關(guān)于高中數(shù)學(xué)說課稿范文匯編九篇
作為一名優(yōu)秀的教育工作者,通常需要準(zhǔn)備好一份說課稿,借助說課稿可以更好地提高教師理論素養(yǎng)和駕馭教材的能力。說課稿應(yīng)該怎么寫才好呢?以下是小編整理的高中數(shù)學(xué)說課稿9篇,僅供參考,歡迎大家閱讀。
高中數(shù)學(xué)說課稿 篇1
各位老師:
大家好!我叫***,來自**。我說課的題目是《概率的基本性質(zhì)》,內(nèi)容選自于高中教材新課程人教A版必修3第三章第一節(jié),課時安排為三個課時,本節(jié)課內(nèi)容為第三課時。下面我將從教材分析、教學(xué)目標(biāo)分析、教法分析、教學(xué)過程分析四大方面來闡述我對這節(jié)課的分析和設(shè)計(jì):
一、教材分析
1、教材所處的地位和作用
本節(jié)課主要包含了兩部分內(nèi)容:一是事件的關(guān)系與運(yùn)算,二是概率的基本性質(zhì),多以基本概念和性質(zhì)為主。它是本冊第二章統(tǒng)計(jì)的延伸,又是后面"古典概型"及"幾何概型"的基礎(chǔ)。在整個教學(xué)中起到承上啟下的作用。同時也是新課改以來考查的熱點(diǎn)之一。
2、教學(xué)的重點(diǎn)和難點(diǎn)
重點(diǎn):概率的加法公式及其應(yīng)用;事件的關(guān)系與運(yùn)算。
難點(diǎn):互斥事件與對立事件的區(qū)別與聯(lián)系
二、教學(xué)目標(biāo)分析
1.知識與技能目標(biāo)
⑴了解隨機(jī)事件間的基本關(guān)系與運(yùn)算;
、普莆崭怕实膸讉基本性質(zhì),并會用其解決簡單的概率問題。
2、過程與方法:
⑴通過觀察、類比、歸納培養(yǎng)學(xué)生運(yùn)用數(shù)學(xué)知識的綜合能力;
、仆ㄟ^學(xué)生自主探究,合作探究培養(yǎng)學(xué)生的動手探索的能力。
3、情感態(tài)度與價(jià)值觀:
通過數(shù)學(xué)活動,了解教學(xué)與實(shí)際生活的密切聯(lián)系,感受數(shù)學(xué)知識應(yīng)用于現(xiàn)實(shí)世界的具體情境,從而激發(fā)學(xué)習(xí)數(shù)學(xué)的情趣。
三、教法分析
采用實(shí)驗(yàn)觀察、質(zhì)疑啟發(fā)、類比聯(lián)想、探究歸納的教學(xué)方法。
四、教學(xué)過程分析
1、創(chuàng)設(shè)情境,引入新課
在擲骰子的試驗(yàn)中,我們可以定義許多事件,如:
c1=﹛出現(xiàn)的點(diǎn)數(shù)=1﹜,c2=﹛出現(xiàn)的點(diǎn)數(shù)=2﹜
c3=﹛出現(xiàn)的點(diǎn)數(shù)=3﹜,c4=﹛出現(xiàn)的點(diǎn)數(shù)=4﹜
c5=﹛出現(xiàn)的點(diǎn)數(shù)=5﹜,c6=﹛出現(xiàn)的點(diǎn)數(shù)=6﹜
D1=﹛出現(xiàn)的點(diǎn)數(shù)不大于1﹜D2=﹛出現(xiàn)的點(diǎn)數(shù)大于3﹜
D3=﹛出現(xiàn)的點(diǎn)數(shù)小于5﹜,E=﹛出現(xiàn)的點(diǎn)數(shù)小于7﹜
f=﹛出現(xiàn)的點(diǎn)數(shù)大于6﹜,G=﹛出現(xiàn)的點(diǎn)數(shù)為偶數(shù)﹜
H=﹛出現(xiàn)的點(diǎn)數(shù)為奇數(shù)﹜
⑴以引入例中的事件c1和事件H,事件c1和事件D1為例講授事件之的包含關(guān)系和相等關(guān)系。
、茝囊陨蟽蓚關(guān)系學(xué)生不難發(fā)現(xiàn)事件間的關(guān)系與集合間的關(guān)系相類似。進(jìn)而引導(dǎo)學(xué)生思考,是否可以把事件和集合對應(yīng)起來。
「設(shè)計(jì)意圖」引出我們接下來要學(xué)習(xí)的主要內(nèi)容:事件之間的關(guān)系與運(yùn)算
2、探究新知
㈠事件的關(guān)系與運(yùn)算
、沤(jīng)過上面的思考,我們得出:
試驗(yàn)的可能結(jié)果的全體←→全集
↓↓
每一個事件←→子集
這樣我們就把事件和集合對應(yīng)起來了,用已有的集合間關(guān)系來分析事件間的關(guān)系。
集合的并→兩事件的并事件(和事件)
集合的交→兩事件的交事件(積事件)
在此過程中要注意幫助學(xué)生區(qū)分集合關(guān)系與事件關(guān)系之間的不同。
。ɡ纾簝杉螦∪B,表示此集合中的任意元素或者屬于集合A或者屬于集合B;而兩事件A和B的并事件A∪B發(fā)生,表示或者事件A發(fā)生,或者事件B發(fā)生。)
「設(shè)計(jì)意圖」為更好地理解互斥事件和對立事件打下基礎(chǔ),
⑵思考:①若只擲一次骰子,則事件c1和事件c2有可能同時發(fā)生么?
、谠跀S骰子實(shí)驗(yàn)中事件G和事件H是否一定有一個會發(fā)生?
「設(shè)計(jì)意圖」這兩道思考題都很容易得到答案,主要目的是為引出接下來將要學(xué)習(xí)的互斥事件和對立事件,讓學(xué)生從實(shí)際案例中體驗(yàn)它們各自的特征以及它們之間的區(qū)別與聯(lián)系。
、强偨Y(jié)出互斥事件和對立事件的概念,并通過多媒體的圖形演示使學(xué)生們能更好地理解它們的特征以及它們之間的區(qū)別與聯(lián)系。
、染毩(xí):通過多媒體顯示兩道練習(xí),目的是讓學(xué)生們能夠及時鞏固對互斥事件和對立事件的學(xué)習(xí),加深理解。
、娓怕实幕拘再|(zhì):
⑴回顧:頻率=頻數(shù)/試驗(yàn)的次數(shù)
我們知道當(dāng)試驗(yàn)次數(shù)足夠大時,用頻率來估計(jì)概率,由于頻率在0~1之間,所以,可以得到概率的基本性質(zhì)、
。ㄍㄟ^對頻率的理解并結(jié)合前面投硬幣的實(shí)驗(yàn)來總結(jié)出概率的基本性質(zhì),師生共同交流得出結(jié)果)
3、典型例題探究
例1一個射手進(jìn)行一次射擊,試判斷下列事件哪些是互斥事件?哪些是對立事件?
事件A:命中環(huán)數(shù)大于7環(huán);事件B:命中環(huán)數(shù)為10環(huán);
事件c:命中環(huán)數(shù)小于6環(huán);事件D:命中環(huán)數(shù)為6、7、8、9、10環(huán)、
分析:要判斷所給事件是對立還是互斥,首先將兩個概念的聯(lián)系與區(qū)別弄清楚
例2如果從不包括大小王的52張撲克牌中隨機(jī)抽取一張,那么取到紅心(事件A)的概率是1/4,取到方塊(事件B)的概率是1/4,問:
。1)取到紅色牌(事件c)的概率是多少?
(2)取到黑色牌(事件D)的概率是多少?
分析:事件c是事件A與事件B的并,且A與B互斥,因此可用互斥事件的概率和公式求解;事件c與事件D是對立事件,因此P(D)=1—P(c).
「設(shè)計(jì)意圖」通過這兩道例題,進(jìn)一步鞏固學(xué)生對本節(jié)課知識的掌握,并將所學(xué)知識應(yīng)用到實(shí)際解決問題中去。
4、課堂小結(jié)
⑴理解事件的關(guān)系和運(yùn)算
、普莆崭怕实幕拘再|(zhì)
「設(shè)計(jì)意圖」小結(jié)是引導(dǎo)學(xué)生對問題進(jìn)行回味與深化,使知識成為系統(tǒng)。讓學(xué)生嘗試小結(jié),提高學(xué)生的總結(jié)能力和語言表達(dá)能力。教師補(bǔ)充幫助學(xué)生全面地理解,掌握新知識。
5、布置作業(yè)
習(xí)題3、1A1、3、4
「設(shè)計(jì)意圖」課后作業(yè)的布置是為了檢驗(yàn)學(xué)生對本節(jié)課內(nèi)容的理解和運(yùn)用程度,并促使學(xué)生進(jìn)一步鞏固和掌握所學(xué)內(nèi)容。
五、板書設(shè)計(jì)
概率的基本性質(zhì)
一、事件間的關(guān)系和運(yùn)算
二、概率的基本性質(zhì)
三、例1的板書區(qū)
例2的板書區(qū)
四、規(guī)律性質(zhì)總結(jié)
高中數(shù)學(xué)說課稿 篇2
1、對教材地位與作用的認(rèn)識
在高中數(shù)學(xué)教學(xué)中,作為數(shù)學(xué)思想應(yīng)向?qū)W生滲透,強(qiáng)化的有:函數(shù)與方程思想;數(shù)形結(jié)合思想;分類討論思想;等價(jià)轉(zhuǎn)化及運(yùn)動變化思想。不是所有的課都能把這些思想自然的容納進(jìn)去,但由于“曲線和方程”這一節(jié)在教材中的特殊地位,它把代數(shù)和幾何兩個單科自然而緊密地結(jié)合在一起,因而上述思想能用到大半,這不能不引起我們教師的重視!扒和方程”這節(jié)教材揭示了幾何中的形與代數(shù)中的數(shù)相統(tǒng)一的關(guān)系,為“依形判數(shù)”與“就數(shù)論形”的相互轉(zhuǎn)化開辟了途徑,這正體現(xiàn)了解析幾何這門課的基本思想,用代數(shù)的方法研究幾何問題。”曲線與方程”是解析幾何中最為重要的基本內(nèi)容之一.在理論上它是基礎(chǔ),在應(yīng)用上它是工具,對全部解析幾何的教學(xué)有著深遠(yuǎn)的影響,另外在高考中也是考察的重點(diǎn)內(nèi)容,尤其是求曲線的方程,學(xué)生只有透徹理解了曲線與方程的含義,才算是找到了解析幾何學(xué)習(xí)得入門之路。應(yīng)該認(rèn)識到這節(jié)“曲線和方程”得開頭課是解析幾何教學(xué)的“重頭戲”!
2、教學(xué)目標(biāo)的確定及依據(jù)
(大綱的要求)通過本小節(jié)的學(xué)習(xí),要使學(xué)生了解解析幾何的基本思想,了解用坐標(biāo)法研究幾何問題的初步知識和觀點(diǎn),理解曲線的方程和方程的曲線的意義,初步掌握求曲線的方程的方法.所以第一課我在教學(xué)目標(biāo)上是這樣設(shè)定的:
1).了解曲線上的點(diǎn)與方程的解之間的一一對應(yīng)關(guān)系,領(lǐng)會“曲線的方程”與“方程的曲線”的概念及其關(guān)系,并能作簡單的判斷與推理;
2).在形成概念的過程中,培養(yǎng)分析、抽象和概括等思維能力;
3)會證明已知曲線的方程。
本節(jié)課的教學(xué)目標(biāo)定在“初步掌握”的水平上,但“初步”絕不等同于“含糊”,它反應(yīng)在學(xué)生的學(xué)習(xí)行為上,即要求學(xué)生能答出曲線與方程間必須滿足的兩個關(guān)系,才能稱作“方程的曲線”和“曲線的方程”,兩者缺一不可,并能借助實(shí)例進(jìn)一步明確這二者的區(qū)別。知識的學(xué)習(xí)與能力的培養(yǎng)是同步的,在具體操作上結(jié)合圖形分析與反例,來辨析“兩個關(guān)系”之間的區(qū)別,從認(rèn)識特例到歸納出曲線的方程和方程的曲線一般概念,因而在形成概念的過程中,培養(yǎng)學(xué)生分析、抽象、概括的思維能力.會證明已知曲線的方程就能更進(jìn)一步的理解曲線和方程概念的含義并為下節(jié)課求曲線的方程打基礎(chǔ).
3、如何突破重難點(diǎn)
本小節(jié)的重點(diǎn)是理解曲線與方程的有關(guān)概念與相互聯(lián)系,以及求曲線方程的方法、步驟.只有深刻理解了曲線與方程的含義,才能真正掌握好求曲線軌跡方程的一般方法,進(jìn)一步學(xué)好后面的內(nèi)容.曲線和方程的概念比較抽象,由直觀表象到抽象概念有相當(dāng)難度,對學(xué)生理解上可能遇到的問題是學(xué)生不理解“曲線上的點(diǎn)的坐標(biāo)都是方程的解”和”“以這個方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn)”這兩句話在揭示“曲線和方程”關(guān)系各自所起的作用。有的學(xué)生只從字面上死記硬背;有的學(xué)生甚至誤以為這兩句話是同義反復(fù)。要突破這一點(diǎn),關(guān)鍵在于利用充要條件,函數(shù)圖象,直線和方程,軌跡等知.識,正反兩方面說明問題.
本節(jié)課的難點(diǎn)在于對定義中為什么要規(guī)定兩個關(guān)系(純粹性和完備性)產(chǎn)生困惑,原因是不理解兩者缺任何一個都將擴(kuò)大概念的外延。
4、對教學(xué)過程的設(shè)計(jì)
今天要講的“曲線和方程”這部分教材的內(nèi)容主要包括“曲線方程的概念”,“已知曲線求它的方程”、“已知方程作出它的曲線”等。在課時安排上分為3個課時進(jìn)行教學(xué),具體的課時分配是:第一課時講解“曲線與方程”和“方程與曲線”的概念及其關(guān)系;第二課時講解求曲線的方程一般方法,第三課時為習(xí)題課,通過練習(xí)來總結(jié)、鞏固和深化本節(jié)知識。如果以為學(xué)生不真正領(lǐng)悟曲線和方程得關(guān)系照樣能求出方程,照樣能計(jì)算某些難題,因而可以忽視這個基本概念得教學(xué),這不能不說是一種“舍本逐末”得偏見。
在教材中,曲線和方程這一概念是隨著知識的講授而不斷深化,逐步為學(xué)生所理解,因而教材中從直線開始,多次,重復(fù)地闡述,這說明其重要性.同時也說明理解它,掌握它確實(shí)需要一個過程.數(shù)學(xué)本身是很抽象,把數(shù)學(xué)和實(shí)際問題相結(jié)合才能激發(fā)學(xué)生的學(xué)習(xí)興趣,真正達(dá)到素質(zhì)教育的要求。根據(jù)以上考慮,確定了這節(jié)課教學(xué)過程的基本線索是:實(shí)際問題引入,提出課題→運(yùn)用反例,揭示內(nèi)涵→討論歸納,得出定義→集合表述,強(qiáng)化理解→知識應(yīng)用,反復(fù)辨析。
教材的編寫也往往體現(xiàn)著教法.,例如,本節(jié)一開頭說“我們研究過直線的各種方程,討論了直線和二元一次方程的關(guān)系!睂W(xué)生已經(jīng)有了用方程(有時用函數(shù)式的形式出現(xiàn))表示曲線的感性認(rèn)識,在本節(jié)教學(xué)中充分發(fā)揮這些感性認(rèn)識的作用。從人造地球衛(wèi)星運(yùn)行的軌道等生動形象的實(shí)際問題引入,引起學(xué)生的興趣和好奇心以及對數(shù)學(xué)的應(yīng)用有了更高的認(rèn)識,更激發(fā)他們進(jìn)一步學(xué)好數(shù)學(xué)的決心。(具體……)提出課題。運(yùn)用學(xué)生熟知的知識,1)求線段AB的垂直平分線方程和2)作出方程y=x2的圖象作為引例,從曲線到方程,從方程到曲線兩方面入手分析了曲線上的點(diǎn)和方程的解之間的關(guān)系,為形成曲線和方程的概念提供了實(shí)際模型,但是如果就此而由教師直接給出結(jié)論,那就不僅會失去開發(fā)學(xué)生思維的機(jī)會,影響學(xué)生的理解,而且會使教學(xué)變得枯燥乏味,抑制了學(xué)生學(xué)習(xí)的主動性和積極性,接著用反例來突破難點(diǎn)。通過反例1)直線去掉第三象限部分,則方程y=x的解為坐標(biāo)的點(diǎn)不都在曲線上,以及2)改方程為,那么曲線上就混有不滿足方程的點(diǎn)坐標(biāo)就此揭示“兩者缺一”與直覺的矛盾,通過舉反例和步步追問使我要的答案逐步明了,從而又促使學(xué)生對概念表述的嚴(yán)格性進(jìn)行探索,學(xué)生自已認(rèn)識曲線和方程的概念必須要具備的兩個關(guān)系,培養(yǎng)學(xué)生分析,歸納問題的能力,自然得出定義。并且把這個關(guān)系板書到黑板上,以示這就是這節(jié)課的重點(diǎn)。為了在重難點(diǎn)有所突破后強(qiáng)化其認(rèn)識,又用集合相等的概念來解釋曲線和方程的對應(yīng)關(guān)系,并以此為工具來分析實(shí)例,這將有助于學(xué)生的理解,有助于學(xué)生通其法,知其理。
然后通過運(yùn)用與練習(xí),糾正錯誤的認(rèn)識,促使對概念的正確理解,通過反復(fù)重現(xiàn),可以不斷領(lǐng)悟,加強(qiáng)識記。所以安排了例1,例2(見課件)目的也在于幫助學(xué)生正確理解概念,通過解題辨析“兩個關(guān)系”,實(shí)現(xiàn)本節(jié)課的教學(xué)目標(biāo),為此題目中的“曲線”和“方程”都力求簡單,由此得出點(diǎn)在曲線上的充要條件。
曲線是符合某種條件的點(diǎn)的軌跡,為了下節(jié)課“求曲線的方程”的教學(xué),安排了例3(見課件)證明曲線的方程,增加學(xué)生的感性認(rèn)識,由于教材上有嚴(yán)謹(jǐn)?shù)淖C明過程,讓學(xué)生閱讀并總結(jié)證明已知曲線的方程的方法和步驟,上升到理論上,可以培養(yǎng)學(xué)生獨(dú)立思考,閱讀歸納的能力。為了讓學(xué)生更深入的理解這節(jié)課的主要內(nèi)容,通過4個變式引申檢查他們的掌握程度,但難度不能太大,我選擇這樣幾個練習(xí):(略)簡單評講后小結(jié)本課的主要內(nèi)容,進(jìn)一步強(qiáng)化“曲線和方程”概念中兩個關(guān)系缺一不可,只有符合關(guān)系1)2)才能進(jìn)行數(shù)與形的轉(zhuǎn)化。由于下節(jié)課的內(nèi)容是求曲線的方程,特地安排了一個思考探索題。
5、對學(xué)生學(xué)習(xí)活動的引導(dǎo)和組織
教案的設(shè)計(jì)與教案的實(shí)施往往有一定的距離,本節(jié)課有著概念性強(qiáng),思維量大,例題與練習(xí)題不多的特點(diǎn),這就決定了整節(jié)課將以學(xué)生的觀察、思考、討論為主,通過提問,舉例,啟發(fā),互動完成教學(xué),在具體操作上比較靈活,視學(xué)生的具體情況而定,把握學(xué)生的思維規(guī)律于數(shù)學(xué)思想的基本方法。例如,在概念教學(xué)中引導(dǎo)學(xué)生看反例,通過正反對比的方法,當(dāng)學(xué)生觀察了例1回答不清為什么,可以舉出幾個點(diǎn)的坐標(biāo)作檢驗(yàn),這就是”從特殊到一般“的方法:或引導(dǎo)學(xué)生看圖,比比劃劃,這就是“從直觀到抽象”的方法。只要啟發(fā)方法符合學(xué)生的認(rèn)識規(guī)律,學(xué)生的認(rèn)識活動就會順利展開,而且在認(rèn)知的過程中訓(xùn)練了探索的能力。強(qiáng)化數(shù)形結(jié)合、化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,完善學(xué)生的數(shù)學(xué)的結(jié)構(gòu),讓學(xué)生動手、動腦,以及觀察、聯(lián)想、猜測、歸納等合理推理,鼓勵學(xué)生多向思維、積極思考,勇于探索,從中培養(yǎng)學(xué)生合情推理能力,數(shù)學(xué)交流與合作能力以及主動參與的精神。
高中數(shù)學(xué)說課稿 篇3
大家好,今天我向大家說課的題目是《正弦定理》。下面我將從以下幾個方面介紹我這堂課的教學(xué)設(shè)計(jì)。
一、教材分析
本節(jié)知識是必修五第一章《解三角形》的第一節(jié)內(nèi)容,與初中學(xué)習(xí)的三角形的邊和角的基本關(guān)系有密切的聯(lián)系與判定三角形的全等也有密切聯(lián)系,在日常生活和工業(yè)生產(chǎn)中也時常有解三角形的問題,而且解三角形和三角函數(shù)聯(lián)系在高考當(dāng)中也時常考一些解答題。因此,正弦定理和余弦定理的知識非常重要。
根據(jù)上述教材內(nèi)容分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征及原有知識水平,制定如下教學(xué)目標(biāo):
認(rèn)知目標(biāo):通過創(chuàng)設(shè)問題情境,引導(dǎo)學(xué)生發(fā)現(xiàn)正弦定理的內(nèi)容,掌握正弦定理的內(nèi)容及其證明方法,使學(xué)生會運(yùn)用正弦定理解決兩類基本的解三角形問題。
能力目標(biāo):引導(dǎo)學(xué)生通過觀察,推導(dǎo),比較,由特殊到一般歸納出正弦定理,培養(yǎng)學(xué)生的創(chuàng)新意識和觀察與邏輯思維能力,能體會用向量作為數(shù)形結(jié)合的工具,將幾何問題轉(zhuǎn)化為代數(shù)問題。
情感目標(biāo):面向全體學(xué)生,創(chuàng)造平等的教學(xué)氛圍,通過學(xué)生之間、師生之間的交流、合作和評價(jià),調(diào)動學(xué)生的主動性和積極性,激發(fā)學(xué)生學(xué)習(xí)的興趣。
教學(xué)重點(diǎn):正弦定理的內(nèi)容,正弦定理的證明及基本應(yīng)用。 教學(xué)難點(diǎn):已知兩邊和其中一邊的對角解三角形時判斷解的個數(shù)。
二、教法
根據(jù)教材的內(nèi)容和編排的特點(diǎn),為是更有效地突出重點(diǎn),空破難點(diǎn),以學(xué)業(yè)生的發(fā)展為本,遵照學(xué)生的認(rèn)識規(guī)律,本講遵照以教師為主導(dǎo),以學(xué)生為主體,訓(xùn)練為主線的指導(dǎo)思想, 采用探究式課堂教學(xué)模式,即在教學(xué)過程中,在教師的啟發(fā)引導(dǎo)下,以學(xué)生獨(dú)立自主和合作交流為前提,以“正弦定理的發(fā)現(xiàn)”為基本探究內(nèi)容,以生活實(shí)際為參照對象,讓學(xué)生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導(dǎo),并逐步得到深化。
三、學(xué)法
指導(dǎo)學(xué)生掌握“觀察——猜想——證明——應(yīng)用”這一思維方法,采取個人、小組、集體等多種解難釋疑的嘗試活動,將自己所學(xué)知識應(yīng)用于對任意三角形性質(zhì)的探究。讓學(xué)生在問題情景中學(xué)習(xí),觀察,類比,思考,探究,概括,動手嘗試相結(jié)合,體現(xiàn)學(xué)生的主體地位,增強(qiáng)學(xué)生由特殊到一般的數(shù)學(xué)思維能力,形成了實(shí)事求是的科學(xué)態(tài)度,增強(qiáng)了鍥而不舍的求學(xué)精神。
四、教學(xué)過程
(一)創(chuàng)設(shè)情境(3分鐘)
“興趣是最好的老師”,如果一節(jié)課有個好的開頭,那就意味著成功了一半,本節(jié)課由一個實(shí)際問題引入,“工人師傅的一個三角形模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長為1m,想修好這個零件,但他不知道AC和BC的長度是多少好去截料,你能幫師傅這個忙嗎?”激發(fā)學(xué)生幫助別人的熱情和學(xué)習(xí)的興趣,從而進(jìn)入今天的學(xué)習(xí)課題。
(二)猜想—推理—證明(15分鐘)
激發(fā)學(xué)生思維,從自身熟悉的特例(直角三角形)入手進(jìn)行研究,發(fā)現(xiàn)正弦定理。 提問:那結(jié)論對任意三角形都適用嗎?(讓學(xué)生分小組討論,并得出猜想)
在三角形中,角與所對的邊滿足關(guān)系
注意:1.強(qiáng)調(diào)將猜想轉(zhuǎn)化為定理,需要嚴(yán)格的理論證明。
2.鼓勵學(xué)生通過作高轉(zhuǎn)化為熟悉的直角三角形進(jìn)行證明。
3.提示學(xué)生思考哪些知識能把長度和三角函數(shù)聯(lián)系起來,繼而思考向量分析層面,用數(shù)量積作為工具證明定理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。
(三)總結(jié)--應(yīng)用(3分鐘)
1.正弦定理的內(nèi)容,討論可以解決哪幾類有關(guān)三角形的問題。
2.運(yùn)用正弦定理求解本節(jié)課引入的三角形零件邊長的問題。自己參與實(shí)際問題的解決,能激發(fā)學(xué)生知識后用于實(shí)際的價(jià)值觀。
(四)講解例題(8分鐘)
1.例1. 在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形.
例1簡單,結(jié)果為唯一解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來解三角形。
2. 例2. 在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形.
例2較難,使學(xué)生明確,利用正弦定理求角有兩種可能。要求學(xué)生熟悉掌握已知兩邊和其中
一邊的對角時解三角形的各種情形。完了把時間交給學(xué)生。
(五)課堂練習(xí)(8分鐘)
1.在△ABC中,已知下列條件,解三角形. (1)A=45°,C=30°,c=10cm (2)A=60°,B=45°,c=20cm
2. 在△ABC中,已知下列條件,解三角形. (1)a=20cm,b=11cm,B=30° (2)c=54cm,b=39cm,C=115°
學(xué)生板演,老師巡視,及時發(fā)現(xiàn)問題,并解答。
(六)小結(jié)反思(3分鐘)
1.它表述了三角形的邊與對角的正弦值的關(guān)系。
2.定理證明分別從直角、銳角、鈍角出發(fā),運(yùn)用分類討論的思想。
3.會用向量作為數(shù)形結(jié)合的工具,將幾何問題轉(zhuǎn)化為代數(shù)問題。
五、教學(xué)反思
從實(shí)際問題出發(fā),通過猜想、實(shí)驗(yàn)、歸納等思維方法,最后得到了推導(dǎo)出正弦定理。我們研究問題的突出特點(diǎn)是從特殊到一般,我們不僅收獲著結(jié)論,而且整個探索過程我們也掌握了研究問題的一般方法。在強(qiáng)調(diào)研究性學(xué)習(xí)方法,注重學(xué)生的主體地位,調(diào)動學(xué)生積極性,使數(shù)學(xué)教學(xué)成為數(shù)學(xué)活動的教學(xué)。
高中數(shù)學(xué)說課稿 篇4
一、教材分析
1.《指數(shù)函數(shù)》在教材中的地位、作用和特點(diǎn)
《指數(shù)函數(shù)》是人教版高中數(shù)學(xué)(必修)第一冊第二章“函數(shù)”的第六節(jié)內(nèi)容,是在學(xué)習(xí)了《指數(shù)》一節(jié)內(nèi)容之后編排的。通過本節(jié)課的學(xué)習(xí),既可以對指數(shù)和函數(shù)的概念等知識進(jìn)一步鞏固和深化,又可以為后面進(jìn)一步學(xué)習(xí)對數(shù)、對數(shù)函數(shù)尤其是利用互為反函數(shù)的圖象間的關(guān)系來研究對數(shù)函數(shù)的性質(zhì)打下堅(jiān)實(shí)的概念和圖象基礎(chǔ),又因?yàn)椤吨笖?shù)函數(shù)》是進(jìn)入高中以后學(xué)生遇到的第一個系統(tǒng)研究的函數(shù),對高中階段研究對數(shù)函數(shù)、三角函數(shù)等完整的函數(shù)知識,初步培養(yǎng)函數(shù)的應(yīng)用意識打下了良好的學(xué)習(xí)基礎(chǔ),所以《指數(shù)函數(shù)》不僅是本章《函數(shù)》的重點(diǎn)內(nèi)容,也是高中學(xué)段的主要研究內(nèi)容之一,有著不可替代的重要作用。
此外,《指數(shù)函數(shù)》的知識與我們的日常生產(chǎn)、生活和科學(xué)研究有著緊密的聯(lián)系,尤其體現(xiàn)在細(xì)胞分裂、貸款利率的計(jì)算和考古中的年代測算等方面,因此學(xué)習(xí)這部分知識還有著廣泛的現(xiàn)實(shí)意義。本節(jié)內(nèi)容的特點(diǎn)之一是概念性強(qiáng),特點(diǎn)之二是凸顯了數(shù)學(xué)圖形在研究函數(shù)性質(zhì)時的重要作用。
2.教學(xué)目標(biāo)、重點(diǎn)和難點(diǎn)
通過初中學(xué)段的學(xué)習(xí)和高中對集合、函數(shù)等知識的系統(tǒng)學(xué)習(xí),學(xué)生對函數(shù)和圖象的關(guān)系已經(jīng)構(gòu)建了一定的認(rèn)知結(jié)構(gòu),主要體現(xiàn)在三個方面:
知識維度:對正比例函數(shù)、反比例函數(shù)、一次函數(shù),二次函數(shù)等最簡單的函數(shù)概念和性質(zhì)已有了初步認(rèn)識,能夠從初中運(yùn)動變化的角度認(rèn)識函數(shù)初步轉(zhuǎn)化到從集合與對應(yīng)的觀點(diǎn)來認(rèn)識函數(shù)。
技能維度:學(xué)生對采用“描點(diǎn)法”描繪函數(shù)圖象的方法已基本掌握,能夠?yàn)檠芯俊吨笖?shù)函數(shù)》的性質(zhì)做好準(zhǔn)備。
素質(zhì)維度:由觀察到抽象的數(shù)學(xué)活動過程已有一定的體會,已初步了解了數(shù)形結(jié)合的思想。
鑒于對學(xué)生已有的知識基礎(chǔ)和認(rèn)知能力的分析,根據(jù)《教學(xué)大綱》的要求,我確定本節(jié)課的教學(xué)目標(biāo)、教學(xué)重點(diǎn)和難點(diǎn)如下:
(1)知識目標(biāo):①掌握指數(shù)函數(shù)的概念;②掌握指數(shù)函數(shù)的圖象和性質(zhì);③能初步利用指數(shù)函數(shù)的概念解決實(shí)際問題;
(2)技能目標(biāo):①滲透數(shù)形結(jié)合的基本數(shù)學(xué)思想方法②培養(yǎng)學(xué)生觀察、聯(lián)想、類比、猜測、歸納的能力;
(3)情感目標(biāo):①體驗(yàn)從特殊到一般的學(xué)習(xí)規(guī)律,認(rèn)識事物之間的普遍聯(lián)系與相互轉(zhuǎn)化,培養(yǎng)學(xué)生用聯(lián)系的觀點(diǎn)看問題②通過教學(xué)互動促進(jìn)師生情感,激發(fā)學(xué)生的學(xué)習(xí)興趣,提高學(xué)生抽象、概括、分析、綜合的能力③領(lǐng)會數(shù)學(xué)科學(xué)的應(yīng)用價(jià)值。
(4)教學(xué)重點(diǎn):指數(shù)函數(shù)的圖象和性質(zhì)。
(5)教學(xué)難點(diǎn):指數(shù)函數(shù)的圖象性質(zhì)與底數(shù)a的關(guān)系。
突破難點(diǎn)的關(guān)鍵:尋找新知生長點(diǎn),建立新舊知識的聯(lián)系,在理解概念的基礎(chǔ)上充分結(jié)合圖象,利用數(shù)形結(jié)合來掃清障礙。
二、教法設(shè)計(jì)
由于《指數(shù)函數(shù)》這節(jié)課的特殊地位,在本節(jié)課的教法設(shè)計(jì)中,我力圖通過這一節(jié)課的教學(xué)達(dá)到不僅使學(xué)生初步理解并能簡單應(yīng)用指數(shù)函數(shù)的知識,更期望能引領(lǐng)學(xué)生掌握研究初等函數(shù)圖象性質(zhì)的一般思路和方法,為今后研究其它的函數(shù)做好準(zhǔn)備,從而達(dá)到培養(yǎng)學(xué)生學(xué)習(xí)能力的目的,我根據(jù)自己對“誘思探究”教學(xué)模式和“情景式”教學(xué)模式的認(rèn)識,將二者結(jié)合起來,主要突出了幾個方面:
1.創(chuàng)設(shè)問題情景.按照指數(shù)函數(shù)的在生活中的實(shí)際背景給出兩個實(shí)例,充分調(diào)動學(xué)生的學(xué)習(xí)興趣,激發(fā)學(xué)生的探究心理,順利引入課題,而這兩個例子又恰好為研究指數(shù)函數(shù)中底數(shù)大于1和底數(shù)大于0小于1的圖象做好了準(zhǔn)備。
2.強(qiáng)化“指數(shù)函數(shù)”概念.引導(dǎo)學(xué)生結(jié)合指數(shù)的有關(guān)概念來歸納出指數(shù)函數(shù)的定義,并向?qū)W生指出指數(shù)函數(shù)的形式特點(diǎn),請學(xué)生思考對于底數(shù)a是否需要限制,如不限制會有什么問題出現(xiàn),這樣避免了學(xué)生對于底數(shù)a范圍分類的不清楚,也為研究指數(shù)函數(shù)的圖象做了“分類討論”的鋪墊。
3.突出圖象的作用.在數(shù)學(xué)學(xué)習(xí)過程中,圖形始終使我們需要借助的重要輔助手段。一位數(shù)學(xué)家曾經(jīng)說過“數(shù)離形時少直觀,形離數(shù)時難入微”,而在研究指數(shù)函數(shù)的性質(zhì)時,更是直接由圖象觀察得出性質(zhì),因此圖象發(fā)揮了主要的作用。
4.注意數(shù)學(xué)與生活和實(shí)踐的聯(lián)系.數(shù)學(xué)的本質(zhì)是來源于生活,服務(wù)于實(shí)踐。在課堂教學(xué)的引入、例題的講解和課外知識的拓展部分,都介紹了與指數(shù)函數(shù)息息相關(guān)的生活問題,力圖使學(xué)生了解到數(shù)學(xué)的基礎(chǔ)學(xué)科作用,培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用意識。
三、學(xué)法指導(dǎo)
本節(jié)課是在學(xué)習(xí)完“指數(shù)”的概念和運(yùn)算后編排的,針對學(xué)生實(shí)際情況,我主要在以下幾個方面做了嘗試:
1.再現(xiàn)原有認(rèn)知結(jié)構(gòu)。在引入兩個生活實(shí)例后,請學(xué)生回憶有關(guān)指數(shù)的概念,幫助學(xué)生再現(xiàn)原有認(rèn)知結(jié)構(gòu),為理解指數(shù)函數(shù)的概念做好準(zhǔn)備。
2.領(lǐng)會常見數(shù)學(xué)思想方法。在借助圖象研究指數(shù)函數(shù)的性質(zhì)時會遇到分類討論、數(shù)形結(jié)合等基本數(shù)學(xué)思想方法,這些方法將會貫穿整個高中的數(shù)學(xué)學(xué)習(xí)。
3.在互相交流和自主探究中獲得發(fā)展。在生活實(shí)例的課堂導(dǎo)入、指數(shù)函數(shù)的性質(zhì)研究、例題與訓(xùn)練、課內(nèi)小節(jié)等教學(xué)環(huán)節(jié)中都安排了學(xué)生的討論、分組、交流等活動,讓學(xué)生變被動的接受和記憶知識為在合作學(xué)習(xí)的樂趣中主動地建構(gòu)新知識的框架和體系,從而完成知識的內(nèi)化過程。
4.注意學(xué)習(xí)過程的循序漸進(jìn)。在概念、圖象、性質(zhì)、應(yīng)用、拓展的過程中按照先易后難的順序?qū)訉舆f進(jìn),讓學(xué)生感到有挑戰(zhàn)、有收獲,跳一跳,夠得著,不同難度的題目設(shè)計(jì)將盡可能照顧到課堂學(xué)生的個體差異。
四、程序設(shè)計(jì)
在設(shè)計(jì)本節(jié)課的教學(xué)過程中,本著遵循學(xué)生的認(rèn)知規(guī)律、讓學(xué)生去經(jīng)歷知識的形成與發(fā)展過程的原則,我設(shè)計(jì)了如下的教學(xué)程序,啟發(fā)學(xué)生逐步發(fā)現(xiàn)和認(rèn)識指數(shù)函數(shù)的圖象和性質(zhì)。
1.創(chuàng)設(shè)情景、導(dǎo)入新課
教師活動:①用電腦展示兩個實(shí)例,第一個是計(jì)算機(jī)價(jià)格下降問題,第二個是生物中細(xì)胞分裂的例子,②將學(xué)生按奇數(shù)列、偶數(shù)列分組。
學(xué)生活動:①分別寫出計(jì)算機(jī)價(jià)格y與經(jīng)過月份x的關(guān)系式和細(xì)胞個數(shù)y與分裂次數(shù)x的關(guān)系式,并互相交流;②回憶指數(shù)的概念;③歸納指數(shù)函數(shù)的概念;④分析出對指數(shù)函數(shù)底數(shù)討論的必要性以及分類的方法。
設(shè)計(jì)意圖:通過生活實(shí)例激發(fā)學(xué)生的學(xué)習(xí)動機(jī),,掃清由概念不清而造成的知識障礙,培養(yǎng)學(xué)生思維的主動性, 為突破難點(diǎn)做好準(zhǔn)備;
2.啟發(fā)誘導(dǎo)、探求新知
教師活動:①給出兩個簡單的指數(shù)函數(shù)并要求學(xué)生畫它們的圖象②在準(zhǔn)備好的小黑板上規(guī)范地畫出這兩個指數(shù)函數(shù)的圖象③板書指數(shù)函數(shù)的性質(zhì)。
學(xué)生活動:①畫出兩個簡單的指數(shù)函數(shù)圖象②交流、討論③歸納出研究函數(shù)性質(zhì)涉及的方面④總結(jié)出指數(shù)函數(shù)的性質(zhì)。
設(shè)計(jì)意圖:讓學(xué)生動手作簡單的指數(shù)函數(shù)的圖象對深刻理解本節(jié)課的內(nèi)容有著一定的促進(jìn)作用,在學(xué)生完成基本作圖之后,教師再利用課前已列表、建立坐標(biāo)系的小黑板展示準(zhǔn)確的作圖方法,達(dá)到進(jìn)一步規(guī)范學(xué)生的作圖習(xí)慣的目的,然后借助“函數(shù)作圖器”用多媒體將指數(shù)函數(shù)的圖象推廣到一般情況,學(xué)生就會很自然的通過觀察圖象總結(jié)出指數(shù)函數(shù)的性質(zhì),同時對于底數(shù)的討論也就變得順理成章。
3.鞏固新知、反饋回授
教師活動:①板書例1②板書例2第一問③介紹有關(guān)考古的拓展知識。
高中數(shù)學(xué)說課稿 篇5
【一】教學(xué)背景分析
1.教材結(jié)構(gòu)分析
《圓的方程》安排在高中數(shù)學(xué)第二冊(上)第七章第六節(jié).圓作為常見的簡單幾何圖形,在實(shí)際生活和生產(chǎn)實(shí)踐中有著廣泛的應(yīng)用.圓的方程屬于解析幾何學(xué)的基礎(chǔ)知識,是研究二次曲線的開始,對后續(xù)直線與圓的位置關(guān)系、圓錐曲線等內(nèi)容的學(xué)習(xí),無論在知識上還是方法上都有著積極的意義,所以本節(jié)內(nèi)容在整個解析幾何中起著承前啟后的作用.
2.學(xué)情分析
圓的方程是學(xué)生在初中學(xué)習(xí)了圓的概念和基本性質(zhì)后,又掌握了求曲線方程的一般方法的基礎(chǔ)上進(jìn)行研究的.但由于學(xué)生學(xué)習(xí)解析幾何的時間還不長、學(xué)習(xí)程度較淺,且對坐標(biāo)法的運(yùn)用還不夠熟練,在學(xué)習(xí)過程中難免會出現(xiàn)困難.另外學(xué)生在探究問題的能力,合作交流的意識等方面有待加強(qiáng).
根據(jù)上述教材結(jié)構(gòu)與內(nèi)容分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)和心理特征,我制定如下教學(xué)目標(biāo):
3.教學(xué)目標(biāo)
(1) 知識目標(biāo):①掌握圓的標(biāo)準(zhǔn)方程;
②會由圓的標(biāo)準(zhǔn)方程寫出圓的半徑和圓心坐標(biāo),能根據(jù)條件寫出圓的標(biāo)準(zhǔn)方程;
③利用圓的標(biāo)準(zhǔn)方程解決簡單的實(shí)際問題.
(2) 能力目標(biāo):①進(jìn)一步培養(yǎng)學(xué)生用代數(shù)方法研究幾何問題的能力;
、诩由顚(shù)形結(jié)合思想的理解和加強(qiáng)對待定系數(shù)法的運(yùn)用;
、墼鰪(qiáng)學(xué)生用數(shù)學(xué)的意識.
(3) 情感目標(biāo):①培養(yǎng)學(xué)生主動探究知識、合作交流的意識;
、谠隗w驗(yàn)數(shù)學(xué)美的過程中激發(fā)學(xué)生的學(xué)習(xí)興趣.
根據(jù)以上對教材、教學(xué)目標(biāo)及學(xué)情的分析,我確定如下的教學(xué)重點(diǎn)和難點(diǎn):
4. 教學(xué)重點(diǎn)與難點(diǎn)
(1)重點(diǎn):圓的標(biāo)準(zhǔn)方程的求法及其應(yīng)用.
(2)難點(diǎn): ①會根據(jù)不同的已知條件求圓的標(biāo)準(zhǔn)方程;
、谶x擇恰當(dāng)?shù)淖鴺?biāo)系解決與圓有關(guān)的實(shí)際問題.
為使學(xué)生能達(dá)到本節(jié)設(shè)定的教學(xué)目標(biāo),我再從教法和學(xué)法上進(jìn)行分析:
好學(xué)教育:
【二】教法學(xué)法分析
1.教法分析 為了充分調(diào)動學(xué)生學(xué)習(xí)的積極性,本節(jié)課采用“啟發(fā)式”問題教學(xué)法,用環(huán)環(huán)相扣的問題將探究活動層層深入,使教師總是站在學(xué)生思維的最近發(fā)展區(qū)上.另外我恰當(dāng)?shù)睦枚嗝襟w課件進(jìn)行輔助教學(xué),借助信息技術(shù)創(chuàng)設(shè)實(shí)際問題的情境既能激發(fā)學(xué)生的學(xué)習(xí)興趣,又直觀的引導(dǎo)了學(xué)生建模的過程.
2.學(xué)法分析 通過推導(dǎo)圓的標(biāo)準(zhǔn)方程,加深對用坐標(biāo)法求軌跡方程的理解.通過求圓的標(biāo)準(zhǔn)方程,理解必須具備三個獨(dú)立的條件才可以確定一個圓.通過應(yīng)用圓的標(biāo)準(zhǔn)方程,熟悉用待定系數(shù)法求的過程. 下面我就對具體的教學(xué)過程和設(shè)計(jì)加以說明:
【三】教學(xué)過程與設(shè)計(jì)
整個教學(xué)過程是由七個問題組成的問題鏈驅(qū)動的,共分為五個環(huán)節(jié):
創(chuàng)設(shè)情境 啟迪思維 深入探究 獲得新知 應(yīng)用舉例 鞏固提高
反饋訓(xùn)練 形成方法 小結(jié)反思 拓展引申
下面我從縱橫兩方面敘述我的教學(xué)程序與設(shè)計(jì)意圖.
首先:縱向敘述教學(xué)過程
(一)創(chuàng)設(shè)情境——啟迪思維
問題一 已知隧道的截面是半徑為4m的半圓,車輛只能在道路中心線一側(cè)行駛,一輛寬為2.7m,高為3m的貨車能不能駛?cè)脒@個隧道?
通過對這個實(shí)際問題的探究,把學(xué)生的思維由用勾股定理求線段CD的長度轉(zhuǎn)移為用曲線的方程來解決.一方面幫助學(xué)生回顧了舊知——求軌跡方程的一般方法,另一方面,在得到汽車不能通過的結(jié)論的同時學(xué)生自己推導(dǎo)出了圓心在原點(diǎn),半徑為4的圓的標(biāo)準(zhǔn)方程,從而很自然的進(jìn)入了本課的主題.用實(shí)際問題創(chuàng)設(shè)問題情境,讓學(xué)生感受到問題來源于實(shí)際,應(yīng)用于實(shí)際,激發(fā)了學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)欲望.這樣獲取的知識,不但易于保持,而且易于遷移.
通過對問題一的探究,抓住了學(xué)生的注意力,把學(xué)生的思維引到用坐標(biāo)法研究圓的方程上來,此時再把問題深入,進(jìn)入第二環(huán)節(jié).
(二)深入探究——獲得新知
問題二 1.根據(jù)問題一的探究能不能得到圓心在原點(diǎn),半徑為的圓的方程?
2.如果圓心在,半徑為時又如何呢?
好學(xué)教育:
這一環(huán)節(jié)我首先讓學(xué)生對問題一進(jìn)行歸納,得到圓心在原點(diǎn),半徑為4的圓的標(biāo)準(zhǔn)方程后,引導(dǎo)學(xué)生歸納出圓心在原點(diǎn),半徑為r的圓的標(biāo)準(zhǔn)方程.然后再讓學(xué)生對圓心不在原點(diǎn)的情況進(jìn)行探究.我預(yù)設(shè)了三種方法等待著學(xué)生的探究結(jié)果,分別是:坐標(biāo)法、圖形變換法、向量平移法.
得到圓的標(biāo)準(zhǔn)方程后,我設(shè)計(jì)了由淺入深的三個應(yīng)用平臺,進(jìn)入第三環(huán)節(jié).
(三)應(yīng)用舉例——鞏固提高
I.直接應(yīng)用 內(nèi)化新知
問題三 1.寫出下列各圓的標(biāo)準(zhǔn)方程:
(1)圓心在原點(diǎn),半徑為3;
(2)經(jīng)過點(diǎn),圓心在點(diǎn).
2.寫出圓的圓心坐標(biāo)和半徑.
我設(shè)計(jì)了兩個小問題,第一題是直接或間接的給出圓心坐標(biāo)和半徑求圓的標(biāo)準(zhǔn)方程,第二題是給出圓的標(biāo)準(zhǔn)方程求圓心坐標(biāo)和半徑,這兩題比較簡單,可以安排學(xué)生口答完成,目的是先讓學(xué)生熟練掌握圓心坐標(biāo)、半徑與圓的標(biāo)準(zhǔn)方程之間的關(guān)系,為后面探究圓的切線問題作準(zhǔn)備.
II.靈活應(yīng)用 提升能力
問題四 1.求以點(diǎn)為圓心,并且和直線相切的圓的方程.
2.求過點(diǎn),圓心在直線上且與軸相切的圓的方程.
3.已知圓的方程為,求過圓上一點(diǎn)的切線方程.
你能歸納出具有一般性的結(jié)論嗎?
已知圓的方程是,經(jīng)過圓上一點(diǎn)的切線的方程是什么?
我設(shè)計(jì)了三個小問題,第一個小題有了剛剛解決問題三的基礎(chǔ),學(xué)生會很快求出半徑,根據(jù)圓心坐標(biāo)寫出圓的標(biāo)準(zhǔn)方程.第二個小題有些困難,需要引導(dǎo)學(xué)生應(yīng)用待定系數(shù)法確定圓心坐標(biāo)和半徑再求解,從而理解必須具備三個獨(dú)立的條件才可以確定一個圓.第三個小題解決方法較多,我預(yù)設(shè)了四種方法再一次為學(xué)生的發(fā)散思維創(chuàng)設(shè)了空間.最后我讓學(xué)生由第三小題的結(jié)論進(jìn)行歸納、猜想,在論證經(jīng)過圓上一點(diǎn)圓的切線方程的過程中,又一次模擬了真理發(fā)現(xiàn)的過程,使探究氣氛達(dá)到高潮.
III.實(shí)際應(yīng)用 回歸自然
問題五 如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度AB=20m,拱高OP=4m,在建造時每隔4m需用一個支柱支撐,求支柱的長度(精確到0.01m).
好學(xué)教育:
我選用了教材的例3,它是待定系數(shù)法求出圓的三個參數(shù)的又一次應(yīng)用,同時也與引例相呼應(yīng),使學(xué)生形成解決實(shí)際問題的一般方法,培養(yǎng)了學(xué)生建模的習(xí)慣和用數(shù)學(xué)的意識.
(四)反饋訓(xùn)練——形成方法
問題六 1.求過原點(diǎn)和點(diǎn),且圓心在直線上的圓的標(biāo)準(zhǔn)方程.
2.求圓過點(diǎn)的切線方程.
3.求圓過點(diǎn)的切線方程.
接下來是第四環(huán)節(jié)——反饋訓(xùn)練.這一環(huán)節(jié)中,我設(shè)計(jì)三個小題作為鞏固性訓(xùn)練,給學(xué)生一塊“用武”之地,讓每一位同學(xué)體驗(yàn)學(xué)習(xí)數(shù)學(xué)的樂趣,成功的喜悅,找到自信,增強(qiáng)學(xué)習(xí)數(shù)學(xué)的愿望與信心.另外第3題是我特意安排的一道求過圓外一點(diǎn)的圓的切線方程,由于學(xué)生剛剛歸納了過圓上一點(diǎn)圓的切線方程,因此很容易產(chǎn)生思維的負(fù)遷移,另外這道題目有兩解,學(xué)生容易漏掉斜率不存在的情況,這時引導(dǎo)學(xué)生用數(shù)形結(jié)合的思想,結(jié)合初中已有的圓的知識進(jìn)行判斷,這樣的設(shè)計(jì)對培養(yǎng)學(xué)生思維的嚴(yán)謹(jǐn)性具有良好的效果.
(五)小結(jié)反思——拓展引申
1.課堂小結(jié)
把圓的標(biāo)準(zhǔn)方程與過圓上一點(diǎn)圓的切線方程加以小結(jié),提煉數(shù)形結(jié)合的思想和待定系數(shù)的方法 ①圓心為,半徑為r 的圓的標(biāo)準(zhǔn)方程為:
圓心在原點(diǎn)時,半徑為r 的圓的標(biāo)準(zhǔn)方程為:.
②已知圓的方程是,經(jīng)過圓上一點(diǎn)的切線的方程是:.
2.分層作業(yè)
(A)鞏固型作業(yè):教材P81-82:(習(xí)題7.6)1,2,4.(B)思維拓展型作業(yè):試推導(dǎo)過圓上一點(diǎn)的切線方程.
3.激發(fā)新疑
問題七 1.把圓的標(biāo)準(zhǔn)方程展開后是什么形式?
2.方程表示什么圖形?
在本課的結(jié)尾設(shè)計(jì)這兩個問題,作為對這節(jié)課內(nèi)容的鞏固與延伸,讓學(xué)生體會知識的起點(diǎn)與終點(diǎn)都蘊(yùn)涵著問題,舊的問題解決了,新的問題又產(chǎn)生了.在知識的拓展中再次掀起學(xué)生探究的熱情.另外它為下節(jié)課研究圓的一般方程作了重要的準(zhǔn)備.
以上是我縱向的教學(xué)過程及簡單的設(shè)計(jì)意圖,接下來,我從三個方面橫向的進(jìn)一步闡述我的教學(xué)設(shè)計(jì): 橫向闡述教學(xué)設(shè)計(jì)
(一)突出重點(diǎn) 抓住關(guān)鍵 突破難點(diǎn)
好學(xué)教育:
求圓的標(biāo)準(zhǔn)方程既是本節(jié)課的教學(xué)重點(diǎn)也是難點(diǎn),為此我布設(shè)了由淺入深的學(xué)習(xí)環(huán)境,先讓學(xué)生熟悉圓心、半徑與圓的標(biāo)準(zhǔn)方程之間的關(guān)系,逐步理解三個參數(shù)的重要性,自然形成待定系數(shù)法的解題思路,在突出重點(diǎn)的同時突破了難點(diǎn).
第二個教學(xué)難點(diǎn)就是解決實(shí)際應(yīng)用問題,這是學(xué)生固有的難題,主要是因?yàn)閼?yīng)用問題的題目冗長,學(xué)生很難根據(jù)問題情境構(gòu)建數(shù)學(xué)模型,缺乏解決實(shí)際問題的信心,為此我首先用一道題目簡潔、貼近生活的實(shí)例進(jìn)行引入,激發(fā)學(xué)生的求知欲,同時我借助多媒體課件的演示,引導(dǎo)學(xué)生真正走入問題的情境之中,并從中抽象出數(shù)學(xué)模型,從而消除畏難情緒,增強(qiáng)了信心.最后再形成應(yīng)用圓的標(biāo)準(zhǔn)方程解決實(shí)際問題的一般模式,并嘗試應(yīng)用該模式分析和解決第二個應(yīng)用問題——問題五.這樣的設(shè)計(jì),使學(xué)生在解決問題的同時,形成了方法,難點(diǎn)自然突破.
(二)學(xué)生主體 教師主導(dǎo) 探究主線
本節(jié)課的設(shè)計(jì)用問題做鏈,環(huán)環(huán)相扣,使學(xué)生的探究活動貫穿始終.從圓的標(biāo)準(zhǔn)方程的推導(dǎo)到應(yīng)用都是在問題的指引、我的指導(dǎo)下,由學(xué)生探究完成的.另外,我重點(diǎn)設(shè)計(jì)了兩次思維發(fā)散點(diǎn),分別是問題二和問題四的第三問,要求學(xué)生分組討論,合作交流,為學(xué)生設(shè)立充分的探究空間,學(xué)生在交流成果的過程中,既體驗(yàn)了科學(xué)研究和真理發(fā)現(xiàn)的復(fù)雜與艱辛,又在我的適度引導(dǎo)、側(cè)面幫助、不斷肯定下順利完成了探究活動并走向成功,在一個個問題的驅(qū)動下,高效的完成本節(jié)的學(xué)習(xí)任務(wù).
(三)培養(yǎng)思維 提升能力 激勵創(chuàng)新
為了培養(yǎng)學(xué)生的理性思維,我分別在問題一和問題四中,設(shè)計(jì)了兩次由特殊到一般的學(xué)習(xí)思路,培養(yǎng)學(xué)生的歸納概括能力.在問題的設(shè)計(jì)中,我利用一題多解的探究,縱向挖掘知識深度,橫向加強(qiáng)知識間的聯(lián)系,培養(yǎng)了學(xué)生的創(chuàng)新精神,并且使學(xué)生的有效思維量加大,隨時對所學(xué)知識和方法產(chǎn)生有意注意,使能力與知識的形成相伴而行.
以上是我對這節(jié)課的教學(xué)預(yù)設(shè),具體的教學(xué)過程還要根據(jù)學(xué)生在課堂中的具體情況適當(dāng)調(diào)整,向生成性課堂進(jìn)行轉(zhuǎn)變.最后我以赫爾巴特的一句名言結(jié)束我的說課,發(fā)揮我們的創(chuàng)造性,力爭“使教育過程成為一種藝術(shù)的事業(yè)”.
高中數(shù)學(xué)說課稿 篇6
一、教學(xué)目標(biāo)
(一)知識與技能
1、進(jìn)一步熟練掌握求動點(diǎn)軌跡方程的基本方法。
2、體會數(shù)學(xué)實(shí)驗(yàn)的直觀性、有效性,提高幾何畫板的操作能力。
(二)過程與方法
1、培養(yǎng)學(xué)生觀察能力、抽象概括能力及創(chuàng)新能力。
2、體會感性到理性、形象到抽象的思維過程。
3、強(qiáng)化類比、聯(lián)想的方法,領(lǐng)會方程、數(shù)形結(jié)合等思想。
。ㄈ┣楦袘B(tài)度價(jià)值觀
1、感受動點(diǎn)軌跡的動態(tài)美、和諧美、對稱美。
2、樹立競爭意識與合作精神,感受合作交流帶來的成功感,樹立自信心,激發(fā)提出問題和解決問題的勇氣。
二、教學(xué)重點(diǎn)與難點(diǎn)
教學(xué)重點(diǎn):運(yùn)用類比、聯(lián)想的方法探究不同條件下的軌跡。
教學(xué)難點(diǎn):圖形、文字、符號三種語言之間的過渡。
三、、教學(xué)方法和手段
教學(xué)方法:觀察發(fā)現(xiàn)、啟發(fā)引導(dǎo)、合作探究相結(jié)合的教學(xué)方法。啟發(fā)引導(dǎo)學(xué)生積極思考并對學(xué)生的思維進(jìn)行調(diào)控,幫助學(xué)生優(yōu)化思維過程,在此基礎(chǔ)上,提供給學(xué)生交流的機(jī)會,幫助學(xué)生對自己的思維進(jìn)行組織和澄清,并能清楚地、準(zhǔn)確地表達(dá)自己的數(shù)學(xué)思維。
教學(xué)手段:利用網(wǎng)絡(luò)教室,四人一機(jī),多媒體教學(xué)手段。通過上述教學(xué)手段,一方面:再現(xiàn)知識產(chǎn)生的過程,通過多媒體動態(tài)演示,突破學(xué)生在舊知和新知形成過程中的障礙(靜態(tài)到動態(tài));另一方面:節(jié)省了時間,提高了課堂教學(xué)的效率,激發(fā)了學(xué)生學(xué)習(xí)的興趣。
教學(xué)模式:重點(diǎn)中學(xué)實(shí)施素質(zhì)教育的課堂模式“創(chuàng)設(shè)情境、激發(fā)情感、主動發(fā)現(xiàn)、主動發(fā)展”。
四、教學(xué)過程
1、創(chuàng)設(shè)情景,引入課題
生活中我們四處可見軌跡曲線的影子。
演示:這是美麗的城市夜景圖。
演示:許多人認(rèn)為天體運(yùn)行的軌跡都是圓錐曲線,研究表明,天體數(shù)目越多,軌跡種類也越多。
演示建筑中也有許多美麗的軌跡曲線。
設(shè)計(jì)意圖:讓學(xué)生感受數(shù)學(xué)就在我們身邊,感受軌跡,曲線的動態(tài)美、和諧美、對稱美,激發(fā)學(xué)習(xí)興趣。
2、激發(fā)情感,引導(dǎo)探索
靠在墻角的梯子滑落了,如果梯子上站著一個人,我們不禁會想,這個人是直直的摔下去呢?還是劃了一條優(yōu)美的曲線飛出去呢?我們把這個問題轉(zhuǎn)化為數(shù)學(xué)問題就是新教材高二上冊88頁20題,也就是這里的例題1。
高中數(shù)學(xué)說課稿 篇7
一、教材分析
1、教材的地位和作用:
函數(shù)是高中數(shù)學(xué)學(xué)習(xí)的重點(diǎn)和難點(diǎn),函數(shù)的思想貫穿于整個高中數(shù)學(xué)之中。本節(jié)課是學(xué)生在已掌握了函數(shù)的一般性質(zhì)和簡單的指數(shù)運(yùn)算的基礎(chǔ)上,進(jìn)一步研究指數(shù)函數(shù)及指數(shù)函數(shù)的圖像和性質(zhì),同時也為今后研究對數(shù)函數(shù)及其性質(zhì)打下堅(jiān)實(shí)的基礎(chǔ)。因此本節(jié)課內(nèi)容十分重要,它對知識起著承上啟下的`作用。
2、教學(xué)的重點(diǎn)和難點(diǎn):
根據(jù)這節(jié)課的內(nèi)容特點(diǎn)及學(xué)生的實(shí)際情況,我將本節(jié)課教學(xué)重點(diǎn)定為指數(shù)函數(shù)的圖像、性質(zhì)及應(yīng)用,難點(diǎn)定為指數(shù)函數(shù)性質(zhì)的發(fā)現(xiàn)過程及指數(shù)函數(shù)與底的關(guān)系。
二、教學(xué)目標(biāo)分析
基于對教材的理解和分析,我制定了以下教學(xué)目標(biāo):
1、理解指數(shù)函數(shù)的定義,掌握指數(shù)函數(shù)圖像、性質(zhì)及其簡單應(yīng)用。
2、通過教學(xué)培養(yǎng)學(xué)生觀察、分析、歸納等思維能力,體會數(shù)形結(jié)合思想和分類討論思想,增強(qiáng)學(xué)生識圖用圖的能力。
3、培養(yǎng)學(xué)生對知識的嚴(yán)謹(jǐn)科學(xué)態(tài)度和辯證唯物主義觀點(diǎn)。
三、教法學(xué)法分析
1、學(xué)情分析
教學(xué)對象是剛進(jìn)入高中的學(xué)生,雖然具有一定的分析問題和解決問題的能力,邏輯思維能力也逐步形成,但由于年齡的原因,思維盡管活躍敏捷,卻缺乏冷靜深刻。因此思考問題片面不嚴(yán)謹(jǐn)。
2、教法分析:基于以上學(xué)情分析,我采用先學(xué)生討論,再教師講授教學(xué)方法。一方面培養(yǎng)學(xué)生的觀察、分析、歸納等思維能力。另一方面用教師的講授來糾正由于學(xué)生思維過分活躍而走入的誤區(qū),和彌補(bǔ)知識的不足,達(dá)到能力與知識的雙重效果。
3、學(xué)法分析
讓學(xué)生仔細(xì)觀察書中給出的實(shí)際例子,使他們發(fā)現(xiàn)指數(shù)函數(shù)與現(xiàn)實(shí)生活息息相關(guān)。再根據(jù)高一學(xué)生愛動腦懶動手的特點(diǎn),讓學(xué)生自己描點(diǎn)畫圖,畫出指數(shù)函數(shù)的圖像,繼而用自己的語言總結(jié)指數(shù)函數(shù)的性質(zhì),學(xué)生經(jīng)歷了探究的過程,培養(yǎng)探究能力和抽象概括的能力。
四、教學(xué)過程
(一)創(chuàng)設(shè)情景
問題1:某種細(xì)胞分裂時,由1個分裂成2個,2個分裂成4個,……一個這樣的細(xì)胞分裂 次后,得到的細(xì)胞分裂的個數(shù) 與 之間,構(gòu)成一個函數(shù)關(guān)系,能寫出 與 之間的函數(shù)關(guān)系式嗎?
學(xué)生回答: 與 之間的關(guān)系式,可以表示為 。
問題2:折紙問題:讓學(xué)生動手折紙
學(xué)生回答:①對折的次數(shù) 與所得的層數(shù) 之間的關(guān)系,得出結(jié)論
、趯φ鄣拇螖(shù) 與折后面積 之間的關(guān)系(記折前紙張面積為1),得出結(jié)論
問題3:《莊子。天下篇》中寫到“一尺之棰,日取其半,萬世不竭”。
學(xué)生回答:寫出取 次后,木棰的剩留量與 與 的函數(shù)關(guān)系式。
設(shè)計(jì)意圖:
(1)讓學(xué)生在問題的情景中發(fā)現(xiàn)問題,遇到挑戰(zhàn),激發(fā)斗志,又引導(dǎo)學(xué)生在簡單的具體問題中抽象出共性,體驗(yàn)從簡單到復(fù)雜,從特殊到一般的認(rèn)知規(guī)律。從而引入兩種常見的指數(shù)函數(shù)① ②
(2)讓學(xué)生感受我們生活中存在這樣的指數(shù)函數(shù)模型,便于學(xué)生接
受指數(shù)函數(shù)的形式。
(二)導(dǎo)入新課
引導(dǎo)學(xué)生觀察,三個函數(shù)中,底數(shù)是常數(shù),指數(shù)是自變量。
設(shè)計(jì)意圖:充實(shí)實(shí)例,突出底數(shù)a的取值范圍,讓學(xué)生體會到數(shù)學(xué)來源于生產(chǎn)生活實(shí)際。函數(shù) 分別以 的數(shù)為底,加深對定義的感性認(rèn)識,為順利引出指數(shù)函數(shù)定義作鋪墊。
(三)新課講授
1.指數(shù)函數(shù)的定義
一般地,函數(shù) 叫做指數(shù)函數(shù),其中 是自變量,函數(shù)的定義域是R。
含義:
設(shè)計(jì)意圖:為 按兩種情況得出指數(shù)函數(shù)性質(zhì)作鋪墊。若學(xué)生回答不合適,引導(dǎo)學(xué)生用區(qū)間表示:
問題:指數(shù)函數(shù)定義中,為什么規(guī)定“ ”如果不這樣規(guī)定會出現(xiàn)什么情況?
設(shè)計(jì)意圖:教師首先提出問題:為什么要規(guī)定底數(shù)大于0且不等于1呢?這是本節(jié)的一個難點(diǎn),為突破難點(diǎn),采取學(xué)生自由討論的形式,達(dá)到互相啟發(fā),補(bǔ)充,活躍氣氛,激發(fā)興趣的目的。
對于底數(shù)的分類,可將問題分解為:
(1)若 會有什么問題?(如 ,則在實(shí)數(shù)范圍內(nèi)相應(yīng)的函數(shù)值不存在)
(2)若 會有什么問題?(對于 , 都無意義)
(3)若 又會怎么樣?( 無論 取何值,它總是1,對它沒有研究的必要.)
師:為了避免上述各種情況的發(fā)生,所以規(guī)定 。
在這里要注意生生之間、師生之間的對話。
設(shè)計(jì)意圖:認(rèn)識清楚底數(shù)a的特殊規(guī)定,才能深刻理解指數(shù)函數(shù)的定義域是R;并為學(xué)習(xí)對數(shù)函數(shù),認(rèn)識指數(shù)與對數(shù)函數(shù)關(guān)系打基礎(chǔ)。
教師還要提醒學(xué)生指數(shù)函數(shù)的定義是形式定義,必須在形式上一模一樣才行,然后把問題引向深入。
1:指出下列函數(shù)那些是指數(shù)函數(shù):
2:若函數(shù) 是指數(shù)函數(shù),則
3:已知 是指數(shù)函數(shù),且 ,求函數(shù) 的解析式。
設(shè)計(jì)意圖 :加深學(xué)生對指數(shù)函數(shù)定義和呈現(xiàn)形式的理解。
2.指數(shù)函數(shù)的圖像及性質(zhì)
在同一平面直角坐標(biāo)系內(nèi)畫出下列指數(shù)函數(shù)的圖象
畫函數(shù)圖象的步驟:列表、描點(diǎn)、連線
思考如何列表取值?
教師與學(xué)生共同作出 圖像。
設(shè)計(jì)意圖:在理解指數(shù)函數(shù)定義的基礎(chǔ)上掌握指數(shù)函數(shù)的圖像與性質(zhì),是本節(jié)的重點(diǎn)。關(guān)鍵在于弄清底數(shù)a對于函數(shù)值變化的影響。對于 時函數(shù)值變化的不同情況,學(xué)生往往容易混淆,這是教學(xué)中的一個難點(diǎn)。為此,必須利用圖像,數(shù)形結(jié)合。教師親自板演,學(xué)生親自在課前準(zhǔn)備好的坐標(biāo)系里畫圖,而不是采用幾何畫板直接得到圖像,目的是使學(xué)生更加信服,加深印象,并為以后畫圖解題,采用數(shù)形結(jié)合思想方法打下基礎(chǔ)。
利用幾何畫板演示函數(shù) 的圖象,觀察分析圖像的共同特征。由特殊到一般,得出指數(shù)函數(shù) 的圖象特征,進(jìn)一步得出圖象性質(zhì):
教師組織學(xué)生結(jié)合圖像討論指數(shù)函數(shù)的性質(zhì)。
設(shè)計(jì)意圖:這是本節(jié)課的重點(diǎn)和難點(diǎn),要充分調(diào)動學(xué)生的積極性、主動性,發(fā)揮他們的潛能,盡量由學(xué)生自主得出性質(zhì),以便能夠更深刻的記憶、更熟練的運(yùn)用。
師生共同總結(jié)指數(shù)函數(shù)的性質(zhì),教師邊總結(jié)邊板書。
特別地,函數(shù)值的分布情況如下:
設(shè)計(jì)意圖:再次強(qiáng)調(diào)指數(shù)函數(shù)的單調(diào)性與底數(shù)a的關(guān)系,并具體分析了函數(shù)值的分布情況,深刻理解指數(shù)函數(shù)值域情況。
(四)鞏固與練習(xí)
例1: 比較下列各題中兩值的大小
教師引導(dǎo)學(xué)生觀察這些指數(shù)值的特征,思考比較大小的方法。
(1)(2)兩題底相同,指數(shù)不同,(3)(4)兩題可化為同底的,可以利用函數(shù)的單調(diào)性比較大小。
(5)題底不同,指數(shù)相同,可以利用函數(shù)的圖像比較大小。
(6)題底不同,指數(shù)也不同,可以借助中介值比較大小。
例2:已知下列不等式 , 比較 的大小 :
設(shè)計(jì)意圖:這是指數(shù)函數(shù)性質(zhì)的簡單應(yīng)用,使學(xué)生在解題過程中加深對指數(shù)函數(shù)的圖像及性質(zhì)的理解和記憶。
(五)課堂小結(jié)
通過本節(jié)課的學(xué)習(xí),你學(xué)到了哪些知識?
你又掌握了哪些數(shù)學(xué)思想方法?
你能將指數(shù)函數(shù)的學(xué)習(xí)與實(shí)際生活聯(lián)系起來嗎?
設(shè)計(jì)意圖:讓學(xué)生在小結(jié)中明確本節(jié)課的學(xué)習(xí)內(nèi)容,強(qiáng)化本節(jié)課的學(xué)習(xí)重點(diǎn),并為后續(xù)學(xué)習(xí)打下基礎(chǔ)。
(六)布置作業(yè)
1、練習(xí)B組第2題;習(xí)題3-1A組第3題
2、A先生從今天開始每天給你10萬元,而你承擔(dān)如下任務(wù):第一天給A先生1元,第二天給A先生2元,,第三天給A先生4元,第四天給A先生8元,依次下去,…,A先生要和你簽定15天的合同,你同意嗎?又A先生要和你簽定30天的合同,你能簽這個合同嗎?
3、觀察指數(shù)函數(shù) 的圖象,比較 的大小。
高中數(shù)學(xué)說課稿 篇8
大家好,今天我向大家說課的題目是《正弦定理》。下面我將從以下幾個方面介紹我這堂課的教學(xué)設(shè)計(jì)。
一 教材分析
本節(jié)知識是必修五第一章《解三角形》的第一節(jié)內(nèi)容,與初中學(xué)習(xí)的三角形的邊和角的基本關(guān)系有密切的聯(lián)系與判定三角形的全等也有密切聯(lián)系,在日常生活和工業(yè)生產(chǎn)中也時常有解三角形的問題,而且解三角形和三角函數(shù)聯(lián)系在高考當(dāng)中也時?家恍┙獯痤}。因此,正弦定理和余弦定理的知識非常重要。
根據(jù)上述教材內(nèi)容分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征及原有知識水平,制定如下教學(xué)目標(biāo):
認(rèn)知目標(biāo):在創(chuàng)設(shè)的問題情境中,引導(dǎo)學(xué)生發(fā)現(xiàn)正弦定理的內(nèi)容,推證正弦定理及簡單運(yùn)用正弦定理與三角形的內(nèi)角和定理解斜三角形的兩類問題。
能力目標(biāo):引導(dǎo)學(xué)生通過觀察,推導(dǎo),比較,由特殊到一般歸納出正弦定理,培養(yǎng)學(xué)生的創(chuàng)新意識和觀察與邏輯思維能力,能體會用向量作為數(shù)形結(jié)合的工具,將幾何問題轉(zhuǎn)化為代數(shù)問題。
情感目標(biāo):面向全體學(xué)生,創(chuàng)造平等的教學(xué)氛圍,通過學(xué)生之間、師生之間的交流、合作和評價(jià),調(diào)動學(xué)生的主動性和積極性,給學(xué)生成功的體驗(yàn),激發(fā)學(xué)生學(xué)習(xí)的興趣。
教學(xué)重點(diǎn):正弦定理的內(nèi)容,正弦定理的證明及基本應(yīng)用。
教學(xué)難點(diǎn):正弦定理的探索及證明,已知兩邊和其中一邊的對角解三角形時判斷解的個數(shù)。
二 教法
根據(jù)教材的內(nèi)容和編排的特點(diǎn),為是更有效地突出重點(diǎn),空破難點(diǎn),以學(xué)業(yè)生的發(fā)展為本,遵照學(xué)生的認(rèn)識規(guī)律,本講遵照以教師為主導(dǎo),以學(xué)生為主體,訓(xùn)練為主線的指導(dǎo)思想, 采用探究式課堂教學(xué)模式,即在教學(xué)過程中,在教師的啟發(fā)引導(dǎo)下,以學(xué)生獨(dú)立自主和合作交流為前提,以“正弦定理的發(fā)現(xiàn)”為基本探究內(nèi)容,以生活實(shí)際為參照對象,讓學(xué)生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導(dǎo),并逐步得到深化。突破重點(diǎn)的手段:抓住學(xué)生情感的興奮點(diǎn),激發(fā)他們的興趣,鼓勵學(xué)生大膽猜想,積極探索,以及及時地鼓勵,使他們知難而進(jìn)。另外,抓知識選擇的切入點(diǎn),從學(xué)生原有的認(rèn)知水平和所需的知識特點(diǎn)入手,教師在學(xué)生主體下給以適當(dāng)?shù)奶崾竞椭笇?dǎo)。突破難點(diǎn)的方法:抓住學(xué)生的能力線聯(lián)系方法與技能使學(xué)生較易證明正弦定理,另外通過例題和練習(xí)來突破難點(diǎn)
三 學(xué)法:
指導(dǎo)學(xué)生掌握“觀察——猜想——證明——應(yīng)用”這一思維方法,采取個人、小組、集體等多種解難釋疑的嘗試活動,將自己所學(xué)知識應(yīng)用于對任意三角形性質(zhì)的探究。讓學(xué)生在問題情景中學(xué)習(xí),觀察,類比,思考,探究,概括,動手嘗試相結(jié)合,體現(xiàn)學(xué)生的主體地位,增強(qiáng)學(xué)生由特殊到一般的數(shù)學(xué)思維能力,形成了實(shí)事求是的科學(xué)態(tài)度,增強(qiáng)了鍥而不舍的求學(xué)精神。
四 教學(xué)過程
第一:創(chuàng)設(shè)情景,大概用2分鐘
第二:實(shí)踐探究,形成概念,大約用25分鐘
第三:應(yīng)用概念,拓展反思,大約用13分鐘
。ㄒ唬﹦(chuàng)設(shè)情境,布疑激趣
“興趣是最好的老師”,如果一節(jié)課有個好的開頭,那就意味著成功了一半,本節(jié)課由一個實(shí)際問題引入,“工人師傅的一個三角形的模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長為1m,想修好這個零件,但他不知道AC和BC的長度是多少好去截料,你能幫師傅這個忙嗎?”激發(fā)學(xué)生幫助別人的熱情和學(xué)習(xí)的興趣,從而進(jìn)入今天的學(xué)習(xí)課題。
(二)探尋特例,提出猜想
1.激發(fā)學(xué)生思維,從自身熟悉的特例(直角三角形)入手進(jìn)行研究,發(fā)現(xiàn)正弦定理。
2.那結(jié)論對任意三角形都適用嗎?指導(dǎo)學(xué)生分小組用刻度尺、量角器、計(jì)算器等工具對一般三角形進(jìn)行驗(yàn)證。
3.讓學(xué)生總結(jié)實(shí)驗(yàn)結(jié)果,得出猜想:
在三角形中,角與所對的邊滿足關(guān)系
這為下一步證明樹立信心,不斷的使學(xué)生對結(jié)論的認(rèn)識從感性逐步上升到理性。
。ㄈ┻壿嬐评,證明猜想
1.強(qiáng)調(diào)將猜想轉(zhuǎn)化為定理,需要嚴(yán)格的理論證明。
2.鼓勵學(xué)生通過作高轉(zhuǎn)化為熟悉的直角三角形進(jìn)行證明。
3.提示學(xué)生思考哪些知識能把長度和三角函數(shù)聯(lián)系起來,繼而思考向量分析層面,用數(shù)量積作為工具證明定理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。
4.思考是否還有其他的方法來證明正弦定理,布置課后練習(xí),提示,做三角形的外接圓構(gòu)造直角三角形,或用坐標(biāo)法來證明
。ㄋ模w納總結(jié),簡單應(yīng)用
1.讓學(xué)生用文字?jǐn)⑹稣叶ɡ恚龑?dǎo)學(xué)生發(fā)現(xiàn)定理具有對稱和諧美,提升對數(shù)學(xué)美的享受。
2.正弦定理的內(nèi)容,討論可以解決哪幾類有關(guān)三角形的問題。
3.運(yùn)用正弦定理求解本節(jié)課引引入的三角形零件邊長的問題。自己參與實(shí)際問題的解決,能激發(fā)學(xué)生知識后用于實(shí)際的價(jià)值觀。
。ㄎ澹┲v解例題,鞏固定理
1.例1。在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形.
例1簡單,結(jié)果為唯一解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來解三角形。
2. 例2. 在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形.
高中數(shù)學(xué)說課稿 篇9
各位評委、各位老師:大家好!
我叫李長杉,來自甘肅省嘉峪關(guān)市第一中學(xué)。今天我說課的課題是《一元二次不等式的解法》(第一課時)。下面我將圍繞本節(jié)課"教什么?"、"怎樣教?"以及"為什么這樣教?"三個問題,從教材內(nèi)容分析、教法學(xué)法分析、教學(xué)過程分析和課堂意外預(yù)案等幾個方面逐一加以分析和說明。
一。教材內(nèi)容分析:
1.本節(jié)課內(nèi)容在整個教材中的地位和作用。
概括地講,本節(jié)課內(nèi)容的地位體現(xiàn)在它的基礎(chǔ)性,作用體現(xiàn)在它的工具性。一元二次不等式的解法是初中一元一次不等式或一元一次不等式組的延續(xù)和深化,對已學(xué)習(xí)過的集合知識的鞏固和運(yùn)用具有重要的作用,也與后面的函數(shù)、數(shù)列、三角函數(shù)、線形規(guī)劃、直線與圓錐曲線以及導(dǎo)數(shù)等內(nèi)容密切相關(guān)。許多問題的解決都會借助一元二次不等式的解法。因此,一元二次不等式的解法在整個高中數(shù)學(xué)教學(xué)中具有很強(qiáng)的基礎(chǔ)性,體現(xiàn)出很大的工具作用。
2.教學(xué)目標(biāo)定位。
根據(jù)教學(xué)大綱要求、高考考試大綱說明、新課程標(biāo)準(zhǔn)精神、高一學(xué)生已有的知識儲備狀況和學(xué)生心理認(rèn)知特征,我確定了四個層面的教學(xué)目標(biāo)。第一層面是面向全體學(xué)生的知識目標(biāo):熟練掌握一元二次不等式的兩種解法,正確理解一元二次方程、一元二次不等式和二次函數(shù)三者的關(guān)系。第二層面是能力目標(biāo),培養(yǎng)學(xué)生運(yùn)用數(shù)形結(jié)合與等價(jià)轉(zhuǎn)化等數(shù)學(xué)思想方法解決問題的能力,提高運(yùn)算和作圖能力。第三層面是德育目標(biāo),通過對解不等式過程中等與不等對立統(tǒng)一關(guān)系的認(rèn)識,向?qū)W生逐步滲透辨證唯物主義思想。第四層面是情感目標(biāo),在教師的啟發(fā)引導(dǎo)下,學(xué)生自主探究,交流討論,培養(yǎng)學(xué)生的合作意識和創(chuàng)新精神。
3.教學(xué)重點(diǎn)、難點(diǎn)確定。
本節(jié)課是在復(fù)習(xí)了一次不等式的解法之后,利用二次函數(shù)的圖象研究一元二次不等式的解法。只要學(xué)生能夠理解一元二次方程、一元二次不等式和二次函數(shù)三者的關(guān)系,并利用其關(guān)系解不等式即可。因此,我確定本節(jié)課的教學(xué)重點(diǎn)為一元二次不等式的解法,關(guān)鍵是一元二次方程、一元二次不等式和二次函數(shù)三者的關(guān)系。
二。教法學(xué)法分析:
數(shù)學(xué)是發(fā)展學(xué)生思維、培養(yǎng)學(xué)生良好意志品質(zhì)和美好情感的重要學(xué)科,在教學(xué)中,我們不僅要使學(xué)生獲得知識、提高解題能力,還要讓學(xué)生在教師的啟發(fā)引導(dǎo)下學(xué)會學(xué)習(xí)、樂于學(xué)習(xí),感受數(shù)學(xué)學(xué)科的人文思想,使學(xué)生在學(xué)習(xí)中培養(yǎng)堅(jiān)強(qiáng)的意志品質(zhì)、形成良好的道德情感。為了更好地體現(xiàn)課堂教學(xué)中"教師為主導(dǎo),學(xué)生為主體"的教學(xué)關(guān)系和"以人為本,以學(xué)定教"的教學(xué)理念,在本節(jié)課的教學(xué)過程中,我將緊緊圍繞教師組織——啟發(fā)引導(dǎo),學(xué)生探究——交流發(fā)現(xiàn),組織開展教學(xué)活動。我設(shè)計(jì)了①創(chuàng)設(shè)情景——引入新課,②交流探究——發(fā)現(xiàn)規(guī)律,③啟發(fā)引導(dǎo)——形成結(jié)論,④練習(xí)小結(jié)——深化鞏固,⑤思維拓展——提高能力,五個環(huán)環(huán)相扣、層層深入的教學(xué)環(huán)節(jié),在教學(xué)中注意關(guān)注整個過程和全體學(xué)生,充分調(diào)動學(xué)生積極參與教學(xué)過程的每個環(huán)節(jié)。
三。教學(xué)過程分析:
1.創(chuàng)設(shè)情景——引入新課。我們常說"興趣是最好的老師",長期以來,學(xué)生對學(xué)習(xí)數(shù)學(xué)缺乏興趣,甚至失去信心,一個重要的原因,是老師在教學(xué)中不重視學(xué)生對學(xué)習(xí)的情感體驗(yàn),教學(xué)應(yīng)該充分考慮學(xué)生的情感和需要,想方設(shè)法讓學(xué)生在學(xué)習(xí)中樹立信心,感受學(xué)習(xí)的樂趣。根據(jù)教材內(nèi)容的安排,我以學(xué)生熟悉的畫一次函數(shù)圖象、求一次方程和一次不等式的解為背景知識切入,設(shè)置一個練習(xí)題組,一方面讓學(xué)生總結(jié)復(fù)習(xí)已有知識,為后面學(xué)習(xí)二次不等式的解法打下基礎(chǔ),做好鋪墊,另一方面,使學(xué)生在自己熟悉的問題中首先獲得解題成功的快樂體驗(yàn),然后以20xx年江蘇省的一道高考試題為引子,引入本節(jié)課的新授內(nèi)容。對于本題,引導(dǎo)學(xué)生,利用上面解練習(xí)題組1的方法,畫出二次函數(shù)圖象來解答。二次函數(shù)是初中數(shù)學(xué)的重要內(nèi)容,本題又給出了函數(shù)圖象上許多點(diǎn),相信學(xué)生畫出圖象應(yīng)該不成問題,只要教師適當(dāng)點(diǎn)撥,學(xué)生不難得到正確答案。以高考試題為背景引入新課,可以提高學(xué)生興趣,抓住學(xué)生眼球,吸引學(xué)生注意力,還可以讓學(xué)生實(shí)實(shí)在在感受到,高考題就在我們的課本中,就在我們平常的練習(xí)中。
2.探究交流——發(fā)現(xiàn)規(guī)律。從特殊到一般是我們發(fā)現(xiàn)問題、尋求規(guī)律、揭示問題本質(zhì)最常用的方法之一。我把課本例題1、2編為練習(xí)題組(一),交由學(xué)生用上面解高考題的方法——圖象法去解,學(xué)生由于熟知二次函數(shù)圖象,求解應(yīng)該不會有太大的問題。在這個過程中,教師要啟發(fā)引導(dǎo)學(xué)生注意對比兩題的異同,組織引導(dǎo)學(xué)生展開交流討論,探討第(2)題能不能先把二次項(xiàng)系數(shù)化正以后再構(gòu)造函數(shù)畫圖求解。然后達(dá)成共識,如果二次項(xiàng)系數(shù)為負(fù)數(shù)時,先做等價(jià)轉(zhuǎn)化,把二次項(xiàng)系數(shù)化為正數(shù)再解,課本19頁例3、例4作為題組(二),繼續(xù)讓學(xué)生用上面的圖象法,由學(xué)生自己求解,這時我及時提示學(xué)生注意這兩題與題組(一)中兩題的不同(例1、例2對應(yīng)方程都有兩個不等實(shí)根,例3對應(yīng)方程有兩相等實(shí)根,例4對應(yīng)方程無實(shí)根)。兩個題組的練習(xí)之后,可以尋求解二次不等式的一般規(guī)律。
3.啟發(fā)引導(dǎo)——形成結(jié)論。前面兩個題組的四個小題,基本涵蓋了一般一元二次不等式解的各種情況,進(jìn)一步啟發(fā)引導(dǎo)學(xué)生將特殊、具體題目的結(jié)論做一般化總結(jié),與學(xué)生一起就 △>0,△<0,△=0 c="">0或ax2+bx+c<0 a="">0)的解的情況應(yīng)該水到渠成。至此,學(xué)生可以感受到,解二次不等式只須①將二次項(xiàng)系數(shù)化為正數(shù),②求解二次方程 ax2+bx+c=0 的根。③根據(jù)①后的二次不等式的符號寫出解集即可,必要時也可以結(jié)合圖象寫解集。這樣我們就得到了二次不等式的另外一種解法(可稱為"三步曲"法)。
4.訓(xùn)練小結(jié)——鞏固深化。為了鞏固和加深二次不等式的兩種解法,接下來及時組織學(xué)生進(jìn)行課堂練習(xí),完成課本21頁練習(xí)1-4題。本環(huán)節(jié)請不同層次的學(xué)生在黑板上書寫解題過程,之后師生共同糾正問題,規(guī)范解題過程的書寫。
5.延伸拓寬——提高能力。課堂教學(xué)既要面向全體學(xué)生,又應(yīng)關(guān)注學(xué)生的個體差異。體現(xiàn)分類推進(jìn),分層教學(xué)的原則。為此,我又設(shè)計(jì)了一個提高練習(xí)題組,共有三道備選題目,以供程度較好學(xué)有余力的學(xué)生能夠更好的展示自己的解題能力,取得更進(jìn)一步的提高。
四。課堂意外預(yù)案:
新課程理念下的教學(xué)更多的關(guān)注學(xué)生自主探究、關(guān)注學(xué)生的個性發(fā)展,鼓勵學(xué)生勇于提出問題,培養(yǎng)學(xué)生思維的批評性。在課堂上學(xué)生往往會提出讓老師感到"意外"的問題,我在平時的教學(xué)中重視對"課堂意外預(yù)案"的探索和思考,備課時盡量設(shè)想課堂中可能會出現(xiàn)的各種情況,做到有備無患,以免在課堂中學(xué)生提出讓自己出乎意料的問題,使自己陷入被動尷尬境地。結(jié)合以往經(jīng)驗(yàn),在本節(jié)課,我提出兩個"意外預(yù)案".
1.學(xué)生在做課本練習(xí)1(x+2)(x-3)>0 時,可能會問到轉(zhuǎn)化為不等式組{ 或{ 求解對不對。學(xué)生提出的問題,想法非常好,應(yīng)給予肯定和鼓勵,這與下節(jié)簡單分式不等式和高次不等式的解法有關(guān),是解不等式的另一種解法——等價(jià)轉(zhuǎn)化法,不在本節(jié)課之列。
2.根據(jù)以往的經(jīng)驗(yàn),在解(x-1)(x+2)>1一類的不等式的時候,由于受方程(x+1)(x+2)=0 可轉(zhuǎn)化為x-1=0或x+2=0求解的影響,有可能會出現(xiàn)將不等式轉(zhuǎn)化為不等式組{ 來求解的錯誤做法,教師要關(guān)注學(xué)生,及時發(fā)現(xiàn)問題并給予糾正,指出上面的轉(zhuǎn)化不是等價(jià)轉(zhuǎn)化。
以上是我對本節(jié)課的一些粗淺的認(rèn)識和構(gòu)想,如有不妥之處,懇請各位專家、各位同仁批評指正。謝謝大家!
【關(guān)于高中數(shù)學(xué)說課稿范文匯編九篇】相關(guān)文章:
關(guān)于高中數(shù)學(xué)說課稿范文匯編八篇08-14
關(guān)于高中數(shù)學(xué)說課稿范文匯編五篇08-11
關(guān)于高中數(shù)學(xué)說課稿范文匯編8篇08-10
關(guān)于高中數(shù)學(xué)說課稿范文匯編9篇08-09
關(guān)于高中數(shù)學(xué)說課稿范文匯編十篇08-19
關(guān)于高中數(shù)學(xué)說課稿范文匯編七篇08-17
高中數(shù)學(xué)經(jīng)典說課稿范文06-24