国产激情久久久久影院小草_国产91高跟丝袜_99精品视频99_三级真人片在线观看

高中數(shù)學(xué)說(shuō)課稿

時(shí)間:2021-08-10 08:47:36 高中說(shuō)課稿 我要投稿

關(guān)于高中數(shù)學(xué)說(shuō)課稿范文錦集9篇

  作為一位無(wú)私奉獻(xiàn)的人民教師,可能需要進(jìn)行說(shuō)課稿編寫工作,借助說(shuō)課稿可以提高教學(xué)質(zhì)量,取得良好的教學(xué)效果。那么應(yīng)當(dāng)如何寫說(shuō)課稿呢?下面是小編幫大家整理的高中數(shù)學(xué)說(shuō)課稿9篇,僅供參考,大家一起來(lái)看看吧。

關(guān)于高中數(shù)學(xué)說(shuō)課稿范文錦集9篇

高中數(shù)學(xué)說(shuō)課稿 篇1

  【一】教學(xué)背景分析

  1。教材結(jié)構(gòu)分析

  《圓的方程》安排在高中數(shù)學(xué)第二冊(cè)(上)第七章第六節(jié)。圓作為常見(jiàn)的簡(jiǎn)單幾何圖形,在實(shí)際生活和生產(chǎn)實(shí)踐中有著廣泛的應(yīng)用。圓的方程屬于解析幾何學(xué)的基礎(chǔ)知識(shí),是研究二次曲線的開始,對(duì)后續(xù)直線與圓的位置關(guān)系、圓錐曲線等內(nèi)容的學(xué)習(xí),無(wú)論在知識(shí)上還是方法上都有著積極的意義,所以本節(jié)內(nèi)容在整個(gè)解析幾何中起著承前啟后的作用。

  2。學(xué)情分析

  圓的方程是學(xué)生在初中學(xué)習(xí)了圓的概念和基本性質(zhì)后,又掌握了求曲線方程的一般方法的基礎(chǔ)上進(jìn)行研究的。但由于學(xué)生學(xué)習(xí)解析幾何的時(shí)間還不長(zhǎng)、學(xué)習(xí)程度較淺,且對(duì)坐標(biāo)法的運(yùn)用還不夠熟練,在學(xué)習(xí)過(guò)程中難免會(huì)出現(xiàn)困難。另外學(xué)生在探究問(wèn)題的能力,合作交流的意識(shí)等方面有待加強(qiáng)。

  根據(jù)上述教材結(jié)構(gòu)與內(nèi)容分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)和心理特征,我制定如下教學(xué)目標(biāo):

  3。教學(xué)目標(biāo)

  (1) 知識(shí)目標(biāo):①掌握?qǐng)A的標(biāo)準(zhǔn)方程;

 、跁(huì)由圓的標(biāo)準(zhǔn)方程寫出圓的半徑和圓心坐標(biāo),能根據(jù)條件寫出圓的標(biāo)準(zhǔn)方程;

 、劾脠A的標(biāo)準(zhǔn)方程解決簡(jiǎn)單的實(shí)際問(wèn)題。

 。2) 能力目標(biāo):①進(jìn)一步培養(yǎng)學(xué)生用代數(shù)方法研究幾何問(wèn)題的能力;

  ②加深對(duì)數(shù)形結(jié)合思想的理解和加強(qiáng)對(duì)待定系數(shù)法的運(yùn)用;

 、墼鰪(qiáng)學(xué)生用數(shù)學(xué)的意識(shí)。

 。3) 情感目標(biāo):①培養(yǎng)學(xué)生主動(dòng)探究知識(shí)、合作交流的意識(shí);

 、谠隗w驗(yàn)數(shù)學(xué)美的過(guò)程中激發(fā)學(xué)生的學(xué)習(xí)興趣。

  根據(jù)以上對(duì)教材、教學(xué)目標(biāo)及學(xué)情的分析,我確定如下的教學(xué)重點(diǎn)和難點(diǎn):

  4。 教學(xué)重點(diǎn)與難點(diǎn)

 。1)重點(diǎn):圓的標(biāo)準(zhǔn)方程的求法及其應(yīng)用。

 。2)難點(diǎn): ①會(huì)根據(jù)不同的已知條件求圓的標(biāo)準(zhǔn)方程;

 、谶x擇恰當(dāng)?shù)淖鴺?biāo)系解決與圓有關(guān)的實(shí)際問(wèn)題。

  為使學(xué)生能達(dá)到本節(jié)設(shè)定的教學(xué)目標(biāo),我再?gòu)慕谭ê蛯W(xué)法上進(jìn)行分析:

  好學(xué)教育:

  【二】教法學(xué)法分析

  1。教法分析 為了充分調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性,本節(jié)課采用“啟發(fā)式”問(wèn)題教學(xué)法,用環(huán)環(huán)相扣的問(wèn)題將探究活動(dòng)層層深入,使教師總是站在學(xué)生思維的最近發(fā)展區(qū)上。另外我恰當(dāng)?shù)睦枚嗝襟w課件進(jìn)行輔助教學(xué),借助信息技術(shù)創(chuàng)設(shè)實(shí)際問(wèn)題的情境既能激發(fā)學(xué)生的學(xué)習(xí)興趣,又直觀的引導(dǎo)了學(xué)生建模的過(guò)程。

  2。學(xué)法分析 通過(guò)推導(dǎo)圓的標(biāo)準(zhǔn)方程,加深對(duì)用坐標(biāo)法求軌跡方程的理解。通過(guò)求圓的標(biāo)準(zhǔn)方程,理解必須具備三個(gè)獨(dú)立的條件才可以確定一個(gè)圓。通過(guò)應(yīng)用圓的標(biāo)準(zhǔn)方程,熟悉用待定系數(shù)法求的過(guò)程。 下面我就對(duì)具體的教學(xué)過(guò)程和設(shè)計(jì)加以說(shuō)明:

  【三】教學(xué)過(guò)程與設(shè)計(jì)

  整個(gè)教學(xué)過(guò)程是由七個(gè)問(wèn)題組成的問(wèn)題鏈驅(qū)動(dòng)的,共分為五個(gè)環(huán)節(jié):

  創(chuàng)設(shè)情境 啟迪思維 深入探究 獲得新知 應(yīng)用舉例 鞏固提高

  反饋訓(xùn)練 形成方法 小結(jié)反思 拓展引申

  下面我從縱橫兩方面敘述我的教學(xué)程序與設(shè)計(jì)意圖。

  首先:縱向敘述教學(xué)過(guò)程

  (一)創(chuàng)設(shè)情境——啟迪思維

  問(wèn)題一 已知隧道的截面是半徑為4m的半圓,車輛只能在道路中心線一側(cè)行駛,一輛寬為2。7m,高為3m的貨車能不能駛?cè)脒@個(gè)隧道?

  通過(guò)對(duì)這個(gè)實(shí)際問(wèn)題的探究,把學(xué)生的思維由用勾股定理求線段CD的長(zhǎng)度轉(zhuǎn)移為用曲線的方程來(lái)解決。一方面幫助學(xué)生回顧了舊知——求軌跡方程的一般方法,另一方面,在得到汽車不能通過(guò)的結(jié)論的同時(shí)學(xué)生自己推導(dǎo)出了圓心在原點(diǎn),半徑為4的圓的標(biāo)準(zhǔn)方程,從而很自然的進(jìn)入了本課的主題。用實(shí)際問(wèn)題創(chuàng)設(shè)問(wèn)題情境,讓學(xué)生感受到問(wèn)題來(lái)源于實(shí)際,應(yīng)用于實(shí)際,激發(fā)了學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)欲望。這樣獲取的知識(shí),不但易于保持,而且易于遷移。

  通過(guò)對(duì)問(wèn)題一的探究,抓住了學(xué)生的注意力,把學(xué)生的思維引到用坐標(biāo)法研究圓的方程上來(lái),此時(shí)再把問(wèn)題深入,進(jìn)入第二環(huán)節(jié)。

 。ǘ┥钊胩骄俊@得新知

  問(wèn)題二 1。根據(jù)問(wèn)題一的探究能不能得到圓心在原點(diǎn),半徑為的圓的方程?

  2。如果圓心在,半徑為時(shí)又如何呢?

  好學(xué)教育:

  這一環(huán)節(jié)我首先讓學(xué)生對(duì)問(wèn)題一進(jìn)行歸納,得到圓心在原點(diǎn),半徑為4的圓的標(biāo)準(zhǔn)方程后,引導(dǎo)學(xué)生歸納出圓心在原點(diǎn),半徑為r的圓的標(biāo)準(zhǔn)方程。然后再讓學(xué)生對(duì)圓心不在原點(diǎn)的情況進(jìn)行探究。我預(yù)設(shè)了三種方法等待著學(xué)生的探究結(jié)果,分別是:坐標(biāo)法、圖形變換法、向量平移法。

  得到圓的標(biāo)準(zhǔn)方程后,我設(shè)計(jì)了由淺入深的三個(gè)應(yīng)用平臺(tái),進(jìn)入第三環(huán)節(jié)。

 。ㄈ⿷(yīng)用舉例——鞏固提高

  I。直接應(yīng)用 內(nèi)化新知

  問(wèn)題三 1。寫出下列各圓的標(biāo)準(zhǔn)方程:

 。1)圓心在原點(diǎn),半徑為3;

 。2)經(jīng)過(guò)點(diǎn),圓心在點(diǎn)。

  2。寫出圓的圓心坐標(biāo)和半徑。

  我設(shè)計(jì)了兩個(gè)小問(wèn)題,第一題是直接或間接的給出圓心坐標(biāo)和半徑求圓的標(biāo)準(zhǔn)方程,第二題是給出圓的標(biāo)準(zhǔn)方程求圓心坐標(biāo)和半徑,這兩題比較簡(jiǎn)單,可以安排學(xué)生口答完成,目的是先讓學(xué)生熟練掌握?qǐng)A心坐標(biāo)、半徑與圓的標(biāo)準(zhǔn)方程之間的關(guān)系,為后面探究圓的切線問(wèn)題作準(zhǔn)備。

  II。靈活應(yīng)用 提升能力

  問(wèn)題四 1。求以點(diǎn)為圓心,并且和直線相切的圓的方程。

  2。求過(guò)點(diǎn),圓心在直線上且與軸相切的圓的方程。

  3。已知圓的方程為,求過(guò)圓上一點(diǎn)的切線方程。

  你能歸納出具有一般性的結(jié)論嗎?

  已知圓的方程是,經(jīng)過(guò)圓上一點(diǎn)的切線的方程是什么?

  我設(shè)計(jì)了三個(gè)小問(wèn)題,第一個(gè)小題有了剛剛解決問(wèn)題三的基礎(chǔ),學(xué)生會(huì)很快求出半徑,根據(jù)圓心坐標(biāo)寫出圓的標(biāo)準(zhǔn)方程。第二個(gè)小題有些困難,需要引導(dǎo)學(xué)生應(yīng)用待定系數(shù)法確定圓心坐標(biāo)和半徑再求解,從而理解必須具備三個(gè)獨(dú)立的條件才可以確定一個(gè)圓。第三個(gè)小題解決方法較多,我預(yù)設(shè)了四種方法再一次為學(xué)生的發(fā)散思維創(chuàng)設(shè)了空間。最后我讓學(xué)生由第三小題的結(jié)論進(jìn)行歸納、猜想,在論證經(jīng)過(guò)圓上一點(diǎn)圓的切線方程的過(guò)程中,又一次模擬了真理發(fā)現(xiàn)的過(guò)程,使探究氣氛達(dá)到高潮。

  III。實(shí)際應(yīng)用 回歸自然

  問(wèn)題五 如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度AB=20m,拱高OP=4m,在建造時(shí)每隔4m需用一個(gè)支柱支撐,求支柱的長(zhǎng)度(精確到0。01m)。

  好學(xué)教育:

  我選用了教材的例3,它是待定系數(shù)法求出圓的三個(gè)參數(shù)的又一次應(yīng)用,同時(shí)也與引例相呼應(yīng),使學(xué)生形成解決實(shí)際問(wèn)題的一般方法,培養(yǎng)了學(xué)生建模的習(xí)慣和用數(shù)學(xué)的意識(shí)。

 。ㄋ模┓答佊(xùn)練——形成方法

  問(wèn)題六 1。求過(guò)原點(diǎn)和點(diǎn),且圓心在直線上的圓的標(biāo)準(zhǔn)方程。

  2。求圓過(guò)點(diǎn)的切線方程。

  3。求圓過(guò)點(diǎn)的切線方程。

  接下來(lái)是第四環(huán)節(jié)——反饋訓(xùn)練。這一環(huán)節(jié)中,我設(shè)計(jì)三個(gè)小題作為鞏固性訓(xùn)練,給學(xué)生一塊“用武”之地,讓每一位同學(xué)體驗(yàn)學(xué)習(xí)數(shù)學(xué)的樂(lè)趣,成功的喜悅,找到自信,增強(qiáng)學(xué)習(xí)數(shù)學(xué)的愿望與信心。另外第3題是我特意安排的一道求過(guò)圓外一點(diǎn)的圓的切線方程,由于學(xué)生剛剛歸納了過(guò)圓上一點(diǎn)圓的切線方程,因此很容易產(chǎn)生思維的負(fù)遷移,另外這道題目有兩解,學(xué)生容易漏掉斜率不存在的情況,這時(shí)引導(dǎo)學(xué)生用數(shù)形結(jié)合的思想,結(jié)合初中已有的圓的知識(shí)進(jìn)行判斷,這樣的設(shè)計(jì)對(duì)培養(yǎng)學(xué)生思維的嚴(yán)謹(jǐn)性具有良好的效果。

 。ㄎ澹┬〗Y(jié)反思——拓展引申

  1。課堂小結(jié)

  把圓的標(biāo)準(zhǔn)方程與過(guò)圓上一點(diǎn)圓的切線方程加以小結(jié),提煉數(shù)形結(jié)合的思想和待定系數(shù)的方法 ①圓心為,半徑為r 的圓的標(biāo)準(zhǔn)方程為:

  圓心在原點(diǎn)時(shí),半徑為r 的圓的標(biāo)準(zhǔn)方程為:。

  ②已知圓的方程是,經(jīng)過(guò)圓上一點(diǎn)的切線的方程是:。

  2。分層作業(yè)

  (A)鞏固型作業(yè):教材P81—82:(習(xí)題7。6)1,2,4。(B)思維拓展型作業(yè):試推導(dǎo)過(guò)圓上一點(diǎn)的切線方程。

  3。激發(fā)新疑

  問(wèn)題七 1。把圓的標(biāo)準(zhǔn)方程展開后是什么形式?

  2。方程表示什么圖形?

  在本課的結(jié)尾設(shè)計(jì)這兩個(gè)問(wèn)題,作為對(duì)這節(jié)課內(nèi)容的鞏固與延伸,讓學(xué)生體會(huì)知識(shí)的起點(diǎn)與終點(diǎn)都蘊(yùn)涵著問(wèn)題,舊的問(wèn)題解決了,新的問(wèn)題又產(chǎn)生了。在知識(shí)的拓展中再次掀起學(xué)生探究的熱情。另外它為下節(jié)課研究圓的一般方程作了重要的準(zhǔn)備。

  以上是我縱向的教學(xué)過(guò)程及簡(jiǎn)單的設(shè)計(jì)意圖,接下來(lái),我從三個(gè)方面橫向的進(jìn)一步闡述我的教學(xué)設(shè)計(jì): 橫向闡述教學(xué)設(shè)計(jì)

 。ㄒ唬┩怀鲋攸c(diǎn) 抓住關(guān)鍵 突破難點(diǎn)

  好學(xué)教育:

  求圓的標(biāo)準(zhǔn)方程既是本節(jié)課的教學(xué)重點(diǎn)也是難點(diǎn),為此我布設(shè)了由淺入深的學(xué)習(xí)環(huán)境,先讓學(xué)生熟悉圓心、半徑與圓的標(biāo)準(zhǔn)方程之間的關(guān)系,逐步理解三個(gè)參數(shù)的重要性,自然形成待定系數(shù)法的解題思路,在突出重點(diǎn)的同時(shí)突破了難點(diǎn)。

  第二個(gè)教學(xué)難點(diǎn)就是解決實(shí)際應(yīng)用問(wèn)題,這是學(xué)生固有的難題,主要是因?yàn)閼?yīng)用問(wèn)題的題目冗長(zhǎng),學(xué)生很難根據(jù)問(wèn)題情境構(gòu)建數(shù)學(xué)模型,缺乏解決實(shí)際問(wèn)題的信心,為此我首先用一道題目簡(jiǎn)潔、貼近生活的實(shí)例進(jìn)行引入,激發(fā)學(xué)生的求知欲,同時(shí)我借助多媒體課件的演示,引導(dǎo)學(xué)生真正走入問(wèn)題的情境之中,并從中抽象出數(shù)學(xué)模型,從而消除畏難情緒,增強(qiáng)了信心。最后再形成應(yīng)用圓的標(biāo)準(zhǔn)方程解決實(shí)際問(wèn)題的一般模式,并嘗試應(yīng)用該模式分析和解決第二個(gè)應(yīng)用問(wèn)題——問(wèn)題五。這樣的設(shè)計(jì),使學(xué)生在解決問(wèn)題的同時(shí),形成了方法,難點(diǎn)自然突破。

 。ǘ⿲W(xué)生主體 教師主導(dǎo) 探究主線

  本節(jié)課的設(shè)計(jì)用問(wèn)題做鏈,環(huán)環(huán)相扣,使學(xué)生的探究活動(dòng)貫穿始終。從圓的標(biāo)準(zhǔn)方程的推導(dǎo)到應(yīng)用都是在問(wèn)題的指引、我的指導(dǎo)下,由學(xué)生探究完成的。另外,我重點(diǎn)設(shè)計(jì)了兩次思維發(fā)散點(diǎn),分別是問(wèn)題二和問(wèn)題四的第三問(wèn),要求學(xué)生分組討論,合作交流,為學(xué)生設(shè)立充分的探究空間,學(xué)生在交流成果的過(guò)程中,既體驗(yàn)了科學(xué)研究和真理發(fā)現(xiàn)的復(fù)雜與艱辛,又在我的適度引導(dǎo)、側(cè)面幫助、不斷肯定下順利完成了探究活動(dòng)并走向成功,在一個(gè)個(gè)問(wèn)題的驅(qū)動(dòng)下,高效的完成本節(jié)的學(xué)習(xí)任務(wù)。

 。ㄈ┡囵B(yǎng)思維 提升能力 激勵(lì)創(chuàng)新

  為了培養(yǎng)學(xué)生的理性思維,我分別在問(wèn)題一和問(wèn)題四中,設(shè)計(jì)了兩次由特殊到一般的學(xué)習(xí)思路,培養(yǎng)學(xué)生的歸納概括能力。在問(wèn)題的設(shè)計(jì)中,我利用一題多解的探究,縱向挖掘知識(shí)深度,橫向加強(qiáng)知識(shí)間的聯(lián)系,培養(yǎng)了學(xué)生的創(chuàng)新精神,并且使學(xué)生的有效思維量加大,隨時(shí)對(duì)所學(xué)知識(shí)和方法產(chǎn)生有意注意,使能力與知識(shí)的形成相伴而行。

  以上是我對(duì)這節(jié)課的教學(xué)預(yù)設(shè),具體的教學(xué)過(guò)程還要根據(jù)學(xué)生在課堂中的具體情況適當(dāng)調(diào)整,向生成性課堂進(jìn)行轉(zhuǎn)變。最后我以赫爾巴特的一句名言結(jié)束我的說(shuō)課,發(fā)揮我們的創(chuàng)造性,力爭(zhēng)“使教育過(guò)程成為一種藝術(shù)的事業(yè)”。

高中數(shù)學(xué)說(shuō)課稿 篇2

  一、教材分析:

  "數(shù)列"是中學(xué)數(shù)學(xué)的重要內(nèi)容之一。不僅在歷年的高考中占有一定的比重,而且在實(shí)際生活中也經(jīng)常要用到數(shù)列的一些知識(shí)。例如:儲(chǔ)蓄、分期付款中的有關(guān)計(jì)算就要用到數(shù)列知識(shí)。

  就本節(jié)課而言,在給出數(shù)列的基本概念之后,結(jié)合例題,指出數(shù)列可以看作定義域?yàn)檎麛?shù)集(或它的有限子集)的函數(shù)。因此,本節(jié)課的內(nèi)容,一方面是前面函數(shù)知識(shí)的延伸及應(yīng)用,可以使學(xué)生加深對(duì)函數(shù)概念的理解;另一方面也可以為后面學(xué)習(xí)等差數(shù)列、等比數(shù)列的通項(xiàng)、求和等知識(shí)打下鋪墊。所以本節(jié)課在教材中起到了"承上啟下"的作用,必須講清、講透。

  二、教學(xué)目標(biāo):

  根據(jù)上面對(duì)教材的分析,并結(jié)合學(xué)生的認(rèn)知水平和思維特點(diǎn),確定本節(jié)課的教學(xué)目標(biāo)。

  1、知識(shí)目標(biāo):

 。1)形成并掌握數(shù)列及其有關(guān)概念,識(shí)記數(shù)列的表示和分類,了解數(shù)列通項(xiàng)公式的意義。

 。2)理解數(shù)列的通項(xiàng)公式,能根據(jù)數(shù)列的通項(xiàng)公式寫出數(shù)列的任意一項(xiàng)。對(duì)比較簡(jiǎn)單的數(shù)列,使學(xué)生能根據(jù)數(shù)列的前幾項(xiàng)觀察歸納出數(shù)列的通項(xiàng)公式,并通過(guò)數(shù)列與函數(shù)的比較加深對(duì)數(shù)列的認(rèn)識(shí)。

  2、能力目標(biāo):

  培養(yǎng)學(xué)生觀察、歸納、類比、聯(lián)想等分析問(wèn)題的能力,同時(shí)加深理解數(shù)學(xué)知識(shí)之間相互滲透性的思想。

  3、情感目標(biāo):

  通過(guò)滲透函數(shù)、方程思想,培養(yǎng)學(xué)生的思維能力,使學(xué)生在民主、和諧的活動(dòng)中感受學(xué)習(xí)的樂(lè)趣。通過(guò)介紹數(shù)列與函數(shù)間存在的特殊到一般關(guān)系,向?qū)W生進(jìn)行辯證唯物主義思想教育。

  三、重點(diǎn)、難點(diǎn):

  1、教學(xué)重點(diǎn)

  理解數(shù)列的概念及其通項(xiàng)公式,加強(qiáng)與函數(shù)的聯(lián)系,并能根據(jù)通項(xiàng)公式寫出數(shù)列中的任意一項(xiàng)。

  2、教學(xué)難點(diǎn)

  根據(jù)數(shù)列前幾項(xiàng)的特點(diǎn),通過(guò)多角度、多層次的觀察和分析,歸納出數(shù)列的通項(xiàng)公式。

  四、教法學(xué)法

  本節(jié)課以"問(wèn)題情境——?dú)w納抽象——鞏固訓(xùn)練"的模式展開,引導(dǎo)學(xué)生從知識(shí)和生活經(jīng)驗(yàn)出發(fā),提出問(wèn)題并與學(xué)生共同探索、討論解決問(wèn)題的方法,讓學(xué)生經(jīng)歷知識(shí)的形成過(guò)程,從而理解更加透徹。

  現(xiàn)代教學(xué)觀明確指出:教師是主導(dǎo),學(xué)生是主體,學(xué)生應(yīng)成為學(xué)習(xí)的主人。根據(jù)本節(jié)內(nèi)容及學(xué)生的認(rèn)知規(guī)律,針對(duì)不同內(nèi)容應(yīng)選擇不同的方法。對(duì)于國(guó)際象棋棋盤麥粒采用電腦動(dòng)畫演示,增強(qiáng)感性認(rèn)識(shí);所舉的引例及數(shù)列的函數(shù)定義,可采用探索發(fā)現(xiàn)法;對(duì)通項(xiàng)公式及數(shù)列的分類等概念采用指導(dǎo)閱讀法;對(duì)于難題(根據(jù)數(shù)列的前幾項(xiàng)寫出一個(gè)通項(xiàng)公式)采用講練結(jié)合法。

  "授人以魚,不如授人以漁",平時(shí)在教學(xué)中教師應(yīng)不斷指導(dǎo)學(xué)生學(xué)會(huì)學(xué)習(xí)。本節(jié)課從學(xué)生實(shí)際出發(fā),創(chuàng)設(shè)情境,引導(dǎo)學(xué)生觀察、分析,探索發(fā)現(xiàn),歸納總結(jié),培養(yǎng)學(xué)生積極思維的品質(zhì),加強(qiáng)主動(dòng)學(xué)習(xí)的能力。

  為了有效地突出重點(diǎn),突破難點(diǎn),增大課堂容量,提高課堂效率,本節(jié)課將常規(guī)教學(xué)手段與現(xiàn)代教學(xué)手段相結(jié)合,將引例、例題、練習(xí)等實(shí)物投影。

  五、教學(xué)過(guò)程

  1、創(chuàng)設(shè)情景,激發(fā)興趣,引入新課

 。1)電腦動(dòng)畫演示:國(guó)際象棋棋盤格子中放有麥粒的示意圖,從而得到一組數(shù):1,2,22,23……263

  敘述故事:給你一張報(bào)紙,你可以用它登上月球,你相信嗎?只要不斷地將報(bào)紙對(duì)折42次以后,報(bào)紙的厚度就可以達(dá)到月球和地球的距離。

  設(shè)計(jì)意圖:以實(shí)例引入概念,再配以電腦動(dòng)畫,敘述小故事,增強(qiáng)了感性認(rèn)識(shí),調(diào)動(dòng)學(xué)生學(xué)習(xí)新知識(shí)的積極性。

  (2)投影演示,再觀察以下幾列數(shù):

 、倌嘲鄬W(xué)生的學(xué)號(hào):1,2,3,4……,50

 、趶1984年到20xx年,中國(guó)體育健兒參加奧運(yùn)會(huì)每屆所得的金牌數(shù):

  15,5,16,16,28,32

  ③某次活動(dòng),在1km長(zhǎng)的路段,從起點(diǎn)開始,每隔10m放置一個(gè)垃圾筒,由近及遠(yuǎn)各筒與起點(diǎn)的距離排成一列數(shù):0.10.20.30,……1000

 、芊派湫晕镔|(zhì)衰變,設(shè)原質(zhì)量為1,則各年的剩留量依次為:1,0.84,0.842,0.843,……

  2、歸納抽象,形成概念

 。1)學(xué)生嘗試敘述數(shù)列的定義:?jiǎn)l(fā)學(xué)生觀察上述幾組數(shù)據(jù)后,進(jìn)行歸納總結(jié)定義:按一定次序排成的一列數(shù),叫數(shù)列,便于培養(yǎng)學(xué)生的抽象概括能力。

  舉例1:1,3,5,7與7,5,3,1 這兩個(gè)數(shù)列有何區(qū)別?

  舉例2:-1,1,-1,1,……是不是一個(gè)數(shù)列?

  設(shè)計(jì)意圖:使學(xué)生注意把數(shù)列中的數(shù)和集合中的元素區(qū)分開來(lái):

 、贁(shù)列中的數(shù)是有順序的,而集合中的元素是無(wú)序的。

 、跀(shù)列中的數(shù)可以重復(fù)出現(xiàn),而集中的元素不能重復(fù)出現(xiàn)。

  進(jìn)一步加深學(xué)生對(duì)數(shù)列定義的理解。

 。2)數(shù)列的項(xiàng)及項(xiàng)的表示方法: an

 。3)數(shù)列的表示方法:可寫成:a1,a2,a3,……,an……

  或簡(jiǎn)記為:{an},注意an與{an}的區(qū)別

  上述(2)(3)采用指導(dǎo)閱讀法(書P106頁(yè)第7節(jié)~第8節(jié)第一句話),對(duì)an與{an}的區(qū)別進(jìn)行集體討論歸納。

  3、通項(xiàng)公式的探索

 。1)觀察歸納定義

  由學(xué)生觀察引例中數(shù)列的項(xiàng)與它在數(shù)列中的位置(即項(xiàng)的序號(hào))間的關(guān)系:

  實(shí)物投影:

  序號(hào) 1 2 3 …… 64

  ↓ ↓ ↓ ↓

  項(xiàng) 1= 21-1 2=22-1 22 = 23-1 …… 263

  從而可看出項(xiàng)與項(xiàng)的序號(hào)之間可用一個(gè)公式:an =2n-1表示,該公式叫數(shù)列的通項(xiàng)公式,然后歸納抽象出數(shù)列的通項(xiàng)公式的定義(略)。

 。2)用函數(shù)觀點(diǎn)看待數(shù)列:這是一個(gè)難點(diǎn),講解必須清楚、透徹。數(shù)列可看作是以自然數(shù)集或它的有限子集為定義域的函數(shù),當(dāng)自變量由小到大依次取值時(shí)對(duì)應(yīng)的一列函數(shù)值(這是數(shù)列的本質(zhì)),其圖象是一群孤立的點(diǎn),畫圖(棋盤麥粒這個(gè)數(shù)列)

  設(shè)計(jì)意圖:加深對(duì)函數(shù)概念的理解。

 。3)數(shù)列的分類,并口答引例及數(shù)列①②③④分別歸于哪類數(shù)列。

  4、講解例題

  設(shè)計(jì)例題:①根據(jù)通項(xiàng)公式寫出前幾項(xiàng)并會(huì)判斷某個(gè)數(shù)是否為該數(shù)列中的項(xiàng);②根據(jù)數(shù)列的前幾項(xiàng)寫出一個(gè)通項(xiàng)公式。

  例1,根據(jù)下列數(shù)列{an}的通項(xiàng)公式,寫出它的前5項(xiàng)

 。1) an= n/(n+1) (2)an=(-1)n · n

  設(shè)計(jì)意圖:使學(xué)生正確掌握通項(xiàng)與序號(hào)的關(guān)系。

  變式訓(xùn)練:?jiǎn)?2589/2590是否為數(shù)列(1)中的項(xiàng)

  設(shè)計(jì)意圖:使學(xué)生明確方程思想是解決數(shù)列問(wèn)題的重要方法。

  例2,寫出下列數(shù)列的一個(gè)通項(xiàng)公式,使它的前4項(xiàng)分別是下列各數(shù):

 。1)1,3,5,7

 。2)2, -2,2 ,-2

 。3)1 ,11 ,111 ,

  設(shè)計(jì)意圖:引導(dǎo)學(xué)生進(jìn)行解題后反思,對(duì)完善學(xué)生的認(rèn)知結(jié)構(gòu)是十分必要。寫通項(xiàng)公式時(shí),就是要去發(fā)現(xiàn)an與n的關(guān)系,對(duì)各項(xiàng)進(jìn)行多角度、多層次觀察,找出這些項(xiàng)與相應(yīng)的項(xiàng)數(shù)(即序號(hào))之間的對(duì)應(yīng)關(guān)系。(注:遇到分?jǐn)?shù),可分別觀察分子組的數(shù)列特征與分母組成的數(shù)列特征;若為正負(fù)相間的項(xiàng),則可用-1的奇次冪或偶次冪進(jìn)行符號(hào)交換,有時(shí)也可根據(jù)相鄰的項(xiàng),適當(dāng)調(diào)整有關(guān)的表達(dá)式。)

  5、練習(xí)鞏固

  投影演示:

 。1)寫出數(shù)列1,-1,1,-1,……的一個(gè)通項(xiàng)公式

 。2)是否所有數(shù)列都有通項(xiàng)公式?

  上述(1)的設(shè)計(jì)意圖:an=(-1)n+1也可寫成 (分段函數(shù)的形式)(當(dāng)n為奇數(shù)時(shí),n為偶數(shù)時(shí)),說(shuō)明根據(jù)數(shù)列的前幾項(xiàng)寫出的通項(xiàng)公式可能不唯一。(2):引例②就沒(méi)有通項(xiàng)公式。通過(guò)這些練習(xí),使學(xué)生能及時(shí)消化,及時(shí)鞏固所學(xué)內(nèi)容。

  6、歸納小結(jié)

  由學(xué)生試著總結(jié)本節(jié)課所學(xué)內(nèi)容,老師適當(dāng)補(bǔ)充,可以訓(xùn)練學(xué)生的收斂思維,有助于完善學(xué)生的思維結(jié)構(gòu)。

 。1) 數(shù)列及有關(guān)概念。

  (2) 根據(jù)數(shù)列的通項(xiàng)公式求任意一項(xiàng),并能判斷某數(shù)是否為該數(shù)列中的項(xiàng)。

 。3) 根據(jù)數(shù)列的前幾項(xiàng)寫出數(shù)列的一個(gè)通項(xiàng)公式。

 。4) 數(shù)列與函數(shù)的關(guān)系

  7、課后作業(yè):

 。1)課本P110/習(xí)題3.1/1(3)(4)(5);2、書P108/4(1)(3)(4)

 。2)復(fù)習(xí)看書P106-107

  六、評(píng)價(jià)與分析

  本節(jié)課,教師可通過(guò)創(chuàng)設(shè)情景,適時(shí)引導(dǎo)的方式來(lái)激發(fā)學(xué)生積極思考的欲望,有時(shí)直接講解,有時(shí)組織掌握學(xué)生集體討論、探索發(fā)現(xiàn),課堂上除反復(fù)強(qiáng)調(diào)注意點(diǎn)外,還應(yīng)通過(guò)課堂練習(xí)和課后作業(yè)來(lái)強(qiáng)化它們。

  通過(guò)本節(jié)課的學(xué)習(xí),學(xué)生不僅掌握了數(shù)列及有關(guān)概念,而且可體會(huì)到數(shù)學(xué)概念形成過(guò)程中蘊(yùn)含的基本數(shù)學(xué)思想:"函數(shù)思想、數(shù)形結(jié)合思想、特殊化思想",使之獲得內(nèi)心感受,提高了基本技能和解決問(wèn)題的能力,也可以逐漸學(xué)會(huì)辯證地看待問(wèn)題。

高中數(shù)學(xué)說(shuō)課稿 篇3

  一、教材分析:

  《向量的加法》是《必修》4第二章第二單元中“平面向量的線性運(yùn)算”的第一節(jié)課。本節(jié)內(nèi)容有向量加法的平行四邊形法則、三角形法則及應(yīng)用,向量加法的運(yùn)算律及應(yīng)用,大約需要1課時(shí)。向量的加法是向量的線性運(yùn)算中最基本的一種運(yùn)算,向量的加法及其幾何意義為后繼學(xué)習(xí)向量的減法運(yùn)算及其幾何意義、向量的數(shù)乘運(yùn)算及其幾何意義奠定了基礎(chǔ);其中三角形法則適用于求任意多個(gè)向量的和,在空間向量與立體幾何中有很普遍的應(yīng)用。所以本課在“平面向量”及“空間向量”中有很重要的地位。

  二、學(xué)情分析:

  學(xué)生在上節(jié)課中學(xué)習(xí)了向量的定義及表示,相等向量,平行向量等概念,知道向量可以自由移動(dòng),這是學(xué)習(xí)本節(jié)內(nèi)容的基礎(chǔ)。學(xué)生對(duì)數(shù)的運(yùn)算了如指掌,并且在物理中學(xué)過(guò)力的合成、位移的合成等矢量的加法,所以向量的加法可通過(guò)類比數(shù)的加法、以所學(xué)的物理模型為背景引入,這樣做有利于學(xué)生更好地理解向量加法的意義,準(zhǔn)確把握兩個(gè)加法法則的特點(diǎn)。

  三、教學(xué)目的:

  1、通過(guò)對(duì)向量加法的探究,使學(xué)生掌握向量加法的概念,結(jié)合物理學(xué)實(shí)際理解向量加法的意義。能正確領(lǐng)會(huì)向量加法的平行四邊形法則和三角形法則的幾何意義,并能運(yùn)用法則作出兩個(gè)已知向量的和向量。

  2、在應(yīng)用活動(dòng)中,理解向量加法滿足交換律和結(jié)合律以及表述兩個(gè)運(yùn)算律的幾何意義。掌握有特殊位置關(guān)系的兩個(gè)向量之和,比如共線向量,共起點(diǎn)向量、共終點(diǎn)向量等。

  3、通過(guò)本節(jié)的學(xué)習(xí),培養(yǎng)學(xué)生類比、遷移、分類、歸納等數(shù)學(xué)方面的能力。

  四、教學(xué)重、難點(diǎn)

  重點(diǎn):向量的加法法則。探究向量的加法法則并正確應(yīng)用是本課的重點(diǎn)。兩個(gè)加法法則各有特點(diǎn),聯(lián)系緊密,你中有我,我中有你,實(shí)質(zhì)相同,但是三角形法則適用范圍更加廣泛,且簡(jiǎn)便易行,所以是詳講內(nèi)容,平行四邊形法則在本課中所占份量略少于三角形法則。

  難點(diǎn):對(duì)三角形法則的理解;方向相反的兩個(gè)向量的加法。主要是讓學(xué)生認(rèn)識(shí)到三角形法則的實(shí)質(zhì)是:將已知向量首尾相接,而不是表示向量的有向線段之間必須構(gòu)成三角形。

  五、教學(xué)方法

  本節(jié)采用以下教學(xué)方法:1、類比:由數(shù)的加法運(yùn)算類比向量的加法運(yùn)算。2、探究:由力的合成引入平行四邊形法則,在法則的運(yùn)用中觀察圖形得出三角形法則,探求共線向量的加法,發(fā)現(xiàn)三角形法則適用于任意向量相加;通過(guò)圖形,觀察得出向量加法滿足交換律、結(jié)合律等,這些都體現(xiàn)探究式教學(xué)法的運(yùn)用。3、講解與練習(xí):對(duì)兩個(gè)法則特點(diǎn)的分析,例題都采取了引導(dǎo)與講解的方法,學(xué)生課堂完成教材中的練習(xí)。4、多媒體技術(shù)的運(yùn)用,能直觀地表現(xiàn)向量的平移,相等向量的意義,更能說(shuō)清兩個(gè)法則的幾何意義及運(yùn)算律。

  六、數(shù)學(xué)思想的體現(xiàn):

  1、分類的思想:總的來(lái)說(shuō)本課中向量的加法分為不共線向量及共線向量?jī)煞N形式,共線向量又分為方向相同與方向相反兩種情形,然后專門對(duì)零向量與任意向量相加作了規(guī)定,這樣對(duì)任意向量的加法都做了討論,線索清楚。

  2、類比思想:使之與數(shù)的加法進(jìn)行類比,使學(xué)生對(duì)向量的加法不致于太陌生,既有似曾相識(shí)的感覺(jué),又能從對(duì)比中看出兩者的不同,效果較好。

  3、歸納思想:主要體現(xiàn)在以下三個(gè)環(huán)節(jié)①學(xué)完平行四邊形法則和三角形法則后,歸納總結(jié),對(duì)不共線向量相加,兩個(gè)法則都可以選用。②由共線向量的加法總結(jié)出三角形法則適用于任意兩個(gè)向量的相加,而三角形法則僅適用于不共線向量相加。③對(duì)向量加法的結(jié)合律和探討中,又使學(xué)生發(fā)現(xiàn)了三角形法則還適用于任意多個(gè)向量的加法。歸納思想在這三個(gè)環(huán)節(jié)中的運(yùn)用,使得學(xué)生對(duì)兩個(gè)加法法則,尤其是三角形法則的理解,步步深入。

  七、教學(xué)過(guò)程:

  1、回顧舊知:本節(jié)要進(jìn)行向量的平移,且對(duì)向量加法分共線與不共線兩種情況,所以要復(fù)習(xí)向量、相等向量、共線向量等概念,這些都是新課學(xué)習(xí)中必要的知識(shí)鋪墊。

  2、引入新課:

 。1)平行四邊形法則的引入。

  學(xué)生在物理學(xué)中雖然接觸過(guò)位移的合成,但是并沒(méi)有形成三角形法則的概念;而對(duì)平行四邊形法則學(xué)生已學(xué)過(guò),很熟悉。所以我決定由力的合成引入向量加法的平行四邊形法則。平行四邊形法則的特點(diǎn)是起點(diǎn)相同,但是物理中力的合成是在有相同的作用點(diǎn)的條件下合成的,引入到數(shù)學(xué)中向量加法的平行四邊形法則,所給出的圖形也是現(xiàn)成的平行四邊形,而學(xué)生剛學(xué)完相等向量,對(duì)相等向量的概念還沒(méi)有深刻的認(rèn)識(shí),易產(chǎn)生誤解:表示兩個(gè)已知向量的有向線段的起點(diǎn)必須在一起才能用平行四邊形法則,不在一起不能用。這時(shí)要通過(guò)講解例1,使學(xué)生認(rèn)識(shí)到可以通過(guò)平移向量,使表示兩個(gè)向量的有向線段有共同的起點(diǎn)。這一點(diǎn)對(duì)理解及運(yùn)用法則求兩向量的和很重要。

  設(shè)計(jì)意圖:本著從學(xué)生最熟悉、離學(xué)生最近的知識(shí)經(jīng)驗(yàn)為接入點(diǎn),用學(xué)生熟知的方法來(lái)解決新的問(wèn)題——向量的加法,這樣新中有舊,學(xué)生容易接受,也使學(xué)科間的滲透發(fā)揮了作用,加深了學(xué)生對(duì)向量加法的平行四邊形法則的“起點(diǎn)相同”這一特點(diǎn)的認(rèn)識(shí),例1的講解使學(xué)生認(rèn)識(shí)到當(dāng)表示向量的有向線段的起點(diǎn)不在一起時(shí),須把起點(diǎn)移到一起,至此才能使學(xué)生完成對(duì)平行四邊形法則理解真正到位。

 。2)三角形法則的引入。三角形法則沒(méi)有按照教材中利用位移的合成引入,而是從前面所講的平行四邊形法則的圖形中直接引入(如圖)。

  所以這種把兩個(gè)向量相加的方法稱為三角形法則。接下來(lái)用幻燈片完整展示三角形法則,同時(shí)法則的作法敘述、作圖過(guò)程對(duì)學(xué)生也起到了示例的作用。于是前面的例1還可以利用三角形法則來(lái)做。

  這時(shí),總結(jié)出兩個(gè)不共線向量求和時(shí),平行四邊形法則與三角形法則都可以用。

  設(shè)計(jì)意圖:由平行四邊形法則的圖形引入三角形法則,可以很清楚地使學(xué)生從向何意義上認(rèn)識(shí)到兩個(gè)法則之間的密切聯(lián)系,理解它們的實(shí)質(zhì),而且銜接自然,能夠使學(xué)生對(duì)比地得出兩個(gè)法則的特點(diǎn)與實(shí)質(zhì),并對(duì)兩個(gè)法則的特點(diǎn)有較深刻的印象。

 。3)共線向量的加法

  方向相同的兩個(gè)向量相加,對(duì)學(xué)生來(lái)說(shuō)較易完成,“將它們接在一起,取它們的方向及長(zhǎng)度之和,作為和向量的方向與長(zhǎng)度!币龑(dǎo)學(xué)生分析作法,結(jié)果發(fā)現(xiàn)還是運(yùn)用了三角形法則:首尾相接,方向由第一個(gè)向量的起點(diǎn)指向第二個(gè)向量的終點(diǎn)。

  方向相反的兩個(gè)向量相加,對(duì)學(xué)生來(lái)說(shuō)是個(gè)難點(diǎn),首先從作圖上不知道怎樣做。但是學(xué)生學(xué)過(guò)有理數(shù)加法中的異號(hào)兩數(shù)相加:“異號(hào)兩數(shù)相加,用較大

  的絕對(duì)值減去較小的絕對(duì)值,符號(hào)取絕對(duì)值較大的數(shù)的符號(hào)。”類比異號(hào)兩數(shù)相加,他們會(huì)用較長(zhǎng)的模減去較短的模,方向取模較長(zhǎng)的向量的方向。具體做法由老師引導(dǎo)學(xué)生嘗試運(yùn)用三角形法則去做,發(fā)現(xiàn)結(jié)論正確。

  反思過(guò)程,學(xué)生自然會(huì)想到方向相同的兩個(gè)向量相加,類似于同號(hào)兩數(shù)相加。這說(shuō)明兩個(gè)共線向量相加依然可用三角形法則 通過(guò)以上幾個(gè)環(huán)節(jié)的討論,可以作個(gè)簡(jiǎn)單的小結(jié):兩個(gè)不共線向量相加,可采用平行四邊形法則或三角形法則,而兩個(gè)共線向量相加在本課所學(xué)方法中只能用三角形法則,說(shuō)明三角形法則適用于任意兩個(gè)向量相加。

  設(shè)計(jì)意圖:通過(guò)對(duì)共線向量加法的探討,拓寬了學(xué)生對(duì)三角形法則的認(rèn)識(shí),使得不同位置的向量相加都有了依據(jù),并且采用類比的方法,使學(xué)生對(duì)共線向量的加法,尤其是方向相反的兩個(gè)向量的加法更易于理解,可以化解難點(diǎn)。

 。4)向量加法的運(yùn)算律

 、俳粨Q律:交換律是利用平行四邊形法則的圖形,又結(jié)合三角

  形法則得出,理解起來(lái)沒(méi)什么困難,再一次強(qiáng)化了學(xué)生對(duì)兩個(gè)法則特點(diǎn)及實(shí)質(zhì)的認(rèn)識(shí)。

 、诮Y(jié)合律:結(jié)合律是通過(guò)三個(gè)向量首尾相接,先加前兩個(gè)再與第三個(gè)向量相加,和先加后兩個(gè)向量再與第一個(gè)向量相加所得結(jié)果相同。

  接下來(lái)是對(duì)應(yīng)的兩個(gè)練習(xí),運(yùn)用交換律與結(jié)合律計(jì)算向量的和。

  設(shè)計(jì)意圖:運(yùn)算律的引入給加法運(yùn)算帶來(lái)方便,從后面的練習(xí)中學(xué)生能夠體會(huì)到這點(diǎn)。由結(jié)合律還使學(xué)生發(fā)現(xiàn),多個(gè)向量相加,同樣可以運(yùn)用三角形法則:將所加向量首尾相接,和向量的方向是由第一個(gè)向量的起點(diǎn)指向最后一個(gè)向量的終點(diǎn)。這樣使學(xué)生明白,三角形法則適用于任意多個(gè)向量相加。

  3、小結(jié)

  先由學(xué)生小結(jié),檢查學(xué)生對(duì)本課重要知識(shí)的認(rèn)識(shí),也給學(xué)生一個(gè)概括本節(jié)知識(shí)的機(jī)會(huì),然后用課件展示小結(jié)內(nèi)容,使學(xué)生印象更深。

 。1)平行四邊形法則:起點(diǎn)相同,適用于不共線向量的求和。

 。2)三角形法則首尾相接,適用于任意多個(gè)向量的求和。

  (3)運(yùn)算律

高中數(shù)學(xué)說(shuō)課稿 篇4

  1. 教材分析

  1-1教學(xué)內(nèi)容及包含的知識(shí)點(diǎn)

  (1) 本課內(nèi)容是高中數(shù)學(xué)第二冊(cè)第七章第三節(jié)《兩條直線的位置關(guān)系》的最后一個(gè)內(nèi)容。

  (2) 包含知識(shí)點(diǎn):點(diǎn)到直線的距離公式和兩平行線的距離公式。

  1-2教材所處地位、作用和前后聯(lián)系

  本節(jié)課是兩條直線位置關(guān)系的最后一個(gè)內(nèi)容,在此之前,有對(duì)兩線位置關(guān)系的定性刻畫:平行、垂直,以及對(duì)相交兩線的定量刻畫:夾角、交點(diǎn)。在此之后,有圓錐曲線方程,因而本節(jié)既是對(duì)前面兩線垂直、兩線交點(diǎn)的復(fù)習(xí),又是為后面計(jì)算點(diǎn)線距離(在直線和圓錐曲線構(gòu)成的組合圖形中)提供一套工具。

  可見(jiàn),本課有承前啟后的作用。

  1-3教學(xué)大綱要求

  掌握點(diǎn)到直線的距離公式

  1-4高考大綱要求及在高考中的顯示形式

  掌握點(diǎn)到直線的距離公式。在近年的高考中,通常以直線和圓錐曲線構(gòu)成的組合圖形為背景,判斷直線和圓錐曲線的位置或構(gòu)成三角形求高,涉及絕對(duì)值,直線垂直,最小值等。

  1-5教學(xué)目標(biāo)及確定依據(jù)

  教學(xué)目標(biāo)

  (1) 掌握點(diǎn)到直線的距離的概念、公式及公式的推導(dǎo)過(guò)程,能用公式來(lái)求點(diǎn)線距離和線線距離。

  (2) 培養(yǎng)學(xué)生探究性思維方法和由特殊到一般的研究能力。

  (3) 認(rèn)識(shí)事物之間相互聯(lián)系、互相轉(zhuǎn)化的辯證法思想,培養(yǎng)學(xué)生轉(zhuǎn)化知識(shí)的能力。

  (4) 滲透人文精神,既注重學(xué)生的智慧獲得,又注重學(xué)生的情感發(fā)展。

  確定依據(jù):

  中華人民共和國(guó)教育部制定的《全日制普通高級(jí)中學(xué)數(shù)學(xué)教學(xué)大綱》(20xx年4月第一版),《基礎(chǔ)教育課程改革綱要(試行)》,《高考考試說(shuō)明》(20xx年)

  1-6教學(xué)重點(diǎn)、難點(diǎn)、關(guān)鍵

  (1) 重點(diǎn):點(diǎn)到直線的距離公式

  確定依據(jù):由本節(jié)在教材中的地位確定

  (2) 難點(diǎn):點(diǎn)到直線的距離公式的推導(dǎo)

  確定依據(jù):根據(jù)定義進(jìn)行推導(dǎo),思路自然,但運(yùn)算繁瑣;用等積法推導(dǎo),運(yùn)算較簡(jiǎn)單,但思路不自然,學(xué)生易被動(dòng),主體性得不到體現(xiàn)。

  分析“嘗試性題組”解題思路可突破難點(diǎn)

  (3)關(guān)鍵:實(shí)現(xiàn)兩個(gè)轉(zhuǎn)化。一是將點(diǎn)線距離轉(zhuǎn)化為定點(diǎn)到垂足的距離;二是利用等積法將其轉(zhuǎn)化為直角三角形中三頂點(diǎn)的距離。

  2.教法

  2-1發(fā)現(xiàn)法:本節(jié)課為了培養(yǎng)學(xué)生探究性思維目標(biāo),在教學(xué)過(guò)程中,使老師的主導(dǎo)性和學(xué)生的主體性有機(jī)結(jié)合,使學(xué)生能夠愉快地自覺(jué)學(xué)習(xí),通過(guò)學(xué)生自己練習(xí)“嘗試性題組”,引導(dǎo)、啟發(fā)學(xué)生分析、發(fā)現(xiàn)、比較、論證等,從而形成完整的數(shù)學(xué)模型。

  確定依據(jù):

  (1)美國(guó)教育學(xué)家波利亞的教與學(xué)三原則:主動(dòng)學(xué)習(xí)原則,最佳動(dòng)機(jī)原則,階段漸進(jìn)性原則。

  (2)事物之間相互聯(lián)系,相互轉(zhuǎn)化的辯證法思想。

  2-2教具:多媒體和黑板等傳統(tǒng)教具

  3. 學(xué)法

  3-1發(fā)現(xiàn)法:豐富學(xué)生的數(shù)學(xué)活動(dòng),學(xué)生經(jīng)過(guò)練習(xí)、觀察、分析、探索等步驟,自己發(fā)現(xiàn)解決問(wèn)題的方法,比較論證后得到一般性結(jié)論,形成完整的數(shù)學(xué)模型,再運(yùn)用所得理論和方法去解決問(wèn)題。

  一句話:還課堂以生命力,還學(xué)生以活力。

  3-2學(xué)情:

  (1)知識(shí)能力狀況,本節(jié)為兩線位置關(guān)系的最后一個(gè)內(nèi)容,在這之前學(xué)生已經(jīng)系統(tǒng)的學(xué)習(xí)了直線方程的各種形式,有對(duì)兩線位置關(guān)系的定性認(rèn)識(shí)和對(duì)兩線相交的定量認(rèn)識(shí),為本節(jié)推證公式涉及到直線方程、兩線垂直、兩線交點(diǎn)作好了知識(shí)儲(chǔ)備。同時(shí)學(xué)生對(duì)解析幾何的實(shí)質(zhì)中,用坐標(biāo)系溝通直線與方程的研究辦法,有了初步認(rèn)識(shí),數(shù)形結(jié)合的思想正逐漸趨于成熟。

  (2)心理特點(diǎn):又見(jiàn)“點(diǎn)到直線的距離”(初中已學(xué)習(xí)定義),學(xué)生既熟悉又陌生,既困惑又好奇,探詢動(dòng)機(jī)由此而生。

  (3)生活經(jīng)驗(yàn):數(shù)學(xué)源于生活,生活中的點(diǎn)線距隨處可見(jiàn),怎樣將實(shí)際問(wèn)題數(shù)學(xué)化,是每個(gè)追求成長(zhǎng)、追求發(fā)展的學(xué)生所渴求的一種研究能力。豐富的課堂數(shù)學(xué)活動(dòng)能夠讓他們真正參與,體驗(yàn)過(guò)程,錘煉意志,培養(yǎng)能力。

  3-3學(xué)具:直尺、三角板

  4. 教學(xué)評(píng)價(jià)

  學(xué)生完成反思性學(xué)習(xí)報(bào)告,書寫要求:

  (1) 整理知識(shí)結(jié)構(gòu)。

  (2) 總結(jié)所學(xué)到的基本知識(shí),技能和數(shù)學(xué)思想方法。

  (3) 總結(jié)在學(xué)習(xí)過(guò)程中的經(jīng)驗(yàn),發(fā)明發(fā)現(xiàn),學(xué)習(xí)障礙等,說(shuō)明產(chǎn)生障礙的原因。

  (4) 談?wù)勀銓?duì)老師教法的建議和要求。

  作用:

  (1) 通過(guò)反思使學(xué)生對(duì)所學(xué)知識(shí)系統(tǒng)化。反思的過(guò)程實(shí)際上是學(xué)生思維內(nèi)化,知識(shí)深化和認(rèn)知牢固化的一個(gè)心理活動(dòng)過(guò)程。

  (2) 報(bào)告的寫作本身就是一種創(chuàng)造性活動(dòng)。

  (3) 及時(shí)了解學(xué)生學(xué)習(xí)過(guò)程中的知識(shí)缺陷,思維障礙,有利于教師了解學(xué)生對(duì)自己的教法的滿意度和效果,以便作出及時(shí)調(diào)整,及時(shí)進(jìn)行補(bǔ)償性教學(xué)。

  5. 板書設(shè)計(jì)

  (略)

  6. 教學(xué)的反思總結(jié)

  心理歷練,得意之處,困惑之處,知識(shí)的傳承發(fā)展,如何修正完善等。

高中數(shù)學(xué)說(shuō)課稿 篇5

  各位評(píng)委、各位老師:大家好!

  我叫李長(zhǎng)杉,來(lái)自甘肅省嘉峪關(guān)市第一中學(xué)。今天我說(shuō)課的課題是《一元二次不等式的解法》(第一課時(shí))。下面我將圍繞本節(jié)課"教什么?"、"怎樣教?"以及"為什么這樣教?"三個(gè)問(wèn)題,從教材內(nèi)容分析、教法學(xué)法分析、教學(xué)過(guò)程分析和課堂意外預(yù)案等幾個(gè)方面逐一加以分析和說(shuō)明。

  一。教材內(nèi)容分析:

  1.本節(jié)課內(nèi)容在整個(gè)教材中的地位和作用。

  概括地講,本節(jié)課內(nèi)容的地位體現(xiàn)在它的基礎(chǔ)性,作用體現(xiàn)在它的工具性。一元二次不等式的解法是初中一元一次不等式或一元一次不等式組的延續(xù)和深化,對(duì)已學(xué)習(xí)過(guò)的集合知識(shí)的鞏固和運(yùn)用具有重要的作用,也與后面的函數(shù)、數(shù)列、三角函數(shù)、線形規(guī)劃、直線與圓錐曲線以及導(dǎo)數(shù)等內(nèi)容密切相關(guān)。許多問(wèn)題的解決都會(huì)借助一元二次不等式的解法。因此,一元二次不等式的解法在整個(gè)高中數(shù)學(xué)教學(xué)中具有很強(qiáng)的基礎(chǔ)性,體現(xiàn)出很大的工具作用。

  2.教學(xué)目標(biāo)定位。

  根據(jù)教學(xué)大綱要求、高考考試大綱說(shuō)明、新課程標(biāo)準(zhǔn)精神、高一學(xué)生已有的知識(shí)儲(chǔ)備狀況和學(xué)生心理認(rèn)知特征,我確定了四個(gè)層面的教學(xué)目標(biāo)。第一層面是面向全體學(xué)生的知識(shí)目標(biāo):熟練掌握一元二次不等式的兩種解法,正確理解一元二次方程、一元二次不等式和二次函數(shù)三者的關(guān)系。第二層面是能力目標(biāo),培養(yǎng)學(xué)生運(yùn)用數(shù)形結(jié)合與等價(jià)轉(zhuǎn)化等數(shù)學(xué)思想方法解決問(wèn)題的能力,提高運(yùn)算和作圖能力。第三層面是德育目標(biāo),通過(guò)對(duì)解不等式過(guò)程中等與不等對(duì)立統(tǒng)一關(guān)系的認(rèn)識(shí),向?qū)W生逐步滲透辨證唯物主義思想。第四層面是情感目標(biāo),在教師的啟發(fā)引導(dǎo)下,學(xué)生自主探究,交流討論,培養(yǎng)學(xué)生的合作意識(shí)和創(chuàng)新精神。

  3.教學(xué)重點(diǎn)、難點(diǎn)確定。

  本節(jié)課是在復(fù)習(xí)了一次不等式的解法之后,利用二次函數(shù)的圖象研究一元二次不等式的解法。只要學(xué)生能夠理解一元二次方程、一元二次不等式和二次函數(shù)三者的關(guān)系,并利用其關(guān)系解不等式即可。因此,我確定本節(jié)課的教學(xué)重點(diǎn)為一元二次不等式的解法,關(guān)鍵是一元二次方程、一元二次不等式和二次函數(shù)三者的關(guān)系。

  二。教法學(xué)法分析:

  數(shù)學(xué)是發(fā)展學(xué)生思維、培養(yǎng)學(xué)生良好意志品質(zhì)和美好情感的重要學(xué)科,在教學(xué)中,我們不僅要使學(xué)生獲得知識(shí)、提高解題能力,還要讓學(xué)生在教師的啟發(fā)引導(dǎo)下學(xué)會(huì)學(xué)習(xí)、樂(lè)于學(xué)習(xí),感受數(shù)學(xué)學(xué)科的人文思想,使學(xué)生在學(xué)習(xí)中培養(yǎng)堅(jiān)強(qiáng)的意志品質(zhì)、形成良好的道德情感。為了更好地體現(xiàn)課堂教學(xué)中"教師為主導(dǎo),學(xué)生為主體"的教學(xué)關(guān)系和"以人為本,以學(xué)定教"的教學(xué)理念,在本節(jié)課的教學(xué)過(guò)程中,我將緊緊圍繞教師組織——啟發(fā)引導(dǎo),學(xué)生探究——交流發(fā)現(xiàn),組織開展教學(xué)活動(dòng)。我設(shè)計(jì)了①創(chuàng)設(shè)情景——引入新課,②交流探究——發(fā)現(xiàn)規(guī)律,③啟發(fā)引導(dǎo)——形成結(jié)論,④練習(xí)小結(jié)——深化鞏固,⑤思維拓展——提高能力,五個(gè)環(huán)環(huán)相扣、層層深入的教學(xué)環(huán)節(jié),在教學(xué)中注意關(guān)注整個(gè)過(guò)程和全體學(xué)生,充分調(diào)動(dòng)學(xué)生積極參與教學(xué)過(guò)程的每個(gè)環(huán)節(jié)。

  三。教學(xué)過(guò)程分析:

  1.創(chuàng)設(shè)情景——引入新課。我們常說(shuō)"興趣是最好的老師",長(zhǎng)期以來(lái),學(xué)生對(duì)學(xué)習(xí)數(shù)學(xué)缺乏興趣,甚至失去信心,一個(gè)重要的原因,是老師在教學(xué)中不重視學(xué)生對(duì)學(xué)習(xí)的情感體驗(yàn),教學(xué)應(yīng)該充分考慮學(xué)生的情感和需要,想方設(shè)法讓學(xué)生在學(xué)習(xí)中樹立信心,感受學(xué)習(xí)的樂(lè)趣。根據(jù)教材內(nèi)容的安排,我以學(xué)生熟悉的畫一次函數(shù)圖象、求一次方程和一次不等式的解為背景知識(shí)切入,設(shè)置一個(gè)練習(xí)題組,一方面讓學(xué)生總結(jié)復(fù)習(xí)已有知識(shí),為后面學(xué)習(xí)二次不等式的解法打下基礎(chǔ),做好鋪墊,另一方面,使學(xué)生在自己熟悉的問(wèn)題中首先獲得解題成功的快樂(lè)體驗(yàn),然后以20xx年江蘇省的一道高考試題為引子,引入本節(jié)課的新授內(nèi)容。對(duì)于本題,引導(dǎo)學(xué)生,利用上面解練習(xí)題組1的方法,畫出二次函數(shù)圖象來(lái)解答。二次函數(shù)是初中數(shù)學(xué)的重要內(nèi)容,本題又給出了函數(shù)圖象上許多點(diǎn),相信學(xué)生畫出圖象應(yīng)該不成問(wèn)題,只要教師適當(dāng)點(diǎn)撥,學(xué)生不難得到正確答案。以高考試題為背景引入新課,可以提高學(xué)生興趣,抓住學(xué)生眼球,吸引學(xué)生注意力,還可以讓學(xué)生實(shí)實(shí)在在感受到,高考題就在我們的課本中,就在我們平常的練習(xí)中。

  2.探究交流——發(fā)現(xiàn)規(guī)律。從特殊到一般是我們發(fā)現(xiàn)問(wèn)題、尋求規(guī)律、揭示問(wèn)題本質(zhì)最常用的方法之一。我把課本例題1、2編為練習(xí)題組(一),交由學(xué)生用上面解高考題的方法——圖象法去解,學(xué)生由于熟知二次函數(shù)圖象,求解應(yīng)該不會(huì)有太大的問(wèn)題。在這個(gè)過(guò)程中,教師要啟發(fā)引導(dǎo)學(xué)生注意對(duì)比兩題的異同,組織引導(dǎo)學(xué)生展開交流討論,探討第(2)題能不能先把二次項(xiàng)系數(shù)化正以后再構(gòu)造函數(shù)畫圖求解。然后達(dá)成共識(shí),如果二次項(xiàng)系數(shù)為負(fù)數(shù)時(shí),先做等價(jià)轉(zhuǎn)化,把二次項(xiàng)系數(shù)化為正數(shù)再解,課本19頁(yè)例3、例4作為題組(二),繼續(xù)讓學(xué)生用上面的圖象法,由學(xué)生自己求解,這時(shí)我及時(shí)提示學(xué)生注意這兩題與題組(一)中兩題的不同(例1、例2對(duì)應(yīng)方程都有兩個(gè)不等實(shí)根,例3對(duì)應(yīng)方程有兩相等實(shí)根,例4對(duì)應(yīng)方程無(wú)實(shí)根)。兩個(gè)題組的練習(xí)之后,可以尋求解二次不等式的一般規(guī)律。

  3.啟發(fā)引導(dǎo)——形成結(jié)論。前面兩個(gè)題組的四個(gè)小題,基本涵蓋了一般一元二次不等式解的各種情況,進(jìn)一步啟發(fā)引導(dǎo)學(xué)生將特殊、具體題目的結(jié)論做一般化總結(jié),與學(xué)生一起就 △>0,△<0,△=0 c="">0或ax2+bx+c<0 a="">0)的解的情況應(yīng)該水到渠成。至此,學(xué)生可以感受到,解二次不等式只須①將二次項(xiàng)系數(shù)化為正數(shù),②求解二次方程 ax2+bx+c=0 的根。③根據(jù)①后的二次不等式的符號(hào)寫出解集即可,必要時(shí)也可以結(jié)合圖象寫解集。這樣我們就得到了二次不等式的另外一種解法(可稱為"三步曲"法)。

  4.訓(xùn)練小結(jié)——鞏固深化。為了鞏固和加深二次不等式的兩種解法,接下來(lái)及時(shí)組織學(xué)生進(jìn)行課堂練習(xí),完成課本21頁(yè)練習(xí)1-4題。本環(huán)節(jié)請(qǐng)不同層次的學(xué)生在黑板上書寫解題過(guò)程,之后師生共同糾正問(wèn)題,規(guī)范解題過(guò)程的書寫。

  5.延伸拓寬——提高能力。課堂教學(xué)既要面向全體學(xué)生,又應(yīng)關(guān)注學(xué)生的個(gè)體差異。體現(xiàn)分類推進(jìn),分層教學(xué)的原則。為此,我又設(shè)計(jì)了一個(gè)提高練習(xí)題組,共有三道備選題目,以供程度較好學(xué)有余力的學(xué)生能夠更好的展示自己的解題能力,取得更進(jìn)一步的提高。

  四。課堂意外預(yù)案:

  新課程理念下的教學(xué)更多的關(guān)注學(xué)生自主探究、關(guān)注學(xué)生的個(gè)性發(fā)展,鼓勵(lì)學(xué)生勇于提出問(wèn)題,培養(yǎng)學(xué)生思維的批評(píng)性。在課堂上學(xué)生往往會(huì)提出讓老師感到"意外"的問(wèn)題,我在平時(shí)的教學(xué)中重視對(duì)"課堂意外預(yù)案"的探索和思考,備課時(shí)盡量設(shè)想課堂中可能會(huì)出現(xiàn)的各種情況,做到有備無(wú)患,以免在課堂中學(xué)生提出讓自己出乎意料的問(wèn)題,使自己陷入被動(dòng)尷尬境地。結(jié)合以往經(jīng)驗(yàn),在本節(jié)課,我提出兩個(gè)"意外預(yù)案".

  1.學(xué)生在做課本練習(xí)1(x+2)(x-3)>0 時(shí),可能會(huì)問(wèn)到轉(zhuǎn)化為不等式組{ 或{ 求解對(duì)不對(duì)。學(xué)生提出的問(wèn)題,想法非常好,應(yīng)給予肯定和鼓勵(lì),這與下節(jié)簡(jiǎn)單分式不等式和高次不等式的解法有關(guān),是解不等式的另一種解法——等價(jià)轉(zhuǎn)化法,不在本節(jié)課之列。

  2.根據(jù)以往的經(jīng)驗(yàn),在解(x-1)(x+2)>1一類的不等式的時(shí)候,由于受方程(x+1)(x+2)=0 可轉(zhuǎn)化為x-1=0或x+2=0求解的影響,有可能會(huì)出現(xiàn)將不等式轉(zhuǎn)化為不等式組{ 來(lái)求解的錯(cuò)誤做法,教師要關(guān)注學(xué)生,及時(shí)發(fā)現(xiàn)問(wèn)題并給予糾正,指出上面的轉(zhuǎn)化不是等價(jià)轉(zhuǎn)化。

  以上是我對(duì)本節(jié)課的一些粗淺的認(rèn)識(shí)和構(gòu)想,如有不妥之處,懇請(qǐng)各位專家、各位同仁批評(píng)指正。謝謝大家!

高中數(shù)學(xué)說(shuō)課稿 篇6

  【教材分析】

  1、本節(jié)教材的地位與作用

  本節(jié)主要研究閉區(qū)間上的連續(xù)函數(shù)最大值和最小值的求法和實(shí)際應(yīng)用,分兩課時(shí),這里是第一課時(shí),它是在學(xué)生已經(jīng)會(huì)求某些函數(shù)的最值,并且已經(jīng)掌握了性質(zhì):“如果f(x)是閉區(qū)間[a,b]上的連續(xù)函數(shù),那么f(x)在閉區(qū)間[a,b]上有最大值和最小值”,以及會(huì)求可導(dǎo)函數(shù)的極值之后進(jìn)行學(xué)習(xí)的,學(xué)好這一節(jié),學(xué)生將會(huì)求更多的函數(shù)的最值,運(yùn)用本節(jié)知識(shí)可以解決科技、經(jīng)濟(jì)、社會(huì)中的一些如何使成本最低、產(chǎn)量最高、效益最大等實(shí)際問(wèn)題。這節(jié)課集中體現(xiàn)了數(shù)形結(jié)合、理論聯(lián)系實(shí)際等重要的數(shù)學(xué)思想方法,學(xué)好本節(jié),對(duì)于進(jìn)一步完善學(xué)生的知識(shí)結(jié)構(gòu),培養(yǎng)學(xué)生用數(shù)學(xué)的意識(shí)都具有極為重要的意義。

  2、教學(xué)重點(diǎn)

  會(huì)求閉區(qū)間上連續(xù)開區(qū)間上可導(dǎo)的函數(shù)的最值。

  3、教學(xué)難點(diǎn)

  高三年級(jí)學(xué)生雖然已經(jīng)具有一定的知識(shí)基礎(chǔ),但由于對(duì)求函數(shù)極值還不熟練,特別是對(duì)優(yōu)化解題過(guò)程依據(jù)的理解會(huì)有較大的困難,所以這節(jié)課的難點(diǎn)是理解確定函數(shù)最值的方法。

  4、教學(xué)關(guān)鍵

  本節(jié)課突破難點(diǎn)的關(guān)鍵是:理解方程f′(x)=0的解,包含有指定區(qū)間內(nèi)全部可能的極值點(diǎn)。

  【教學(xué)目標(biāo)】

  根據(jù)本節(jié)教材在高中數(shù)學(xué)知識(shí)體系中的地位和作用,結(jié)合學(xué)生已有的認(rèn)知水平,制定本節(jié)如下的教學(xué)目標(biāo):

  1、知識(shí)和技能目標(biāo)

 。1)理解函數(shù)的最值與極值的區(qū)別和聯(lián)系。

 。2)進(jìn)一步明確閉區(qū)間[a,b]上的連續(xù)函數(shù)f(x),在[a,b]上必有最大、最小值。

 。3)掌握用導(dǎo)數(shù)法求上述函數(shù)的最大值與最小值的方法和步驟。

  2、過(guò)程和方法目標(biāo)

 。1)了解開區(qū)間內(nèi)的連續(xù)函數(shù)或閉區(qū)間上的不連續(xù)函數(shù)不一定有最大、最小值。

  (2)理解閉區(qū)間上的連續(xù)函數(shù)最值存在的可能位置:極值點(diǎn)處或區(qū)間端點(diǎn)處。

  (3)會(huì)求閉區(qū)間上連續(xù),開區(qū)間內(nèi)可導(dǎo)的函數(shù)的最大、最小值。

  3、情感和價(jià)值目標(biāo)

  (1)認(rèn)識(shí)事物之間的的區(qū)別和聯(lián)系。

 。2)培養(yǎng)學(xué)生觀察事物的能力,能夠自己發(fā)現(xiàn)問(wèn)題,分析問(wèn)題并最終解決問(wèn)題。

 。3)提高學(xué)生的數(shù)學(xué)能力,培養(yǎng)學(xué)生的創(chuàng)新精神、實(shí)踐能力和理性精神。

  【教法選擇】

  根據(jù)皮亞杰的建構(gòu)主義認(rèn)識(shí)論,知識(shí)是個(gè)體在與環(huán)境相互作用的過(guò)程中逐漸建構(gòu)的結(jié)果,而認(rèn)識(shí)則是起源于主客體之間的相互作用。

  本節(jié)課在幫助學(xué)生回顧肯定了閉區(qū)間上的連續(xù)函數(shù)一定存在最大值和最小值之后,引導(dǎo)學(xué)生通過(guò)觀察閉區(qū)間內(nèi)的連續(xù)函數(shù)的幾個(gè)圖象,自己歸納、總結(jié)出函數(shù)最大值、最小值存在的可能位置,進(jìn)而探索出函數(shù)最大值、最小值求解的方法與步驟,并優(yōu)化解題過(guò)程,讓學(xué)生主動(dòng)地獲得知識(shí),老師只是進(jìn)行適當(dāng)?shù)囊龑?dǎo),而不進(jìn)行全部的灌輸。為突出重點(diǎn),突破難點(diǎn),這節(jié)課主要選擇以合作探究式教學(xué)法組織教學(xué)。

  【學(xué)法指導(dǎo)】

  對(duì)于求函數(shù)的最值,高三學(xué)生已經(jīng)具備了良好的知識(shí)基礎(chǔ),剩下的問(wèn)題就是有沒(méi)有一種更一般的方法,能運(yùn)用于更多更復(fù)雜函數(shù)的求最值問(wèn)題?教學(xué)設(shè)計(jì)中注意激發(fā)起學(xué)生強(qiáng)烈的求知欲望,使得他們能積極主動(dòng)地觀察、分析、歸納,以形成認(rèn)識(shí),參與到課堂活動(dòng)中,充分發(fā)揮他們作為認(rèn)知主體的作用。

  【教學(xué)過(guò)程】

  本節(jié)課的教學(xué),大致按照“創(chuàng)設(shè)情境,鋪墊導(dǎo)入——合作學(xué)習(xí),探索新知——指導(dǎo)應(yīng)用,鼓勵(lì)創(chuàng)新——?dú)w納小結(jié),反饋回授”四個(gè)環(huán)節(jié)進(jìn)行組織。

高中數(shù)學(xué)說(shuō)課稿 篇7

  一、教材分析

  1、教學(xué)內(nèi)容

  本節(jié)課內(nèi)容教材共分兩課時(shí)進(jìn)行,這是第一課時(shí),該課時(shí)主要學(xué)習(xí)函數(shù)的單調(diào)性的的概念,依據(jù)函數(shù)圖象判斷函數(shù)的單調(diào)性和應(yīng)用定義證明函數(shù)的單調(diào)性。

  2、教材的地位和作用

  函數(shù)單調(diào)性是高中數(shù)學(xué)中相當(dāng)重要的一個(gè)基礎(chǔ)知識(shí)點(diǎn),是研究和討論初等函數(shù)有關(guān)性質(zhì)的基礎(chǔ)。掌握本節(jié)內(nèi)容不僅為今后的函數(shù)學(xué)習(xí)打下理論基礎(chǔ),還有利于培養(yǎng)學(xué)生的抽象思維能力,及分析問(wèn)題和解決問(wèn)題的能力。

  3、教材的重點(diǎn)﹑難點(diǎn)﹑關(guān)鍵

  教學(xué)重點(diǎn):函數(shù)單調(diào)性的概念和判斷某些函數(shù)單調(diào)性的方法。明確單調(diào)性是一個(gè)局部概念。

  教學(xué)難點(diǎn):領(lǐng)會(huì)函數(shù)單調(diào)性的實(shí)質(zhì)與應(yīng)用,明確單調(diào)性是一個(gè)局部的概念。

  教學(xué)關(guān)鍵:從學(xué)生的學(xué)習(xí)心理和認(rèn)知結(jié)構(gòu)出發(fā),講清楚概念的形成過(guò)程、

  4、學(xué)情分析

  高一學(xué)生正處于以感性思維為主的年齡階段,而且思維逐步地從感性思維過(guò)渡到理性思維,并由此向邏輯思維發(fā)展,但學(xué)生思維不成熟、不嚴(yán)密、意志力薄弱,故而整個(gè)教學(xué)環(huán)節(jié)總是創(chuàng)設(shè)恰當(dāng)?shù)膯?wèn)題情境,引導(dǎo)學(xué)生積極思考,培養(yǎng)他們的邏輯思維能力。從學(xué)生的認(rèn)知結(jié)構(gòu)來(lái)看,他們只能根據(jù)函數(shù)的圖象觀察出“隨著自變量的增大函數(shù)值增大”等變化趨勢(shì),所以在教學(xué)中要充分利用好函數(shù)圖象的直觀性,發(fā)揮好多媒體教學(xué)的優(yōu)勢(shì);由于學(xué)生在概念的掌握上缺少系統(tǒng)性、嚴(yán)謹(jǐn)性,在教學(xué)中注意加強(qiáng)。

  二、目標(biāo)分析

  (一)知識(shí)目標(biāo):

  1、知識(shí)目標(biāo):理解函數(shù)單調(diào)性的概念,掌握判斷一些簡(jiǎn)單函數(shù)的單調(diào)性的方法;了解函數(shù)單調(diào)區(qū)間的概念,并能根據(jù)函數(shù)圖象說(shuō)出函數(shù)的單調(diào)區(qū)間。

  2、能力目標(biāo):通過(guò)證明函數(shù)的單調(diào)性的學(xué)習(xí),使學(xué)生體驗(yàn)和理解從特殊到一般的數(shù)學(xué)歸納推理思維方式,培養(yǎng)學(xué)生的觀察能力,分析歸納能力,領(lǐng)會(huì)數(shù)學(xué)的歸納轉(zhuǎn)化的思想方法,增加學(xué)生的知識(shí)聯(lián)系,增強(qiáng)學(xué)生對(duì)知識(shí)的主動(dòng)構(gòu)建的能力。

  3、情感目標(biāo):讓學(xué)生積極參與觀察、分析、探索等課堂教學(xué)的雙邊活動(dòng),在掌握知識(shí)的過(guò)程中體會(huì)成功的喜悅,以此激發(fā)求知欲望。領(lǐng)會(huì)用運(yùn)動(dòng)變化的觀點(diǎn)去觀察分析事物的方法。通過(guò)滲透數(shù)形結(jié)合的數(shù)學(xué)思想,對(duì)學(xué)生進(jìn)行辨證唯物主義的思想教育。

 。ǘ┻^(guò)程與方法

  培養(yǎng)學(xué)生嚴(yán)密的邏輯思維能力以及用運(yùn)動(dòng)變化、數(shù)形結(jié)合、分類討論的方法去分析和處理問(wèn)題,以提高學(xué)生的思維品質(zhì),通過(guò)函數(shù)的單調(diào)性的學(xué)習(xí),掌握自變量和因變量的關(guān)系。通過(guò)多媒體手段激發(fā)學(xué)生學(xué)習(xí)興趣,培養(yǎng)學(xué)生發(fā)現(xiàn)問(wèn)題、分析問(wèn)題和解題的邏輯推理能力。

  三、教法與學(xué)法

  1、教學(xué)方法

  在教學(xué)中,要注重展開探索過(guò)程,充分利用好函數(shù)圖象的直觀性、發(fā)揮多媒體教學(xué)的優(yōu)勢(shì)。本節(jié)課采用問(wèn)答式教學(xué)法、探究式教學(xué)法進(jìn)行教學(xué),教師在課堂中只起著主導(dǎo)作用,讓學(xué)生在教師的提問(wèn)中自覺(jué)的發(fā)現(xiàn)新知,探究新知,并且加入激勵(lì)性的語(yǔ)言以提高學(xué)生的積極性,提高學(xué)生參與知識(shí)形成的全過(guò)程。

  2、學(xué)習(xí)方法

  自我探索、自我思考總結(jié)、歸納,自我感悟,合作交流,成為本節(jié)課學(xué)生學(xué)習(xí)的主要方式。

  四、過(guò)程分析

  本節(jié)課的教學(xué)過(guò)程包括:?jiǎn)栴}情景,函數(shù)單調(diào)性的定義引入,增函數(shù)、減函數(shù)的定義,例題分析與鞏固練習(xí),回顧總結(jié)和課外作業(yè)六個(gè)板塊。這里分別就其過(guò)程和設(shè)計(jì)意圖作一一分析。

  (一)問(wèn)題情景:

  為了激發(fā)學(xué)生的學(xué)習(xí)興趣,本節(jié)課借助多媒體設(shè)計(jì)了多個(gè)生活背景問(wèn)題,并就圖表和圖象所提供的信息,提出一系列問(wèn)題和學(xué)生交流,激發(fā)學(xué)生的學(xué)習(xí)興趣和求知欲望,為學(xué)習(xí)函數(shù)的單調(diào)性做好鋪墊。(祥見(jiàn)課件)

  新課程理念認(rèn)為:情境應(yīng)貫穿課堂教學(xué)的始終。本節(jié)課所創(chuàng)設(shè)的生活情境,讓學(xué)生親近數(shù)學(xué),感受到數(shù)學(xué)就在他們的周圍,強(qiáng)化學(xué)生的感性認(rèn)識(shí),從而達(dá)到學(xué)生對(duì)數(shù)學(xué)的理解。讓學(xué)生在課堂的一開始就感受到數(shù)學(xué)就在我們身邊,讓學(xué)生學(xué)會(huì)用數(shù)學(xué)的眼光去關(guān)注生活。

 。ǘ┖瘮(shù)單調(diào)性的定義引入

  1、幾何畫板動(dòng)畫演示,請(qǐng)學(xué)生認(rèn)真觀察,并回答問(wèn)題:通過(guò)學(xué)生已學(xué)過(guò)的函數(shù)y=2x+4,,的圖象的動(dòng)態(tài)形式形象出x、y間的變化關(guān)系,使學(xué)生對(duì)函數(shù)單調(diào)性有感性認(rèn)識(shí)。,進(jìn)行比較,分析其變化趨勢(shì)。并探討、回答以下問(wèn)題:

  問(wèn)題1、觀察下列函數(shù)圖象,從左向右看圖象的變化趨勢(shì)?

  問(wèn)題2:你能明確說(shuō)出“圖象呈上升趨勢(shì)”的意思嗎?

  通過(guò)學(xué)生的交流、探討、總結(jié),得到單調(diào)性的“通俗定義”:

  從在某一區(qū)間內(nèi)當(dāng)x的值增大時(shí),函數(shù)值y也增大,到圖象在該區(qū)間內(nèi)呈上升趨勢(shì)再到如何用x與f(x)來(lái)描述上升的圖象?

  通過(guò)問(wèn)題逐步向抽象的定義靠攏,將圖形語(yǔ)言轉(zhuǎn)化為數(shù)學(xué)符號(hào)語(yǔ)言。幾何畫板的靈活使用,數(shù)形有機(jī)結(jié)合,引導(dǎo)學(xué)生從圖形語(yǔ)言到數(shù)學(xué)符號(hào)語(yǔ)言的翻譯變得輕松。

  設(shè)計(jì)意圖:

  ①通過(guò)學(xué)生熟悉的知識(shí)引入新課題,有利于激發(fā)學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)熱情,同時(shí)也可以培養(yǎng)學(xué)生觀察、猜想、歸納的思維能力和創(chuàng)新意識(shí),增強(qiáng)學(xué)生自主學(xué)習(xí)、獨(dú)立思考,由學(xué)會(huì)向會(huì)學(xué)的轉(zhuǎn)化,形成良好的思維品質(zhì)。

 、谕ㄟ^(guò)學(xué)生已學(xué)過(guò)的一次y=2x+4,,的圖象的動(dòng)態(tài)形式形象地反映出x、y間的變化關(guān)系,使學(xué)生對(duì)函數(shù)單調(diào)性有感性認(rèn)識(shí)。

 、蹚膶W(xué)生的原有認(rèn)知結(jié)構(gòu)入手,探討單調(diào)性的概念,符合“最近發(fā)展區(qū)的理論”要求。

 、軓膱D形、直觀認(rèn)識(shí)入手,研究單調(diào)性的概念,其本身就是研究、學(xué)習(xí)數(shù)學(xué)的一種方法,符合新課程的理念。

 。ㄈ┰龊瘮(shù)、減函數(shù)的定義

  在前面的基礎(chǔ)上,讓學(xué)生討論歸納:如何使用數(shù)學(xué)語(yǔ)言來(lái)準(zhǔn)確描述函數(shù)的單調(diào)性?在學(xué)生回答的基礎(chǔ)上,給出增函數(shù)的概念,同時(shí)要求學(xué)生討論概念中的關(guān)鍵詞和注意點(diǎn)。

  定義中的“當(dāng)x1x2時(shí),都有f(x1)

  注意:

 。1)函數(shù)的單調(diào)性也叫函數(shù)的增減性;

 。2)注意區(qū)間上所取兩點(diǎn)x1,x2的任意性;

 。3)函數(shù)的單調(diào)性是對(duì)某個(gè)區(qū)間而言的,它是一個(gè)局部概念。

  讓學(xué)生自已嘗試寫出減函數(shù)概念,由兩名學(xué)生板演。提出單調(diào)區(qū)間的概念。

  設(shè)計(jì)意圖:通過(guò)給出函數(shù)單調(diào)性的嚴(yán)格定義,目的是為了讓學(xué)生更準(zhǔn)確地把握概念,理解函數(shù)的單調(diào)性其實(shí)也叫做函數(shù)的增減性,它是對(duì)某個(gè)區(qū)間而言的,它是一個(gè)局部概念,同時(shí)明確判定函數(shù)在某個(gè)區(qū)間上的單調(diào)性的一般步驟。這樣處

  理,同時(shí)也是讓學(xué)生感悟、體驗(yàn)學(xué)習(xí)數(shù)學(xué)感念的方法,提高其個(gè)性品質(zhì)。

 。ㄋ模├}分析

  在理解概念的基礎(chǔ)上,讓學(xué)生總結(jié)判別函數(shù)單調(diào)性的方法:圖象法和定義法。

  2、例2、證明函數(shù)在區(qū)間(—∞,+∞)上是減函數(shù)。

  在本題的解決過(guò)程中,要求學(xué)生對(duì)照定義進(jìn)行分析,明確本題要解決什么?定義要求是什么?怎樣去思考?通過(guò)自己的解決,總結(jié)證明單調(diào)性問(wèn)題的一般方法。

  變式一:函數(shù)f(x)=—3x+b在R上是減函數(shù)嗎?為什么?

  變式二:函數(shù)f(x)=kx+b(k<0)在R上是減函數(shù)嗎?你能用幾種方法來(lái)判斷。

  變式三:函數(shù)f(x)=kx+b(k<0)在R上是減函數(shù)嗎?你能用幾種方法來(lái)判斷。

  錯(cuò)誤:實(shí)質(zhì)上并沒(méi)有證明,而是使用了所要證明的結(jié)論

  例題設(shè)計(jì)意圖:在理解概念的基礎(chǔ)上,讓學(xué)生總結(jié)判別函數(shù)單調(diào)性的方法:圖象法和定義法。例1是教材中例題,它的解決強(qiáng)化學(xué)生應(yīng)用數(shù)形結(jié)合的思想方法解題的意識(shí),進(jìn)一步加深對(duì)概念的理解,同時(shí)也是依托具體問(wèn)題,對(duì)單調(diào)區(qū)間這一概念的再認(rèn)識(shí);要了解函數(shù)在某一區(qū)間上是否具有單調(diào)性,從圖上進(jìn)行觀察是一種常用而又粗略的方法。嚴(yán)格地說(shuō),它需要根據(jù)單調(diào)函數(shù)的定義進(jìn)行證明。例2是教材練習(xí)題改編,通過(guò)師生共同總結(jié),得出使用定義證明的一般步驟:任取—作差(變形)—定號(hào)—下結(jié)論,通過(guò)例2的解決是學(xué)生初步掌握運(yùn)用概念進(jìn)行簡(jiǎn)單論證的基本方法,強(qiáng)化證題的規(guī)范性訓(xùn)練,從而提高學(xué)生的推理論證能力。例3是教材例2抽象出的數(shù)學(xué)問(wèn)題。目的是進(jìn)一步強(qiáng)化解題的規(guī)范性,提高邏輯推理能力,同時(shí)讓學(xué)生學(xué)會(huì)一些常見(jiàn)的變形方法。

  (五)鞏固與探究

  1、教材p36練習(xí)2,3

  2、探究:二次函數(shù)的單調(diào)性有什么規(guī)律?

  (幾何畫板演示,學(xué)生探究)本問(wèn)題作為機(jī)動(dòng)題。時(shí)間不允許時(shí),就為課后思考題。

  設(shè)計(jì)意圖:通過(guò)觀察圖象,對(duì)函數(shù)是否具有某種性質(zhì)作出一種猜想,然后通過(guò)推理的辦法,證明這種猜想的正確性,是發(fā)現(xiàn)和解決問(wèn)題的一種常用數(shù)學(xué)方法。

  通過(guò)課堂練習(xí)加深學(xué)生對(duì)概念的.理解,進(jìn)一步熟悉證明或判斷函數(shù)單調(diào)性的方法和步驟,達(dá)到鞏固,消化新知的目的。同時(shí)強(qiáng)化解題步驟,形成并提高解題能力。對(duì)練習(xí)的思考,讓學(xué)生學(xué)會(huì)反思、學(xué)會(huì)總結(jié)。

 。┗仡櫩偨Y(jié)

  通過(guò)師生互動(dòng),回顧本節(jié)課的概念、方法。本節(jié)課我們學(xué)習(xí)了函數(shù)單調(diào)性的知識(shí),同學(xué)們要切記:?jiǎn)握{(diào)性是對(duì)某個(gè)區(qū)間而言的,同時(shí)在理解定義的基礎(chǔ)上,要掌握證明函數(shù)單調(diào)性的方法步驟,正確進(jìn)行判斷和證明。

  設(shè)計(jì)意圖:通過(guò)小結(jié)突出本節(jié)課的重點(diǎn),并讓學(xué)生對(duì)所學(xué)知識(shí)的結(jié)構(gòu)有一個(gè)清晰的認(rèn)識(shí),學(xué)會(huì)一些解決問(wèn)題的思想與方法,體會(huì)數(shù)學(xué)的和諧美。

 。ㄆ撸┱n外作業(yè)

  1、教材p43習(xí)題1。3A組1(單調(diào)區(qū)間),2(證明單調(diào)性);

  2、判斷并證明函數(shù)在上的單調(diào)性。

  3、數(shù)學(xué)日記:談?wù)勀惚竟?jié)課中的收獲或者困惑,整理你認(rèn)為本節(jié)課中的最重要的知識(shí)和方法。

  設(shè)計(jì)意圖:通過(guò)作業(yè)1、2進(jìn)一步鞏固本節(jié)課所學(xué)的增、減函數(shù)的概念,強(qiáng)化基本技能訓(xùn)練和解題規(guī)范化的訓(xùn)練,并且以此作為學(xué)生對(duì)本結(jié)內(nèi)容各項(xiàng)目標(biāo)落實(shí)的評(píng)價(jià)。新課標(biāo)要求:不同的學(xué)生學(xué)習(xí)不同的數(shù)學(xué),在數(shù)學(xué)上獲得不同的發(fā)展。作業(yè)3這種新型的作業(yè)形式是其很好的體現(xiàn)。

 。ㄆ撸┌鍟O(shè)計(jì)(見(jiàn)ppt)

  五、評(píng)價(jià)分析

  有效的概念教學(xué)是建立在學(xué)生已有知識(shí)結(jié)構(gòu)基礎(chǔ)上,,因此在教學(xué)設(shè)計(jì)過(guò)程中注意了:

  第一、教要按照學(xué)的法子來(lái)教;

  第二、在學(xué)生已有知識(shí)結(jié)構(gòu)和新概念間尋找“最近發(fā)展區(qū)”;

  第三、強(qiáng)化了重探究、重交流、重過(guò)程的課改理念。讓學(xué)生經(jīng)歷“創(chuàng)設(shè)情境——探究概念——注重反思——拓展應(yīng)用——?dú)w納總結(jié)”的活動(dòng)過(guò)程,體驗(yàn)了參與數(shù)學(xué)知識(shí)的發(fā)生、發(fā)展過(guò)程,培養(yǎng)“用數(shù)學(xué)”的意識(shí)和能力,成為積極主動(dòng)的建構(gòu)者。

  本節(jié)課圍繞教學(xué)重點(diǎn),針對(duì)教學(xué)目標(biāo),以多媒體技術(shù)為依托,展現(xiàn)知識(shí)的發(fā)生和形成過(guò)程,使學(xué)生始終處于問(wèn)題探索研究狀態(tài)之中,激情引趣,并注重?cái)?shù)學(xué)科學(xué)研究方法的學(xué)習(xí),是順應(yīng)新課改要求的,是研究性教學(xué)的一次有益嘗試。

高中數(shù)學(xué)說(shuō)課稿 篇8

  本節(jié)課講述的是人教版高一數(shù)學(xué)(上)3.2等差數(shù)列(第一課時(shí))的內(nèi)容。

  一、教材分析

  1、教材的地位和作用:

  數(shù)列是高中數(shù)學(xué)重要內(nèi)容之一,它不僅有著廣泛的實(shí)際應(yīng)用,而且起著承前啟后的作用。一方面,數(shù)列作為一種特殊的函數(shù)與函數(shù)思想密不可分;另一方面,學(xué)習(xí)數(shù)列也為進(jìn)一步學(xué)習(xí)數(shù)列的極限等內(nèi)容做好準(zhǔn)備。而等差數(shù)列是在學(xué)生學(xué)習(xí)了數(shù)列的有關(guān)概念和給出數(shù)列的兩種方法——通項(xiàng)公式和遞推公式的基礎(chǔ)上,對(duì)數(shù)列的知識(shí)進(jìn)一步深入和拓廣。同時(shí)等差數(shù)列也為今后學(xué)習(xí)等比數(shù)列提供了學(xué)習(xí)對(duì)比的依據(jù)。

  2、教學(xué)目標(biāo)

  根據(jù)教學(xué)大綱的要求和學(xué)生的實(shí)際水平,確定了本次課的教學(xué)目標(biāo)

  a在知識(shí)上:理解并掌握等差數(shù)列的概念;了解等差數(shù)列的通項(xiàng)公式的推導(dǎo)過(guò)程及思想;初步引入“數(shù)學(xué)建模”的思想方法并能運(yùn)用。

  b在能力上:培養(yǎng)學(xué)生觀察、分析、歸納、推理的能力;在領(lǐng)會(huì)函數(shù)與數(shù)列關(guān)系的前提下,把研究函數(shù)的方法遷移來(lái)研究數(shù)列,培養(yǎng)學(xué)生的知識(shí)、方法遷移能力;通過(guò)階梯性練習(xí),提高學(xué)生分析問(wèn)題和解決問(wèn)題的能力。

  c在情感上:通過(guò)對(duì)等差數(shù)列的研究,培養(yǎng)學(xué)生主動(dòng)探索、勇于發(fā)現(xiàn)的求知精神;養(yǎng)成細(xì)心觀察、認(rèn)真分析、善于總結(jié)的良好思維習(xí)慣。

  3、教學(xué)重點(diǎn)和難點(diǎn)

  根據(jù)教學(xué)大綱的要求我確定本節(jié)課的教學(xué)重點(diǎn)為:

 、俚炔顢(shù)列的概念。

 、诘炔顢(shù)列的通項(xiàng)公式的推導(dǎo)過(guò)程及應(yīng)用。

  由于學(xué)生第一次接觸不完全歸納法,對(duì)此并不熟悉因此用不完全歸納法推導(dǎo)等差數(shù)列的同項(xiàng)公式是這節(jié)課的一個(gè)難點(diǎn)。同時(shí),學(xué)生對(duì)“數(shù)學(xué)建模”的思想方法較為陌生,因此用數(shù)學(xué)思想解決實(shí)際問(wèn)題是本節(jié)課的另一個(gè)難點(diǎn)。

  二、學(xué)情教法分析:

  對(duì)于三中的高一學(xué)生,知識(shí)經(jīng)驗(yàn)已較為豐富,他們的智力發(fā)展已到了形式運(yùn)演階段,具備了教強(qiáng)的抽象思維能力和演繹推理能力,所以我在授課時(shí)注重引導(dǎo)、啟發(fā)、研究和探討以符合

  這類學(xué)生的心理發(fā)展特點(diǎn),從而促進(jìn)思維能力的進(jìn)一步發(fā)展。

  針對(duì)高中生這一思維特點(diǎn)和心理特征,本節(jié)課我采用啟發(fā)式、討論式以及講練結(jié)合的教學(xué)方法,通過(guò)問(wèn)題激發(fā)學(xué)生求知欲,使學(xué)生主動(dòng)參與數(shù)學(xué)實(shí)踐活動(dòng),以獨(dú)立思考和相互交流的形式,在教師的指導(dǎo)下發(fā)現(xiàn)、分析和解決問(wèn)題。

  三、學(xué)法指導(dǎo):

  在引導(dǎo)分析時(shí),留出學(xué)生的思考空間,讓學(xué)生去聯(lián)想、探索,同時(shí)鼓勵(lì)學(xué)生大膽質(zhì)疑,圍繞中心各抒己見(jiàn),把思路方法和需要解決的問(wèn)題弄清。

  四、教學(xué)程序

  本節(jié)課的教學(xué)過(guò)程由(一)復(fù)習(xí)引入(二)新課探究(三)應(yīng)用舉例(四)反饋練習(xí)(五)歸納小結(jié)(六)布置作業(yè),六個(gè)教學(xué)環(huán)節(jié)構(gòu)成。

  (一)復(fù)習(xí)引入:

  1.從函數(shù)觀點(diǎn)看,數(shù)列可看作是定義域?yàn)開_________對(duì)應(yīng)的一列函數(shù)值,從而數(shù)列的通項(xiàng)公式也就是相應(yīng)函數(shù)的______。(N﹡;解析式)

  通過(guò)練習(xí)1復(fù)習(xí)上節(jié)內(nèi)容,為本節(jié)課用函數(shù)思想研究數(shù)列問(wèn)題作準(zhǔn)備。

  2.小明目前會(huì)100個(gè)單詞,他她打算從今天起不再背單詞了,結(jié)果不知不覺(jué)地每天忘掉2個(gè)單詞,那么在今后的五天內(nèi)他的單詞量逐日依次遞減為:100,98,96,94,92 ①

  3. 小芳只會(huì)5個(gè)單詞,他決定從今天起每天背記10個(gè)單詞,那么在今后的五天內(nèi)他的單詞量逐日依次遞增為5,10,15,20,25 ②

  通過(guò)練習(xí)2和3引出兩個(gè)具體的等差數(shù)列,初步認(rèn)識(shí)等差數(shù)列的特征,為后面的概念學(xué)習(xí)建立基礎(chǔ),為學(xué)習(xí)新知識(shí)創(chuàng)設(shè)問(wèn)題情境,激發(fā)學(xué)生的求知欲。由學(xué)生觀察兩個(gè)數(shù)列特點(diǎn),引出等差數(shù)列的概念,對(duì)問(wèn)題的總結(jié)又培養(yǎng)學(xué)生由具體到抽象、由特殊到一般的認(rèn)知能力。

  (二) 新課探究

  1、由引入自然的給出等差數(shù)列的概念:

  如果一個(gè)數(shù)列,從第二項(xiàng)開始它的每一項(xiàng)與前一項(xiàng)之差都等于同一常數(shù),這個(gè)數(shù)列就叫等差數(shù)列,

  這個(gè)常數(shù)叫做等差數(shù)列的公差,通常用字母d來(lái)表示。強(qiáng)調(diào):

 、 “從第二項(xiàng)起”滿足條件;

 、诠頳一定是由后項(xiàng)減前項(xiàng)所得;

 、勖恳豁(xiàng)與它的前一項(xiàng)的差必須是同一個(gè)常數(shù)(強(qiáng)調(diào)“同一個(gè)常數(shù)” );

  在理解概念的基礎(chǔ)上,由學(xué)生將等差數(shù)列的文字語(yǔ)言轉(zhuǎn)化為數(shù)學(xué)語(yǔ)言,歸納出數(shù)學(xué)表達(dá)式:

  an+1-an=d (n≥1)同時(shí)為了配合概念的理解,我找了5組數(shù)列,由學(xué)生判斷是否為等差數(shù)列,是等差數(shù)列的找出公差。

  1. 9 ,8,7,6,5,4,??;√ d=-1

  2. 0.70,0.71,0.72,0.73,0.74??;√ d=0.01

  3. 0,0,0,0,0,0,??.; √ d=0

  4. 1,2,3,2,3,4,??;×

  5. 1,0,1,0,1,??×

  其中第一個(gè)數(shù)列公差<0,>0,第三個(gè)數(shù)列公差=0

  由此強(qiáng)調(diào):公差可以是正數(shù)、負(fù)數(shù),也可以是0

  2、第二個(gè)重點(diǎn)部分為等差數(shù)列的通項(xiàng)公式

  在歸納等差數(shù)列通項(xiàng)公式中,我采用討論式的教學(xué)方法。給出等差數(shù)列的首項(xiàng),公差d,由學(xué)生研究分組討論a4的通項(xiàng)公式。通過(guò)總結(jié)a4的通項(xiàng)公式由學(xué)生猜想a40的通項(xiàng)公式,進(jìn)而歸納an的通項(xiàng)公式。整個(gè)過(guò)程由學(xué)生完成,通過(guò)互相討論的方式既培養(yǎng)了學(xué)生的協(xié)作意識(shí)又化解了教學(xué)難點(diǎn)。

  若一等差數(shù)列{an }的首項(xiàng)是a1,公差是d,則據(jù)其定義可得:

  a2 - a1 =d 即: a2 =a1 +d

  a3 – a2 =d 即: a3 =a2 +d = a1 +2d

  a4 – a3 =d 即: a4 =a3 +d = a1 +3d

  ??

  猜想: a40 = a1 +39d,進(jìn)而歸納出等差數(shù)列的通項(xiàng)公式:

  an=a1+(n-1)d

  此時(shí)指出:這種求通項(xiàng)公式的辦法叫不完全歸納法,這種導(dǎo)出公式的方法不夠嚴(yán)密,為了培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度,在這里向?qū)W生介紹另外一種求數(shù)列通項(xiàng)公式的辦法------迭加法:

  a2 – a1 =d

  a3 – a2 =d

  a4 – a3 =d

  ??

  an – an-1=d

  將這(n-1)個(gè)等式左右兩邊分別相加,就可以得到 an– a1= (n-1) d即 an= a1+(n-1) d

 。1)

  當(dāng)n=1時(shí),(1)也成立,

  所以對(duì)一切n∈N﹡,上面的公式都成立

  因此它就是等差數(shù)列{an}的通項(xiàng)公式。

  在迭加法的證明過(guò)程中,我采用啟發(fā)式教學(xué)方法。

  利用等差數(shù)列概念啟發(fā)學(xué)生寫出n-1個(gè)等式。

  對(duì)照已歸納出的通項(xiàng)公式啟發(fā)學(xué)生想出將n-1個(gè)等式相加。證出通項(xiàng)公式。

  在這里通過(guò)該知識(shí)點(diǎn)引入迭加法這一數(shù)學(xué)思想,逐步達(dá)到“注重方法,凸現(xiàn)思想” 的教學(xué)要求

  接著舉例說(shuō)明:若一個(gè)等差數(shù)列{an}的首項(xiàng)是1,公差是2,得出這個(gè)數(shù)列的通項(xiàng)公式是:an=1+(n-1)×2 ,

  即an=2n-1 以此來(lái)鞏固等差數(shù)列通項(xiàng)公式運(yùn)用

  同時(shí)要求畫出該數(shù)列圖象,由此說(shuō)明等差數(shù)列是關(guān)于正整數(shù)n一次函數(shù),其圖像是均勻排開的無(wú)窮多個(gè)孤立點(diǎn)。用函數(shù)的思想來(lái)研究數(shù)列,使數(shù)列的性質(zhì)顯現(xiàn)得更加清楚。

 。ㄈ⿷(yīng)用舉例

  這一環(huán)節(jié)是使學(xué)生通過(guò)例題和練習(xí),增強(qiáng)對(duì)通項(xiàng)公式含義的理解以及對(duì)通項(xiàng)公式的運(yùn)用,提高解決實(shí)際問(wèn)題的能力。通過(guò)例1和例2向?qū)W生表明:要用運(yùn)動(dòng)變化的觀點(diǎn)看等差數(shù)列通項(xiàng)公式中的a1、d、n、an這4個(gè)量之間的關(guān)系。當(dāng)其中的部分量已知時(shí),可根據(jù)該公式求出另

  一部分量。

  例1 (1)求等差數(shù)列8,5,2,?的第20項(xiàng);第30項(xiàng);第40項(xiàng)

  (2)-401是不是等差數(shù)列-5,-9,-13,?的項(xiàng)?如果是,是第幾項(xiàng)?

  在第一問(wèn)中我添加了計(jì)算第30項(xiàng)和第40項(xiàng)以加強(qiáng)鞏固等差數(shù)列通項(xiàng)公式;第二問(wèn)實(shí)際上是求正整數(shù)解的問(wèn)題,而關(guān)鍵是求出數(shù)列的通項(xiàng)公式an.

  例2 在等差數(shù)列{an}中,已知a5=10,a12 =31,求首項(xiàng)a1與公差d。

  在前面例1的基礎(chǔ)上將例2當(dāng)作練習(xí)作為對(duì)通項(xiàng)公式的鞏固

  例3 是一個(gè)實(shí)際建模問(wèn)題

  建造房屋時(shí)要設(shè)計(jì)樓梯,已知某大樓第2層的樓底離地面的高度為3米,第三層離地面5.8米,若樓梯設(shè)計(jì)為等高的16級(jí)臺(tái)階,問(wèn)每級(jí)臺(tái)階高為多少米?

  這道題我采用啟發(fā)式和討論式相結(jié)合的教學(xué)方法。啟發(fā)學(xué)生注意每級(jí)臺(tái)階“等高”使學(xué)生想到每級(jí)臺(tái)階離地面的高度構(gòu)成等差數(shù)列,引導(dǎo)學(xué)生將該實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)模型------等差數(shù)列:(學(xué)生討論分析,分別演板,教師評(píng)析問(wèn)題。問(wèn)題可能出現(xiàn)在:項(xiàng)數(shù)學(xué)生認(rèn)為是16項(xiàng),應(yīng)明確a1為第2層的樓底離地面的高度,a2表示第一級(jí)臺(tái)階離地面的高度而第16級(jí)臺(tái)階離地面高度為a17,可用課件展示實(shí)際樓梯圖以化解難點(diǎn))。

  設(shè)置此題的目的:1.加強(qiáng)同學(xué)們對(duì)應(yīng)用題的綜合分析能力,2.通過(guò)數(shù)學(xué)實(shí)際問(wèn)題引出等差數(shù)列問(wèn)題,激發(fā)了學(xué)生的興趣;3.再者通過(guò)數(shù)學(xué)實(shí)例展示了“從實(shí)際問(wèn)題出發(fā)經(jīng)抽象概括建立數(shù)學(xué)模型,最后還原說(shuō)明實(shí)際問(wèn)題的“數(shù)學(xué)建!钡臄(shù)學(xué)思想方法

  (四)反饋練習(xí)

  1、小節(jié)后的練習(xí)中的第1題和第2題(要求學(xué)生在規(guī)定時(shí)間內(nèi)完成)。目的:使學(xué)生熟悉通項(xiàng)公式,對(duì)學(xué)生進(jìn)行基本技能訓(xùn)練。

  2、書上例3)梯子的最高一級(jí)寬33cm,最低一級(jí)寬110cm,中間還有10級(jí),各級(jí)的寬度成等差數(shù)列。計(jì)算中間各級(jí)的寬度。

  目的:對(duì)學(xué)生加強(qiáng)建模思想訓(xùn)練。

  3、若數(shù)例{an} 是等差數(shù)列,若 bn = k an ,(k為常數(shù))試證明:數(shù)列{bn}是等差數(shù)列

  此題是對(duì)學(xué)生進(jìn)行數(shù)列問(wèn)題提高訓(xùn)練,學(xué)習(xí)如何用定義證明數(shù)列問(wèn)題同時(shí)強(qiáng)化了等差數(shù)列的概念。

 。ㄎ澹w納小結(jié)(由學(xué)生總結(jié)這節(jié)課的收獲)

  1.等差數(shù)列的概念及數(shù)學(xué)表達(dá)式.

  強(qiáng)調(diào)關(guān)鍵字:從第二項(xiàng)開始它的每一項(xiàng)與前一項(xiàng)之差都等于同一常數(shù)

  2.等差數(shù)列的通項(xiàng)公式 an= a1+(n-1) d會(huì)知三求一

  3.用“數(shù)學(xué)建模”思想方法解決實(shí)際問(wèn)題

  (六)布置作業(yè)

  必做題:課本P114 習(xí)題3.2第2,6 題

  選做題:已知等差數(shù)列{an}的首項(xiàng)a1=-24,從第10項(xiàng)開始為正數(shù),求公差d的取值范圍。

 。康模和ㄟ^(guò)分層作業(yè),提高同學(xué)們的求知欲和滿足不同層次的學(xué)生需求)

  五、板書設(shè)計(jì)

  在板書中突出本節(jié)重點(diǎn),將強(qiáng)調(diào)的地方如定義中,“從第二項(xiàng)起”及“同一常數(shù)”等幾個(gè)字用紅色粉筆標(biāo)注,同時(shí)給學(xué)生留有作題的地方,整個(gè)板書充分體現(xiàn)了精講多練的教學(xué)方法。

高中數(shù)學(xué)說(shuō)課稿 篇9

  各位評(píng)委老師,大家好!

  我是本科數(shù)學(xué)**號(hào)選手,今天我要進(jìn)行說(shuō)課的課題是高中數(shù)學(xué)必修一第一章第三節(jié)第一課時(shí)《函數(shù)單調(diào)性與最大(。┲怠罚ǹ梢栽谶@時(shí)候板書課題,以緩解緊張)。我將從教材分析;教學(xué)目標(biāo)分析;教法、學(xué)法;教學(xué)過(guò)程;教學(xué)評(píng)價(jià)五個(gè)方面來(lái)陳述我對(duì)本節(jié)課的設(shè)計(jì)方案。懇請(qǐng)?jiān)谧膶<以u(píng)委批評(píng)指正。

  一、教材分析

  1、 教材的地位和作用

 。1)本節(jié)課主要對(duì)函數(shù)單調(diào)性的學(xué)習(xí);

 。2)它是在學(xué)習(xí)函數(shù)概念的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,同時(shí)又為基本初等函數(shù)的學(xué)習(xí)奠定了基礎(chǔ),所以他在教材中起著承前啟后的重要作用;(可以看看這一課題的前后章節(jié)來(lái)寫)

  (3)它是歷年高考的熱點(diǎn)、難點(diǎn)問(wèn)題

 。ǜ鶕(jù)具體的課題改變就行了,如果不是熱點(diǎn)難點(diǎn)問(wèn)題就刪掉)

  2、 教材重、難點(diǎn)

  重點(diǎn):函數(shù)單調(diào)性的定義

  難點(diǎn):函數(shù)單調(diào)性的證明

  重難點(diǎn)突破:在學(xué)生已有知識(shí)的基礎(chǔ)上,通過(guò)認(rèn)真觀察思考,并通過(guò)小組合作探究的辦法來(lái)實(shí)現(xiàn)重難點(diǎn)突破。(這個(gè)必須要有)

  3.學(xué)情分析

  高一學(xué)生正處于以感性思維為主的年齡階段,而且思維逐步地從感性思維過(guò)渡到理性思維,并由此向邏輯思維發(fā)展,但學(xué)生思維不成熟、不嚴(yán)密、意志力薄弱,故而整個(gè)教學(xué)環(huán)節(jié)總是創(chuàng)設(shè)恰當(dāng)?shù)膯?wèn)題情境,引導(dǎo)學(xué)生積極思考,培養(yǎng)他們的邏輯思維能力。從學(xué)生的認(rèn)知結(jié)構(gòu)來(lái)看,他們只能根據(jù)函數(shù)的圖象觀察出“隨著自變量的增大函數(shù)值增大”等變化趨勢(shì),所以在教學(xué)中要充分利用好函數(shù)圖象的直觀性,發(fā)揮好多媒體教學(xué)的優(yōu)勢(shì);由于學(xué)生在概念的掌握上缺少系統(tǒng)性、嚴(yán)謹(jǐn)性,在教學(xué)中注意加強(qiáng).

  二、教學(xué)目標(biāo)

  知識(shí)目標(biāo):

  (1)函數(shù)單調(diào)性的定義

  (2)函數(shù)單調(diào)性的證明

  能力目標(biāo):

  培養(yǎng)學(xué)生全面分析、抽象和概括的能力,以及了解由簡(jiǎn)單到復(fù)雜,由特殊到一般的化歸思想

  情感目標(biāo):

  培養(yǎng)學(xué)生勇于探索的精神和善于合作的意識(shí)

 。ㄟ@樣的教學(xué)目標(biāo)設(shè)計(jì)更注重教學(xué)過(guò)程和情感體驗(yàn),立足教學(xué)目標(biāo)多元化)

  三、教法學(xué)法分析

  1、教法分析

  “教必有法而教無(wú)定法”,只有方法得當(dāng)才會(huì)有效。新課程標(biāo)準(zhǔn)之處教師是教學(xué)的組織者、引導(dǎo)者、合作者,在教學(xué)過(guò)程要充分調(diào)動(dòng)學(xué)生的積極性、主動(dòng)性。本著這一原則,在教學(xué)過(guò)程中我主要采用以下教學(xué)方法:開放式探究法、啟發(fā)式引導(dǎo)法、小組合作討論法、反饋式評(píng)價(jià)法

  2、學(xué)法分析

  “授人以魚,不如授人以漁”,最有價(jià)值的知識(shí)是關(guān)于方法的只是。學(xué)生作為教學(xué)活動(dòng)的主題,在學(xué)習(xí)過(guò)程中的參與狀態(tài)和參與度是影響教學(xué)效果最重要的因素。在學(xué)法選擇上,我主要采用:自主探究法、觀察發(fā)現(xiàn)法、合作交流法、歸納總結(jié)法。

  (前三部分用時(shí)控制在三分鐘以內(nèi),可適當(dāng)刪減)

  四、教學(xué)過(guò)程

  1、以舊引新,導(dǎo)入新知

  通過(guò)課前小研究讓學(xué)生自行繪制出一次函數(shù)f(x)=x和二次函數(shù)f(x)=x^2的圖像,并觀察函數(shù)圖象的特點(diǎn),總結(jié)歸納。通過(guò)課上小組討論歸納,引導(dǎo)學(xué)生發(fā)現(xiàn),教師總結(jié):一次函數(shù)f(x)=x的圖像在定義域是直線上升的,而二次函數(shù)f(x)=x^2的圖像是一個(gè)曲線,在(-∞,0)上是下降的,而在(0,+∞)上是上升的。(適當(dāng)添加手勢(shì),這樣看起來(lái)更自然)

  2、創(chuàng)設(shè)問(wèn)題,探索新知

  緊接著提出問(wèn)題,你能用二次函數(shù)f(x)=x^2表達(dá)式來(lái)描述函數(shù)在(-∞,0)的圖像?教師總結(jié),并板書,揭示函數(shù)單調(diào)性的定義,并注意強(qiáng)調(diào)可以利用作差法來(lái)判斷這個(gè)函數(shù)的單調(diào)性。

  讓學(xué)生模仿剛才的表述法來(lái)描述二次函數(shù)f(x)=x^2在(0,+∞)的圖像,并找個(gè)別同學(xué)起來(lái)作答,規(guī)范學(xué)生的數(shù)學(xué)用語(yǔ)。

  讓學(xué)生自主學(xué)習(xí)函數(shù)單調(diào)區(qū)間的定義,為接下來(lái)例題學(xué)習(xí)打好基礎(chǔ)。

  3、 例題講解,學(xué)以致用

  例1主要是對(duì)函數(shù)單調(diào)區(qū)間的鞏固運(yùn)用,通過(guò)觀察函數(shù)定義在(—5,5)的圖像來(lái)找出函數(shù)的單調(diào)區(qū)間。這一例題主要以學(xué)生個(gè)別回答為主,學(xué)生回答之后通過(guò)互評(píng)來(lái)糾正答案,檢查學(xué)生對(duì)函數(shù)單調(diào)區(qū)間的掌握。強(qiáng)調(diào)單調(diào)區(qū)間一般寫成半開半閉的形式

  例題講解之后可讓學(xué)生自行完成課后練習(xí)4,以學(xué)生集體回答的方式檢驗(yàn)學(xué)生的學(xué)習(xí)效果。

  例2是將函數(shù)單調(diào)性運(yùn)用到其他領(lǐng)域,通過(guò)函數(shù)單調(diào)性來(lái)證明物理學(xué)的波意爾定理。這是歷年高考的熱點(diǎn)跟難點(diǎn)問(wèn)題,這一例題要采用教師板演的方式,來(lái)對(duì)例題進(jìn)行證明,以規(guī)范總結(jié)證明步驟。一設(shè)二差三化簡(jiǎn)四比較,注意要把f(x1)-f(x2)化簡(jiǎn)成和差積商的形式,再比較與0的大小。

  學(xué)生在熟悉證明步驟之后,做課后練習(xí)3,并以小組為單位找部分同學(xué)上臺(tái)板演,其他同學(xué)在下面自行完成,并通過(guò)自評(píng)、互評(píng)檢查證明步驟。

  4、歸納小結(jié)

  本節(jié)課我們主要學(xué)習(xí)了函數(shù)單調(diào)性的定義及證明過(guò)程,并在教學(xué)過(guò)程中注重培養(yǎng)學(xué)生勇于探索的精神和善于合作的意識(shí)。

  5、作業(yè)布置

  為了讓學(xué)生學(xué)習(xí)不同的數(shù)學(xué),我將采用分層布置作業(yè)的方式:一組 習(xí)題1.3A組1、2、3 ,二組 習(xí)題1.3A組2、3、B組1、2

  6、板書設(shè)計(jì)

  我力求簡(jiǎn)潔明了地概括本節(jié)課的學(xué)習(xí)要點(diǎn),讓學(xué)生一目了然。

  (這部分最重要用時(shí)六到七分鐘,其中定義講解跟例題講解一定要說(shuō)明學(xué)生的活動(dòng))

  五、教學(xué)評(píng)價(jià)

  本節(jié)課是在學(xué)生已有知識(shí)的基礎(chǔ)上學(xué)習(xí)的,在教學(xué)過(guò)程中通過(guò)自主探究、合作交流,充分調(diào)動(dòng)學(xué)生的積極性跟主動(dòng)性,及時(shí)吸收反饋信息,并通過(guò)學(xué)生的自評(píng)、互評(píng),讓內(nèi)部動(dòng)機(jī)和外界刺激協(xié)調(diào)作用,促進(jìn)其數(shù)學(xué)素養(yǎng)不斷提高。

【關(guān)于高中數(shù)學(xué)說(shuō)課稿范文錦集9篇】相關(guān)文章:

關(guān)于高中數(shù)學(xué)說(shuō)課稿范文錦集六篇08-11

關(guān)于高中數(shù)學(xué)說(shuō)課稿范文錦集8篇08-01

關(guān)于高中數(shù)學(xué)說(shuō)課稿范文錦集十篇08-15

關(guān)于高中數(shù)學(xué)說(shuō)課稿范文錦集七篇08-14

高中數(shù)學(xué)說(shuō)課稿范文錦集7篇08-01

高中數(shù)學(xué)說(shuō)課稿范文錦集七篇08-13

精選高中數(shù)學(xué)說(shuō)課稿范文錦集五篇08-12

有關(guān)高中數(shù)學(xué)說(shuō)課稿范文錦集五篇08-09

有關(guān)高中數(shù)學(xué)說(shuō)課稿范文錦集10篇08-09