y>0),α的臨邊om=x、對邊mP=y,斜邊長|oP∣=r. 根據(jù)銳角三角函數(shù)定義用x、y、r列出銳角α的正弦、余弦、正切三個比值,并補(bǔ)充對應(yīng)列出三個倒數(shù)比值: 設(shè)計意圖: 此處做法簡單,思想重要.為了順利實現(xiàn)推廣,可以構(gòu)建中間橋梁或公共載體,使之既與初中的定義一致,又能自然地遷移到任意角的情形.由于前一節(jié)已經(jīng)以直角坐標(biāo)系為工具來研究任意角了,學(xué)生自然能想到仍然以直角坐標(biāo)系為工具來研究任意角的三角函數(shù).初中以直角三角形邊角關(guān)系來定義銳角三角函數(shù),現(xiàn)在要用坐標(biāo)系來研究,探索的結(jié)論既要滿足任意角的情形,又要包容初中銳角三角函數(shù)定義.這是一個認(rèn)識的飛躍,是理解任意角三角函數(shù)概念的關(guān)鍵之一,也是數(shù)學(xué)發(fā)現(xiàn)的重要思想和方法,屬于策略性知識,能夠形成遷移能力,為學(xué)生在以后學(xué)習(xí)中對某些知識進(jìn)行推廣拓展奠定了基礎(chǔ)(譬如從平面向量到空間向量的擴(kuò)展,從實數(shù)到復(fù)數(shù)的擴(kuò)展等). 。ㄇ榫4)各個比值與角之間有怎樣的關(guān)系?比值是角的函數(shù)嗎? 追問:銳角α大小發(fā)生變化時,比值會改變嗎? 先讓學(xué)生想象思考,作出主觀判斷,再用幾何畫板動畫演示,同時作好解釋說明:保持r不變,讓P繞原點o旋轉(zhuǎn)即α在銳角范圍內(nèi)變化,六個比值隨之變化的直觀形象。結(jié)論是:比值隨α的變化而變化. 引導(dǎo)學(xué)生觀察圖3,聯(lián)系相似三角形知識, 探索發(fā)現(xiàn): 對于銳角α的每一個確定值,六個比值都是 確定的,不會隨P在終邊上的移動而變化. 得出結(jié)論(強(qiáng)調(diào)):當(dāng)α為銳角時,六個比值隨α的變化而變化;但對于銳角α的每一個確定值,六個比值都是確定的,不會隨P在終邊上的移動而變化.所以,六個比值分別是以角α為自變量、以比值為函數(shù)值的函數(shù). 設(shè)計意圖: 初中學(xué)生對函數(shù)理解較膚淺,這里在學(xué)生思維的最近發(fā)展區(qū)進(jìn)一步研究初中學(xué)過的銳角三角函數(shù),在思維上更上了一個層次,扣準(zhǔn)函數(shù)概念的內(nèi)涵,突出變量之間的依賴關(guān)系或?qū)?yīng)關(guān)系,是從函數(shù)知識演繹到三角函數(shù)知識的主要依據(jù),是準(zhǔn)確理解三角函數(shù)概念的關(guān)鍵,也是在認(rèn)知上把三角函數(shù)知識納入函數(shù)知識結(jié)構(gòu)的關(guān)鍵.這樣做能夠使學(xué)生有效地增強(qiáng)函數(shù)觀念. 。ㄈ┓治鰵w納、自主定義 。ㄇ榫5)能將銳角的比值情形推廣到任意角α嗎? 水到渠成,師生共同進(jìn)行探索和推廣: 對于一個任意角α,它的終邊所在位置包括下列兩類共八種情形(投影展示并作分析): 終邊分別在四個象限的情形:終邊分別在四個半軸上的情形: ; (指出:不畫出角的方向,表明角具有任意性) 怎樣刻畫任意角的三角函數(shù)呢?研究它的六個比值: 。ò鍟┰O(shè)α是一個任意角,在α終邊上除原點外任意取一點P(x,y),P與原點o之間的距離記作r(r=>0),列出六個比值: α=kππ/2時,x=0,比值y/x、r/x無意義; α=kπ時,y=0,比值x/y、r/y無意義. 追問:α大小發(fā)生變化時,比值會改變嗎? 先讓學(xué)生想象思考,作出主觀判斷,再用幾何畫板動畫演示,同時作好解釋說明:使r保持不變,P繞原點o逆時針、順時針旋轉(zhuǎn)即角α變化,六個比值隨之改變的直觀形象。結(jié)論是:各比值隨α的變化而變化. 再引導(dǎo)學(xué)生利用相似三角形知識,探索發(fā)現(xiàn):對于任意角α的每一個確定值,六個比值都是確定的,不會隨P在終邊上的移動而變化. 綜上得到(強(qiáng)調(diào)):當(dāng)角α變化時,六個比值隨之變化;對于確定的角α,六個比值(如果存在的話)都不會隨P在角α終邊上的改變而改變,六個比值是確定的(對應(yīng)的多值性即誘導(dǎo)公式一留到下節(jié)課分析). 因此,六個比值分別是以角α為自變量、以比值為函數(shù)值的函數(shù). 根據(jù)歷史上的規(guī)定,對比值進(jìn)行命名,指出英文記法和讀法,記作(承前作復(fù)合板書): =sinα(正弦)=cosα(余弦)=tanα(正切) =cscα(余割)=sec(正弦)=cotα(余切) 教師強(qiáng)調(diào):sinα表示sin與α的乘積嗎?不是,sinα是函數(shù)記號,是一個整體,相當(dāng)于函數(shù)記號f(x).其它幾個三角函數(shù)也如此 投影顯示圖六,指導(dǎo)學(xué)生分析其對應(yīng)關(guān)系,進(jìn)一步體會其函數(shù)內(nèi)涵: 。▓D六) 指導(dǎo)學(xué)生識記六個比值及函數(shù)名稱. 教師指出:正弦、余弦、正切、余切、正割、余割六個函數(shù)統(tǒng)稱為三角函數(shù),三角函數(shù)有非常豐富的知識和思想方法,我們以后主要學(xué)習(xí)正弦、余弦、正切三個函數(shù)的相關(guān)知識和方法,對于余切、正割、余割,只要同學(xué)們了解它們的定義就夠了(遵循大綱要求). 引導(dǎo)學(xué)生進(jìn)一步分析理解: 已知角的集合與實數(shù)集之間可以建立一一對應(yīng)關(guān)系,對于每一個確定的實數(shù),把它看成一個弧度數(shù),就對應(yīng)著唯一的一個角,從而分別對應(yīng)著六個唯一的三角函數(shù)值.因此,(板書)三角函數(shù)可以看成是以實數(shù)為自變量的函數(shù),這將為以后的應(yīng)用帶來很多方便. 設(shè)計意圖: 把角的終邊分別在四個象限、四條半軸上的情形全作出來,有利于對任意性的全面把握.明確比值存在與否的條件,為確定函數(shù)定義域作準(zhǔn)備.動畫演示比值與角之間的依賴性與確定性關(guān)系,深化理解三角函數(shù)內(nèi)涵.引導(dǎo)學(xué)生在理解的基礎(chǔ)上自主地對三角函數(shù)作出明確定義,是本節(jié)課的中心任務(wù).由于學(xué)生剛學(xué)弧度制,對弧度制的理解有待于在以后的學(xué)習(xí)應(yīng)用中逐步感悟,因此部分學(xué)生對"三角函數(shù)可以看成是以實數(shù)為自變量的函數(shù)"的理解有半信半疑之感,有待通過后續(xù)的應(yīng)用加深理解. 。ㄋ模┨剿鞫x域 。ㄇ榫6)(1)函數(shù)概念的三要素是什么? 函數(shù)三要素:對應(yīng)法則、定義域、值域. 正弦函數(shù)sinα的對應(yīng)法則是什么? 正弦函數(shù)sinα的對應(yīng)法則,實質(zhì)上就是sinα的定義:對α的每一個確定的值,有唯一確定的比值y/r與之對應(yīng),即α→y/r=sinα. (2)布置任務(wù)情景:什么是三角函數(shù)的定義域?請求出六個三角函數(shù)的定義域,填寫下表: 三角函數(shù) sinα cosα tanα cotα cscα secα 定義域 引導(dǎo)學(xué)生自主探索: 如果沒有特別說明,那么使解析式有意義的自變量的取值范圍叫做函數(shù)的定義域,三角函數(shù)的定義域自然是指:使比值有意義的角α的取值范圍. 關(guān)于sinα=y/r、cosα=x/r,對于任意角α(弧度數(shù)),r>0,y/r、x/r恒有意義,定義域都是實數(shù)集R. 對于tanα=y/x,α=kππ/2時x=0,y/x無意義,tanα的定義域是:{α|α∈R,且α≠kππ/2}.......... 教師指出:sinα、cosα、tanα的定義域必須緊扣三角函數(shù)定義在理解的基礎(chǔ)上記熟,cotα、cscα、secα的定義域不要求記憶. (關(guān)于值域,到后面再學(xué)習(xí)). 設(shè)計意圖: 定義域是函數(shù)三要素之一,研究函數(shù)必須明確定義域.指導(dǎo)學(xué)生根據(jù)定義自主探索確定三角函數(shù)定義域,有利于在理解的基礎(chǔ)上記住它、應(yīng)用它,也增進(jìn)對三角函數(shù)概念的掌握. 。ㄎ澹┓柵袛、形象識記 (情景7)能判斷三角函數(shù)值的正、負(fù)嗎?試試看! 引導(dǎo)學(xué)生緊緊抓住三角函數(shù)定義來分析,r>0,三角函數(shù)值的符號決定于x、y值的正負(fù),根據(jù)終邊所在位置總結(jié)出形象的識記口訣: 。ㄍ玫谜、異號得負(fù)) sinα=y/r:上正下負(fù)橫為0cosα=x/r:左負(fù)右正縱為0tanα=y/x:交叉正負(fù) 設(shè)計意圖: 判斷三角函數(shù)值的正負(fù)符號,是本章教材的一項重要的知識、技能要求.要引導(dǎo)學(xué)生抓住定義、數(shù)形結(jié)合判斷和記憶三角函數(shù)值的正負(fù)符號,并總結(jié)出形象的識記口訣,這也是理解和記憶的關(guān)鍵. 。┚毩(xí)鞏固、理解記憶 1、自學(xué)例1:已知角α的終邊經(jīng)過點P(2,-3),求α的六個三角函數(shù)值. 要求:讀完題目,思考:計算什么?需要準(zhǔn)備什么?閉目心算,對照解答,模仿書面表達(dá)格式,鞏固定義. 課堂練習(xí): p19題1:已知角α的終邊經(jīng)過點P(-3,-1),求α的六個三角函數(shù)值. 要求心算,并提問中下學(xué)生檢驗,-------- 點評:角α終邊上有無窮多個點,根據(jù)三角函數(shù)的定義,只要知道α終邊上任意一個點的坐標(biāo),就可以計算這個角的三角函數(shù)值(或判斷其無意義). 補(bǔ)充例題:已知角α的終邊經(jīng)過點P(x,-3),cosα=4/5,求α的其它五個三角函數(shù)值. 師生探索:已知y=-3,要求其它五個三角函數(shù)值,須知r=?,x=?.根據(jù)定義得=(方程思想),x>0,解得x=4,從而--------.解答略. 2、自學(xué)例2:求下列各角的六個三角函數(shù)值:(1)0;(2)π/2;(3)3π/2. 提問,據(jù)反饋信息作點評、修正. 師生探索:緊扣三角函數(shù)定義求解,首先要在終邊上取定一點。終邊在哪兒呢?取定哪一點呢?任意點、還是特殊點?要靈活,只要能夠算出三角函數(shù)值,都可以。 取特殊點能使計算更簡明。課堂練習(xí):p19題2.(改編)填表: 角α(角度) 0° 90° 180° 270° 360° 角α(弧度) sinα cosα tanα 處理:要求取點用定義求解,針對計算過程提問、點評,理解鞏固定義. 強(qiáng)調(diào):終邊在坐標(biāo)軸上的角叫軸線角,如0、π/2、π、3π/2等,今后經(jīng)常用到軸線角的三角函數(shù)值,要結(jié)合三角函數(shù)定義記熟這些值. 設(shè)計意圖: 及時安排自學(xué)例題、自做教材練習(xí)題,一般性與特殊性相結(jié)合,進(jìn)行適量的變式練習(xí),以鞏固和加深對三角函數(shù)概念的理解,通過課堂積極主動的練習(xí)活動進(jìn)行思維訓(xùn)練,把"培養(yǎng)學(xué)生分析解決問題的能力"貫穿在每一節(jié)課的課堂教學(xué)始終. (七)回顧小結(jié)、建構(gòu)網(wǎng)絡(luò) 要求全體學(xué)生根據(jù)教師所提問題進(jìn)行總結(jié)識記,提問檢查并強(qiáng)調(diào): 1.你是怎樣把銳角三角函數(shù)定義推廣到任意角的?或者說任意角三角函數(shù)具體是怎樣定義的?(建立直角坐標(biāo)系,使角的頂點與坐標(biāo)原點重合,---,在終邊上任意取定一點P,---) 2.你如何判斷和記憶正弦、余弦、正切函數(shù)的定義域?(根據(jù)定義,------) 3.你如何記憶正弦、余弦、正切函數(shù)值的符號?(根據(jù)定義,想象坐標(biāo)位置,-----) 設(shè)計意圖: 遺忘的規(guī)律是先快后慢,回顧再現(xiàn)是記憶的重要途徑,在課堂內(nèi)及時總結(jié)識記主要內(nèi)容是上策.此處以問題形式讓學(xué)生自己歸納識記本節(jié)課的主體內(nèi)容,抓住要害,人人參與,及時建構(gòu)知識網(wǎng)絡(luò),優(yōu)化知識結(jié)構(gòu),培養(yǎng)認(rèn)知能力. (八)布置課外作業(yè) 1.書面作業(yè):習(xí)題4.3第3、4、5題. 2.認(rèn)真閱讀p22"閱讀材料:三角函數(shù)與歐拉",了解歐拉的生平和貢獻(xiàn),特別學(xué)習(xí)他對科學(xué)的摯著精神和堅忍不拔的頑強(qiáng)毅力!有興趣的同學(xué)可以上網(wǎng)查閱歐拉的相關(guān)情況. 教學(xué)設(shè)計說明 一、對本節(jié)教材的理解 三角函數(shù)是描述周期運(yùn)動現(xiàn)象的重要的數(shù)學(xué)模型,有非常廣泛的應(yīng)用. 星星之火,可以燎原. 直角三角形簡單樸素的邊角關(guān)系,以直角坐標(biāo)系為工具進(jìn)行自然地推廣而得到簡明的任意角的三角函數(shù)定義,緊緊扣住三角函數(shù)定義這個寶貴的源泉,自然地導(dǎo)出三角函數(shù)線、定義域、符號判斷、值域、同角三角函數(shù)關(guān)系、多組誘導(dǎo)公式、多組變換公式、輔助角公式、圖象和性質(zhì),本章教材就是這些內(nèi)容的具體安排.定義直接用于解析幾何(如直線斜率公式、極坐標(biāo)、部分曲線的參數(shù)方程等),定義還是直接解決某些問題的工具,三角函數(shù)知識是物理學(xué)、高等數(shù)學(xué)、測量學(xué)、天文學(xué)的重要基礎(chǔ). 三角函數(shù)定義必然是學(xué)好全章內(nèi)容的關(guān)鍵,如果學(xué)生掌握不好,將直接影響到后續(xù)內(nèi)容的學(xué)習(xí),由三角函數(shù)定義的基礎(chǔ)性和應(yīng)用的廣泛性決定了本節(jié)教材的重點就是定義本身. 二、教學(xué)法加工 數(shù)學(xué)教材通常用抽象概括的形式化的數(shù)學(xué)書面語言闡述其知識和方法,教師只有通過教學(xué)法加工,始終貫徹"以學(xué)生的發(fā)展為本"的科學(xué)教育觀,"將數(shù)學(xué)的學(xué)術(shù)形態(tài)轉(zhuǎn)化為教育形態(tài)"(張奠宙語),引導(dǎo)學(xué)生積極主動地進(jìn)行思考活動,直接參與體驗數(shù)學(xué)知識產(chǎn)生發(fā)展的背景、過程,返璞歸真,揭示本質(zhì),體會其中的思想和方法,學(xué)生只有這樣才能真正理解掌握數(shù)學(xué)知識和方法,有效地發(fā)展智力、培養(yǎng)能力. 在本節(jié)教材中,三角函數(shù)定義是重點,三角函數(shù)線是難點,為了較好地突出重點和突破難點,分散重點和難點,同時兼顧例題、課堂練習(xí)的協(xié)調(diào)匹配,將不按教材順序來進(jìn)行教學(xué),第一課時安排三角函數(shù)的定義(突出重點)、定義域、符號判斷、例題1、2及p19課堂練習(xí)1、2、3,第二課時安排三角函數(shù)線、p15練習(xí)(突破難點)、誘導(dǎo)公式一及課本例題3、4和其它練習(xí).本課例屬第一課時. 教學(xué)經(jīng)驗表明,三角函數(shù)定義"簡單易記",學(xué)生很容易輕視它,不少學(xué)生機(jī)械記憶、一知半解.本課例堅持"教師主導(dǎo)、學(xué)生主體"的原則,采用"啟發(fā)探索、講練結(jié)合"的常規(guī)教學(xué)方法,在學(xué)生的最近發(fā)展區(qū)圍繞學(xué)生的學(xué)習(xí)目標(biāo)設(shè)計了一系列符合學(xué)生認(rèn)知規(guī)律的程序,通過多媒體輔助教學(xué)動畫演示比值與角之間的依賴關(guān)系,拓展思維活動時空,力求使學(xué)生全員主動參與,積極思考,體會定義產(chǎn)生、發(fā)展的過程,通過思維過程來理解知識、培養(yǎng)能力. 將六個比值放在一起來研究,同時給出六個三角函數(shù)的定義,能夠增強(qiáng)對比感和整體感,至于大綱對兩組函數(shù)掌握與了解的不同要求,在下一步的教學(xué)中注意區(qū)分就行了. 教學(xué)中關(guān)于符號sinα、cosα、tanα的出場安排,教材首先對比值取名并給出英文記法,再研究它們與α的函數(shù)關(guān)系;另外可以先研究六個比值與α之間的函數(shù)關(guān)系,然后再對六個比值取名給出記法.后者更能突出函數(shù)內(nèi)涵,揭示三角函數(shù)本質(zhì).本課例采用后者組織教學(xué). 三、教學(xué)過程分析(見穿插在教案中的設(shè)計意圖). 【實用的高中數(shù)學(xué)說課稿范文錦集八篇】相關(guān)文章: 實用的高中數(shù)學(xué)說課稿范文錦集10篇08-18 實用的高中數(shù)學(xué)說課稿范文錦集9篇08-18 實用的高中數(shù)學(xué)說課稿范文錦集7篇08-17 實用的高中數(shù)學(xué)說課稿范文錦集九篇08-16 實用的高中數(shù)學(xué)說課稿范文錦集6篇08-15 實用的高中數(shù)學(xué)說課稿范文錦集8篇08-15 實用的高中數(shù)學(xué)說課稿范文錦集六篇08-13 篇二:高一數(shù)學(xué)必修一說課稿
高中數(shù)學(xué)說課稿 篇5
高中數(shù)學(xué)說課稿 篇6
高中數(shù)學(xué)說課稿 篇7
高中數(shù)學(xué)說課稿 篇8