高中數(shù)學(xué)說(shuō)課稿范文匯總8篇
在教學(xué)工作者實(shí)際的教學(xué)活動(dòng)中,常常需要準(zhǔn)備說(shuō)課稿,借助說(shuō)課稿我們可以快速提升自己的教學(xué)能力。那么優(yōu)秀的說(shuō)課稿是什么樣的呢?以下是小編幫大家整理的高中數(shù)學(xué)說(shuō)課稿8篇,歡迎大家分享。
高中數(shù)學(xué)說(shuō)課稿 篇1
高三第一階段復(fù)習(xí),也稱(chēng)“知識(shí)篇”。在這一階段,學(xué)生重溫高一、高二所學(xué)課程,全面復(fù)習(xí)鞏固各個(gè)知識(shí)點(diǎn),熟練掌握基本方法和技能;然后站在全局的高度,對(duì)學(xué)過(guò)的知識(shí)產(chǎn)生全新認(rèn)識(shí)。在高一、高二時(shí),是以知識(shí)點(diǎn)為主線(xiàn)索,依次傳授講解的,由于后面的相關(guān)知識(shí)還沒(méi)有學(xué)到,不能進(jìn)行縱向聯(lián)系,所以,學(xué)的知識(shí)往往是零碎和散亂,而在第一輪復(fù)習(xí)時(shí),以章節(jié)為單位,將那些零碎的、散亂的知識(shí)點(diǎn)串聯(lián)起來(lái),并將他們系統(tǒng)化、綜合化,把各個(gè)知識(shí)點(diǎn)融會(huì)貫通。對(duì)于普通高中的學(xué)生,第一輪復(fù)習(xí)更為重要,我們希望能做高考試題中一些基礎(chǔ)題目,必須側(cè)重基礎(chǔ),加強(qiáng)復(fù)習(xí)的針對(duì)性,講求實(shí)效。
一、內(nèi)容分析說(shuō)明
1、本小節(jié)內(nèi)容是初中學(xué)習(xí)的多項(xiàng)式乘法的繼續(xù),它所研究的二項(xiàng)式的乘方的展開(kāi)式,與數(shù)學(xué)的其他部分有密切的聯(lián)系:
。1)二項(xiàng)展開(kāi)式與多項(xiàng)式乘法有聯(lián)系,本小節(jié)復(fù)習(xí)可對(duì)多項(xiàng)式的變形起到復(fù)習(xí)深化作用。
。2)二項(xiàng)式定理與概率理論中的二項(xiàng)分布有內(nèi)在聯(lián)系,利用二項(xiàng)式定理可得到一些組合數(shù)的恒等式,因此,本小節(jié)復(fù)習(xí)可加深知識(shí)間縱橫聯(lián)系,形成知識(shí)網(wǎng)絡(luò)。
。3)二項(xiàng)式定理是解決某些整除性、近似計(jì)算等問(wèn)題的一種方法。
2、高考中二項(xiàng)式定理的試題幾乎年年有,多數(shù)試題的難度與課本習(xí)題相當(dāng),是容易題和中等難度的
試題,考察的題型穩(wěn)定,通常以選擇題或填空題出現(xiàn),有時(shí)也與應(yīng)用題結(jié)合在一起求某些數(shù)、式的
近似值。
二、學(xué)校情況與學(xué)生分析
(1)我校是一所鎮(zhèn)普通高中,學(xué)生的基礎(chǔ)不好,記憶力較差,反應(yīng)速度慢,普遍感到數(shù)學(xué)難學(xué)。但大部分學(xué)生想考大學(xué),主觀上有學(xué)好數(shù)學(xué)的愿望。
(2)授課班是政治、地理班,學(xué)生聽(tīng)課積極性不高,聽(tīng)課率低(60﹪),注意力不能持久,不能連續(xù)從事某項(xiàng)數(shù)學(xué)活動(dòng)。課堂上喜歡輕松詼諧的氣氛,大部分能機(jī)械的模仿,部分學(xué)生好記筆記。
三、教學(xué)目標(biāo)
復(fù)習(xí)課二項(xiàng)式定理計(jì)劃安排兩個(gè)課時(shí),本課是第一課時(shí),主要復(fù)習(xí)二項(xiàng)展開(kāi)式和通項(xiàng)。根據(jù)歷年高考對(duì)這部分的考查情況,結(jié)合學(xué)生的特點(diǎn),設(shè)定如下教學(xué)目標(biāo):
1、知識(shí)目標(biāo):(1)理解并掌握二項(xiàng)式定理,從項(xiàng)數(shù)、指數(shù)、系數(shù)、通項(xiàng)幾個(gè)特征熟記它的展開(kāi)式。
。2)會(huì)運(yùn)用展開(kāi)式的通項(xiàng)公式求展開(kāi)式的特定項(xiàng)。
2、能力目標(biāo):(1)教給學(xué)生怎樣記憶數(shù)學(xué)公式,如何提高記憶的持久性和準(zhǔn)確性,從而優(yōu)化記憶品質(zhì)。記憶力是一般數(shù)學(xué)能力,是其它能力的基礎(chǔ)。
(2)樹(shù)立由一般到特殊的解決問(wèn)題的意識(shí),了解解決問(wèn)題時(shí)運(yùn)用的數(shù)學(xué)思想方法。
3、情感目標(biāo):通過(guò)對(duì)二項(xiàng)式定理的復(fù)習(xí),使學(xué)生感覺(jué)到能掌握數(shù)學(xué)的部分內(nèi)容,樹(shù)立學(xué)好數(shù)學(xué)的信心。有意識(shí)地讓學(xué)生演練一些歷年高考試題,使學(xué)生體驗(yàn)到成功,在明年的高考中,他們也能得分。
四、教學(xué)過(guò)程
1、知識(shí)歸納
(1)創(chuàng)設(shè)情景:①同學(xué)們,還記得嗎? 、 、 展開(kāi)式是什么?
、趯W(xué)生一起回憶、老師板書(shū)。
設(shè)計(jì)意圖:①提出比較容易的問(wèn)題,吸引學(xué)生的注意力,組織教學(xué)。
、跒閷W(xué)生能回憶起二項(xiàng)式定理作鋪墊:激活記憶,引起聯(lián)想。
。2)二項(xiàng)式定理:①設(shè)問(wèn) 展開(kāi)式是什么?待學(xué)生思考后,老師板書(shū)
= C an+C an-1b1+…+C an-rbr+…+C bn(n∈N*)
②老師要求學(xué)生說(shuō)出二項(xiàng)展開(kāi)式的特征并熟記公式:共有 項(xiàng);各項(xiàng)里a的指數(shù)從n起依次減小1,直到0為止;b的指數(shù)從0起依次增加1,直到n為止。每一項(xiàng)里a、b的指數(shù)和均為n。
、垤柟叹毩(xí) 填空
設(shè)計(jì)意圖:①教給學(xué)生記憶的方法,比較分析公式的特點(diǎn),記規(guī)律。
、谧冇霉剑煜す。
。3) 展開(kāi)式中各項(xiàng)的系數(shù)C , C , C ,… , 稱(chēng)為二項(xiàng)式系數(shù).
展開(kāi)式的通項(xiàng)公式Tr+1=C an-rbr , 其中r= 0,1,2,…n表示展開(kāi)式中第r+1項(xiàng).
2、例題講解
例1求 的展開(kāi)式的第4項(xiàng)的二項(xiàng)式系數(shù),并求的第4項(xiàng)的系數(shù)。
講解過(guò)程
設(shè)問(wèn):這里 ,要求的第4項(xiàng)的有關(guān)系數(shù),如何解決?
學(xué)生思考計(jì)算,回答問(wèn)題;
老師指明①當(dāng)項(xiàng)數(shù)是4時(shí), ,此時(shí) ,所以第4項(xiàng)的二項(xiàng)式系數(shù)是 ,
、诘4項(xiàng)的系數(shù)與的第4項(xiàng)的二項(xiàng)式系數(shù)區(qū)別。
板書(shū)
解:展開(kāi)式的第4項(xiàng)
所以第4項(xiàng)的系數(shù)為 ,二項(xiàng)式系數(shù)為 。
選題意圖:①利用通項(xiàng)公式求項(xiàng)的系數(shù)和二項(xiàng)式系數(shù);②復(fù)習(xí)指數(shù)冪運(yùn)算。
例2 求 的展開(kāi)式中不含的 項(xiàng)。
講解過(guò)程
設(shè)問(wèn):①不含的 項(xiàng)是什么樣的項(xiàng)?即這一項(xiàng)具有什么性質(zhì)?
、趩(wèn)題轉(zhuǎn)化為第幾項(xiàng)是常數(shù)項(xiàng),誰(shuí)能看出哪一項(xiàng)是常數(shù)項(xiàng)?
師生討論 “看不出哪一項(xiàng)是常數(shù)項(xiàng),怎么辦?”
共同探討思路:利用通項(xiàng)公式,列出項(xiàng)數(shù)的方程,求出項(xiàng)數(shù)。
老師總結(jié)思路:先設(shè)第 項(xiàng)為不含 的項(xiàng),得 ,利用這一項(xiàng)的指數(shù)是零,得到關(guān)于 的方程,解出 后,代回通項(xiàng)公式,便可得到常數(shù)項(xiàng)。
板書(shū)
解:設(shè)展開(kāi)式的第 項(xiàng)為不含 項(xiàng),那么
令 ,解得 ,所以展開(kāi)式的第9項(xiàng)是不含的 項(xiàng)。
因此 。
選題意圖:①鞏固運(yùn)用展開(kāi)式的通項(xiàng)公式求展開(kāi)式的特定項(xiàng),形成基本技能。
、谂袛嗟趲醉(xiàng)是常數(shù)項(xiàng)運(yùn)用方程的思想;找到這一項(xiàng)的項(xiàng)數(shù)后,實(shí)現(xiàn)了轉(zhuǎn)化,體現(xiàn)轉(zhuǎn)化的數(shù)學(xué)思想。
例3求 的展開(kāi)式中, 的系數(shù)。
解題思路:原式局部展開(kāi)后,利用加法原理,可得到展開(kāi)式中的 系數(shù)。
板書(shū)
解:由于 ,則 的展開(kāi)式中 的系數(shù)為 的展開(kāi)式中 的系數(shù)之和。
而 的展開(kāi)式含 的項(xiàng)分別是第5項(xiàng)、第4項(xiàng)和第3項(xiàng),則 的展開(kāi)式中 的系數(shù)分別是: 。
所以 的展開(kāi)式中 的系數(shù)為
例4 如果在( + )n的展開(kāi)式中,前三項(xiàng)系數(shù)成等差數(shù)列,求展開(kāi)式中的有理項(xiàng).
解:展開(kāi)式中前三項(xiàng)的系數(shù)分別為1, , ,
由題意得2× =1+ ,得n=8.
設(shè)第r+1項(xiàng)為有理項(xiàng),T =C · ·x ,則r是4的倍數(shù),所以r=0,4,8.
有理項(xiàng)為T(mén)1=x4,T5= x,T9= .
3、課堂練習(xí)
1.(20xx年江蘇,7)(2x+ )4的展開(kāi)式中x3的系數(shù)是
A.6B.12 C.24 D.48
解析:(2x+ )4=x2(1+2 )4,在(1+2 )4中,x的系數(shù)為C ·22=24.
答案:C
2.(20xx年全國(guó)Ⅰ,5)(2x3- )7的展開(kāi)式中常數(shù)項(xiàng)是
A.14 B.14 C.42 D.-42
解析:設(shè)(2x3- )7的展開(kāi)式中的第r+1項(xiàng)是T =C (2x3) (- )r=C 2 ·
。ǎ1)r·x ,
當(dāng)- +3(7-r)=0,即r=6時(shí),它為常數(shù)項(xiàng),∴C (-1)6·21=14.
答案:A
3.(20xx年湖北,文14)已知(x +x )n的展開(kāi)式中各項(xiàng)系數(shù)的和是128,則展開(kāi)式中x5的系數(shù)是_____________.(以數(shù)字作答)
解析:∵(x +x )n的展開(kāi)式中各項(xiàng)系數(shù)和為128,
∴令x=1,即得所有項(xiàng)系數(shù)和為2n=128.
∴n=7.設(shè)該二項(xiàng)展開(kāi)式中的r+1項(xiàng)為T(mén) =C (x ) ·(x )r=C ·x ,
令 =5即r=3時(shí),x5項(xiàng)的系數(shù)為C =35.
答案:35
五、課堂教學(xué)設(shè)計(jì)說(shuō)明
1、這是一堂復(fù)習(xí)課,通過(guò)對(duì)例題的研究、討論,鞏固二項(xiàng)式定理通項(xiàng)公式,加深對(duì)項(xiàng)的系數(shù)、項(xiàng)的二項(xiàng)式系數(shù)等有關(guān)概念的理解和認(rèn)識(shí),形成求二項(xiàng)式展開(kāi)式某些指定項(xiàng)的基本技能,同時(shí),要培養(yǎng)學(xué)生的運(yùn)算能力,邏輯思維能力,強(qiáng)化方程的思想和轉(zhuǎn)化的思想。
2、在例題的選配上,我設(shè)計(jì)了一定梯度。第一層次是給出二項(xiàng)式,求指定的項(xiàng),即項(xiàng)數(shù)已知,只需直接代入通項(xiàng)公式即可(例1);第二層次(例2)則需要自己創(chuàng)造代入的條件,先判斷哪一項(xiàng)為所求,即先求項(xiàng)數(shù),利用通項(xiàng)公式中指數(shù)的關(guān)系求出,此后轉(zhuǎn)化為第一層次的問(wèn)題。第三層次突出數(shù)學(xué)思想的滲透,例3需要變形才能求某一項(xiàng)的系數(shù),恒等變形是實(shí)現(xiàn)轉(zhuǎn)化的手段。在求每個(gè)局部展開(kāi)式的某項(xiàng)系數(shù)時(shí),又有分類(lèi)討論思想的指導(dǎo)。而例4的設(shè)計(jì)是想增加題目的綜合性,求的n過(guò)程中,運(yùn)用等差數(shù)列、組合數(shù)n等知識(shí),求出后,有化歸為前面的問(wèn)題。
六、個(gè)人見(jiàn)解
高中數(shù)學(xué)說(shuō)課稿 篇2
一、教學(xué)目標(biāo)
(一)知識(shí)與技能
1、進(jìn)一步熟練掌握求動(dòng)點(diǎn)軌跡方程的基本方法。
2、體會(huì)數(shù)學(xué)實(shí)驗(yàn)的直觀性、有效性,提高幾何畫(huà)板的操作能力。
(二)過(guò)程與方法
1、培養(yǎng)學(xué)生觀察能力、抽象概括能力及創(chuàng)新能力。
2、體會(huì)感性到理性、形象到抽象的思維過(guò)程。
3、強(qiáng)化類(lèi)比、聯(lián)想的方法,領(lǐng)會(huì)方程、數(shù)形結(jié)合等思想。
。ㄈ┣楦袘B(tài)度價(jià)值觀
1、感受動(dòng)點(diǎn)軌跡的動(dòng)態(tài)美、和諧美、對(duì)稱(chēng)美。
2、樹(shù)立競(jìng)爭(zhēng)意識(shí)與合作精神,感受合作交流帶來(lái)的成功感,樹(shù)立自信心,激發(fā)提出問(wèn)題和解決問(wèn)題的勇氣。
二、教學(xué)重點(diǎn)與難點(diǎn)
教學(xué)重點(diǎn):運(yùn)用類(lèi)比、聯(lián)想的方法探究不同條件下的軌跡。
教學(xué)難點(diǎn):圖形、文字、符號(hào)三種語(yǔ)言之間的過(guò)渡。
三、、教學(xué)方法和手段
教學(xué)方法:觀察發(fā)現(xiàn)、啟發(fā)引導(dǎo)、合作探究相結(jié)合的教學(xué)方法。啟發(fā)引導(dǎo)學(xué)生積極思考并對(duì)學(xué)生的思維進(jìn)行調(diào)控,幫助學(xué)生優(yōu)化思維過(guò)程,在此基礎(chǔ)上,提供給學(xué)生交流的機(jī)會(huì),幫助學(xué)生對(duì)自己的思維進(jìn)行組織和澄清,并能清楚地、準(zhǔn)確地表達(dá)自己的數(shù)學(xué)思維。
教學(xué)手段:利用網(wǎng)絡(luò)教室,四人一機(jī),多媒體教學(xué)手段。通過(guò)上述教學(xué)手段,一方面:再現(xiàn)知識(shí)產(chǎn)生的過(guò)程,通過(guò)多媒體動(dòng)態(tài)演示,突破學(xué)生在舊知和新知形成過(guò)程中的障礙(靜態(tài)到動(dòng)態(tài));另一方面:節(jié)省了時(shí)間,提高了課堂教學(xué)的效率,激發(fā)了學(xué)生學(xué)習(xí)的興趣。
教學(xué)模式:重點(diǎn)中學(xué)實(shí)施素質(zhì)教育的課堂模式“創(chuàng)設(shè)情境、激發(fā)情感、主動(dòng)發(fā)現(xiàn)、主動(dòng)發(fā)展”。
四、教學(xué)過(guò)程
1、創(chuàng)設(shè)情景,引入課題
生活中我們四處可見(jiàn)軌跡曲線(xiàn)的影子。
演示:這是美麗的城市夜景圖。
演示:許多人認(rèn)為天體運(yùn)行的軌跡都是圓錐曲線(xiàn),研究表明,天體數(shù)目越多,軌跡種類(lèi)也越多。
演示建筑中也有許多美麗的軌跡曲線(xiàn)。
設(shè)計(jì)意圖:讓學(xué)生感受數(shù)學(xué)就在我們身邊,感受軌跡,曲線(xiàn)的動(dòng)態(tài)美、和諧美、對(duì)稱(chēng)美,激發(fā)學(xué)習(xí)興趣。
2、激發(fā)情感,引導(dǎo)探索
靠在墻角的梯子滑落了,如果梯子上站著一個(gè)人,我們不禁會(huì)想,這個(gè)人是直直的摔下去呢?還是劃了一條優(yōu)美的曲線(xiàn)飛出去呢?我們把這個(gè)問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題就是新教材高二上冊(cè)88頁(yè)20題,也就是這里的例題1。
高中數(shù)學(xué)說(shuō)課稿 篇3
各位老師:
大家好!
我叫xxx,來(lái)自xx。我說(shuō)課的題目是《用樣本的數(shù)字特征估計(jì)總體的數(shù)字特征》,內(nèi)容選自于高中教材新課程人教A版必修3第二章第二節(jié),課時(shí)安排為三個(gè)課時(shí),本節(jié)課內(nèi)容為第一課時(shí)。下面我將從教材分析、教學(xué)目標(biāo)分析、教學(xué)方法與手段分析、教學(xué)過(guò)程分析四大方面來(lái)闡述我對(duì)這節(jié)課的分析和設(shè)計(jì):
一、教材分析
1、教材所處的地位和作用
在上一節(jié)我們已經(jīng)學(xué)習(xí)了用圖、表來(lái)組織樣本數(shù)據(jù),并且學(xué)習(xí)了如何通過(guò)圖、表所提供的信息,用樣本的頻率分布估計(jì)總體的分布情況。本節(jié)課是在前面所學(xué)內(nèi)容的基礎(chǔ)上,進(jìn)一步學(xué)習(xí)如何通過(guò)樣本的情況來(lái)估計(jì)總體,從而使我們能從整體上更好地把握總體的規(guī)律,為現(xiàn)實(shí)問(wèn)題的解決提供更多的幫助。
2教學(xué)的重點(diǎn)和難點(diǎn)
重點(diǎn):⑴能利用頻率頒布直方圖估計(jì)總體的眾數(shù),中位數(shù),平均數(shù)。
、企w會(huì)樣本數(shù)字特征具有隨機(jī)性
難點(diǎn):能應(yīng)用相關(guān)知識(shí)解決簡(jiǎn)單的實(shí)際問(wèn)題。
二、教學(xué)目標(biāo)分析
1、知識(shí)與技能目標(biāo)
。1)能利用頻率頒布直方圖估計(jì)總體的眾數(shù),中位數(shù),平均數(shù)。
。2)能用樣本的眾數(shù),中位數(shù),平均數(shù)估計(jì)總體的眾數(shù),中位數(shù),平均數(shù),并結(jié)合實(shí)際,對(duì)問(wèn)題作出合理判斷,制定解決問(wèn)題的有效方法。
2、過(guò)程與方法目標(biāo):
通過(guò)對(duì)本節(jié)課知識(shí)的學(xué)習(xí),初步體會(huì)、領(lǐng)悟"用數(shù)據(jù)說(shuō)話(huà)"的統(tǒng)計(jì)思想方法。
3、情感態(tài)度與價(jià)值觀目標(biāo):
通過(guò)對(duì)有關(guān)數(shù)據(jù)的搜集、整理、分析、判斷培養(yǎng)學(xué)生"實(shí)事求是"的科學(xué)態(tài)度和嚴(yán)謹(jǐn)?shù)墓ぷ髯黠L(fēng)。
三、教學(xué)方法與手段分析
1、教學(xué)方法:結(jié)合本節(jié)課的教學(xué)內(nèi)容和學(xué)生的認(rèn)知水平,在教法上,我采用"問(wèn)答探究"式的教學(xué)方法,層層深入。充分發(fā)揮教師的主導(dǎo)作用,讓學(xué)生真正成為教學(xué)活動(dòng)的主體。
2、教學(xué)手段:通過(guò)多媒體輔助教學(xué),充分調(diào)動(dòng)學(xué)生參與課堂教學(xué)的主動(dòng)性與積極性。
四、教學(xué)過(guò)程分析
1、復(fù)習(xí)回顧,問(wèn)題引入
「屏幕顯示」
〈問(wèn)題1〉在日常生活中,我們往往并不需要了解總體的分布形態(tài),而是更關(guān)心總體的某一數(shù)字特征,例如:買(mǎi)燈泡時(shí),我們希望知道燈泡的平均使用壽命,我們?cè)鯓恿私鉄襞莸牡氖褂脡勖兀慨?dāng)然不能把所有燈泡一一測(cè)試,因?yàn)闇y(cè)試后燈泡則報(bào)廢了。于是,需要通過(guò)隨機(jī)抽樣,把這批燈泡的壽命看作總體,從中隨機(jī)取出若干個(gè)個(gè)體作為樣本,算出樣本的數(shù)字特征,用樣本的數(shù)字特征來(lái)估計(jì)總體的數(shù)字特征。
提出問(wèn)題:什么是平均數(shù),眾數(shù),中位數(shù)?
(教師提問(wèn),鋪墊復(fù)習(xí),學(xué)生思考、積極回答。根據(jù)學(xué)生回答,給出補(bǔ)充總結(jié),借助用多媒體分別給出他們的定義)
「設(shè)計(jì)意圖」使學(xué)生對(duì)本節(jié)課的學(xué)習(xí)做好知識(shí)準(zhǔn)備。
。ㄟM(jìn)一步提出實(shí)例、導(dǎo)入新課。)
「屏幕顯示」
〈問(wèn)題2〉選擇薪水高的職業(yè)是人之常情,假如你大學(xué)畢業(yè)有兩個(gè)工作相當(dāng)?shù)膯挝豢晒┻x擇,現(xiàn)各從甲乙兩單位分別隨機(jī)抽取了50名員工的月工資資料如下(單位:元)
分組計(jì)算這兩組50名員工的月工資平均數(shù),眾數(shù),中位數(shù)并估計(jì)這兩個(gè)公司員工的平均工資。你選擇哪一個(gè)公司,并說(shuō)明你的理由。
。▽W(xué)生分組分別求兩組數(shù)據(jù)的平均工資。
學(xué)生:甲、乙平均工資分別為:甲:1320元,乙:1530元。
所以我選乙公司。
學(xué)生乙:甲、乙兩公司的眾數(shù)分別為甲:1200,乙:1000,所以我選擇甲公司。
學(xué)生丙:我要根據(jù)我的能力選擇。)
「設(shè)計(jì)意圖」學(xué)生按"常理"做出選擇,教師指出只憑平均工資做出判斷的.依據(jù)并不可靠,從而引導(dǎo)學(xué)生進(jìn)一步深入問(wèn)題。
2講授新課,深入認(rèn)識(shí)
、拧钙聊伙@示」
例如,在上一節(jié)抽樣調(diào)查的100位居民的月均用水量的數(shù)據(jù)中,我們畫(huà)出了這組數(shù)據(jù)的頻率分布直方圖,F(xiàn)在,觀察這組數(shù)據(jù)的頻率分布直方圖,能否得出這組數(shù)據(jù)的眾數(shù)、中位數(shù)和平均數(shù)?
(把學(xué)生分成若干小組,分別計(jì)算平均數(shù)、中位數(shù)、眾數(shù),或估計(jì)平均數(shù)、中位數(shù)、眾數(shù)。然后比較結(jié)果,會(huì)發(fā)現(xiàn)通過(guò)計(jì)算的結(jié)果和通過(guò)估計(jì)的結(jié)果出現(xiàn)了一定的誤差。引導(dǎo)學(xué)生分析產(chǎn)生誤差的原因。原因是由于樣本數(shù)據(jù)的頻率分布直方圖把原始的一些數(shù)據(jù)給遺失了。讓學(xué)生明白產(chǎn)生這樣的誤差對(duì)總體的估計(jì)沒(méi)有大的影響,因?yàn)闃颖颈旧硪灿须S機(jī)性。)
「設(shè)計(jì)意圖」讓學(xué)生懂得如何根據(jù)頻率分布直方圖估計(jì)樣本的平均數(shù)、中位數(shù)和眾數(shù)。使學(xué)生明白從直方圖中估計(jì)樣本的數(shù)字特征雖然會(huì)有一些誤差,但直觀、快速、可避免繁瑣的計(jì)算和閱讀數(shù)據(jù)的過(guò)程。
、啤刺岢鰡(wèn)題〉根據(jù)樣本的眾數(shù)、中位數(shù)、平均數(shù)估計(jì)總體平均數(shù)的基本數(shù)據(jù),并對(duì)上一節(jié)的探究問(wèn)題制定一個(gè)合理平價(jià)用水量的的標(biāo)準(zhǔn)。
。◣熒ㄟ^(guò)共同交流探討得知僅以平均數(shù)或只使用中位數(shù)或眾數(shù)制定出平價(jià)用水標(biāo)準(zhǔn)都是不合理的,必須綜合考慮才能做出合理的選擇)
「設(shè)計(jì)意圖」使學(xué)生會(huì)依據(jù)眾數(shù)、中位數(shù)、平均數(shù)對(duì)數(shù)據(jù)進(jìn)行綜合判斷,并做出合理選擇。也為接下來(lái)對(duì)他們優(yōu)缺點(diǎn)的總結(jié)打下基礎(chǔ)。
、强偨Y(jié)出眾數(shù)、中位數(shù)、平均數(shù)三種數(shù)字特征的優(yōu)缺點(diǎn)。
(先由學(xué)生思考,然后再老師的引導(dǎo)下做出總結(jié))
「設(shè)計(jì)意圖」使學(xué)生能更準(zhǔn)確更全面地依據(jù)樣本的眾數(shù)、中位數(shù)、平均數(shù)對(duì)數(shù)據(jù)進(jìn)行綜合判斷,并做出合理選擇,使實(shí)際問(wèn)題得到正確的解決。
3、反思小結(jié)、培養(yǎng)能力
、賹W(xué)習(xí)利用頻率直方圖估計(jì)總體的眾數(shù)、中位數(shù)和平均數(shù)的方法。
、诮榻B眾數(shù)、中位數(shù)和平均數(shù)這三個(gè)特征數(shù)的優(yōu)點(diǎn)和缺點(diǎn)。
③學(xué)習(xí)如何利用眾數(shù)、中位數(shù)和平均數(shù)的特征去分析解決實(shí)際問(wèn)題。
「設(shè)計(jì)意圖」小節(jié)是一堂課的概括和總結(jié),有利于優(yōu)化學(xué)生的認(rèn)知結(jié)構(gòu),把課堂教學(xué)傳授的知識(shí)較快轉(zhuǎn)化為學(xué)生的素質(zhì),也更進(jìn)一步培養(yǎng)學(xué)生的歸納概括能力
4、課后作業(yè),自主學(xué)習(xí)
課本練習(xí)
[設(shè)計(jì)意圖]課后作業(yè)的布置是為了檢驗(yàn)學(xué)生對(duì)本節(jié)課內(nèi)容的理解和運(yùn)用程度,并促使學(xué)生進(jìn)一步鞏固和掌握所學(xué)內(nèi)容。
5、板書(shū)設(shè)計(jì)
高中數(shù)學(xué)說(shuō)課稿 篇4
各位老師:
大家好!
我叫***,來(lái)自**。我說(shuō)課的題目是《簡(jiǎn)單隨機(jī)抽樣》,內(nèi)容選自于新課程人教A版必修3第二章第一節(jié),課時(shí)安排為一個(gè)課時(shí)。下面我將從教材分析、教學(xué)目標(biāo)分析、教學(xué)方法與手段分析、和教學(xué)過(guò)程分析等四大方面來(lái)闡述我對(duì)這節(jié)課的分析和設(shè)計(jì):
一、教材分析
1.教材所處的地位和作用
"簡(jiǎn)單隨機(jī)抽樣"是"隨機(jī)抽樣"的基礎(chǔ),"隨機(jī)抽樣"又是"統(tǒng)計(jì)學(xué)"的基礎(chǔ),因此,在"統(tǒng)計(jì)學(xué)"中,"簡(jiǎn)單隨機(jī)抽樣"是基礎(chǔ)的基礎(chǔ)。在初中學(xué)生已學(xué)過(guò)相關(guān)概念,如"抽樣""總體"、"個(gè)體"、"樣本"、"樣本容量"等,具有一定基礎(chǔ),新教材把"統(tǒng)計(jì)"這部分內(nèi)容編入必修部分,突出了統(tǒng)計(jì)在日常生活中的應(yīng)用,體現(xiàn)它在中學(xué)數(shù)學(xué)中的地位,但同時(shí)也給學(xué)生學(xué)習(xí)增加了難度。
2教學(xué)的重點(diǎn)和難點(diǎn)
重點(diǎn):掌握簡(jiǎn)單隨機(jī)抽樣常見(jiàn)的兩種方法(抽簽法、隨機(jī)數(shù)表法)
難點(diǎn):理解簡(jiǎn)單隨機(jī)抽樣的科學(xué)性,以及由此推斷結(jié)論的可靠性
二、教學(xué)目標(biāo)分析
1.知識(shí)與技能目標(biāo):
正確理解隨機(jī)抽樣的概念,掌握抽簽法、隨機(jī)數(shù)表法的一般步驟;
2.過(guò)程與方法目標(biāo):
(1)能夠從現(xiàn)實(shí)生活或其他學(xué)科中提出具有一定價(jià)值的統(tǒng)計(jì)問(wèn)題;
。2)在解決統(tǒng)計(jì)問(wèn)題的過(guò)程中,學(xué)會(huì)用簡(jiǎn)單隨機(jī)抽樣的方法從總體中抽取樣本。
3.情感,態(tài)度和價(jià)值觀目標(biāo)
通過(guò)對(duì)現(xiàn)實(shí)生活和其他學(xué)科中統(tǒng)計(jì)問(wèn)題的提出,體會(huì)數(shù)學(xué)知識(shí)與現(xiàn)實(shí)世界及各學(xué)科知識(shí)之間的聯(lián)系,認(rèn)識(shí)數(shù)學(xué)的重要性
三、教學(xué)方法與手段分析
為了充分讓學(xué)生自己分析、判斷、自主學(xué)習(xí)、合作交流。因此,我采用討論發(fā)現(xiàn)法教學(xué),并對(duì)學(xué)生滲透"從特殊到一般"的學(xué)習(xí)方法,由于本節(jié)課內(nèi)容實(shí)例多,信息容量大,文字多,我采用多媒體輔助教學(xué),節(jié)省時(shí)間,提高教學(xué)效率,另外采用這種形式也可強(qiáng)化學(xué)生感觀刺激,也能大大提高學(xué)生的學(xué)習(xí)興趣。
四、教學(xué)過(guò)程分析
。ㄒ唬┰O(shè)置情境,提出問(wèn)題
例1:請(qǐng)問(wèn)下列調(diào)查是"普查"還是"抽樣"調(diào)查?
A、一鍋水餃的味道B、旅客上飛機(jī)前的安全檢查
c、一批炮彈的殺傷半徑D、一批彩電的質(zhì)量情況
E、美國(guó)總統(tǒng)的民意支持率
學(xué)生討論后,教師指出生活中處處有"抽樣"
「設(shè)計(jì)意圖」生活中處處有"抽樣"調(diào)查,明確學(xué)習(xí)"抽樣"的必要性。
(二)主動(dòng)探究,構(gòu)建新知
例2:語(yǔ)文老師為了了解某班同學(xué)對(duì)某首詩(shī)的背誦情況,應(yīng)采用下列哪種抽查方式?為什么?
A、在班級(jí)12名班委名單中逐個(gè)抽查5位同學(xué)進(jìn)行背誦
B、在班級(jí)45名同學(xué)中逐一抽查10位同學(xué)進(jìn)行背誦
先讓學(xué)生分析、選擇B后,師生一起歸納其特征:
(1)不放回逐一抽樣,
。2)抽樣有代表性(個(gè)體被抽到可能性相等),學(xué)生體驗(yàn)B種抽樣的科學(xué)性后,教師指出這是簡(jiǎn)單隨機(jī)抽樣,并復(fù)習(xí)初中講過(guò)的有關(guān)概念,最后教師補(bǔ)充板書(shū)課題--(簡(jiǎn)單隨機(jī))抽樣及其定義。
「設(shè)計(jì)意圖」例2從正面分析簡(jiǎn)單隨機(jī)抽樣的科學(xué)性、公平性,突出"等可能性"特征。這是突破教學(xué)難點(diǎn)的重要環(huán)節(jié)之一。
例3我們班有44名學(xué)生,現(xiàn)從中抽出5名學(xué)生去參加學(xué)生座談會(huì),要使每名學(xué)生的機(jī)會(huì)均等,我們應(yīng)該怎么做?談?wù)勀愕南敕ā?/p>
先讓學(xué)生獨(dú)立思考,然后分小組合作學(xué)習(xí),最后各小組推薦一位同學(xué)發(fā)言,最后師生一起歸納"抽簽法"步驟:
。1)編號(hào)制簽
。2)攪拌均勻
(3)逐個(gè)不放回抽取n次。教師板書(shū)上面步驟。
「設(shè)計(jì)意圖」在自主探究,合作交流中構(gòu)建新知,體驗(yàn)"抽簽法"的公平性,從而突破難點(diǎn),突出重點(diǎn)。
請(qǐng)一位同學(xué)說(shuō)說(shuō)例2采用"抽簽法"的實(shí)施步驟。
「設(shè)計(jì)意圖」
1、反饋練習(xí),落實(shí)知識(shí)點(diǎn),突出重點(diǎn)。
2、體會(huì)"抽簽法"具有"簡(jiǎn)單、易行"的優(yōu)點(diǎn)。
〈屏幕出示〉
例4、假設(shè)我們要考察某公司生產(chǎn)的500克袋裝牛奶的質(zhì)量是否達(dá)標(biāo),現(xiàn)從800袋牛奶中抽取60袋進(jìn)行檢驗(yàn)
提問(wèn):這道題適合用抽簽法嗎?
讓學(xué)生進(jìn)行思考,分析抽簽法的局限性,從而引入隨機(jī)數(shù)表法。教師出示一份隨機(jī)數(shù)表,并介紹隨機(jī)數(shù)表,強(qiáng)調(diào)數(shù)表上的數(shù)字都是隨機(jī)的,各個(gè)數(shù)字出現(xiàn)的可能性均等,結(jié)合上例讓學(xué)生討論隨機(jī)數(shù)表法的步驟,最后師生一起歸納步驟:
。1)編號(hào)
。2)在隨機(jī)數(shù)表上確定起始位置
(3)取數(shù)。教師板書(shū)上面步驟。
請(qǐng)一位同學(xué)說(shuō)說(shuō)例2采用"隨機(jī)數(shù)表法"的實(shí)施步驟。
「設(shè)計(jì)意圖」
1、體會(huì)隨機(jī)數(shù)表法的科學(xué)性
2、體會(huì)隨機(jī)數(shù)表法的優(yōu)越性:避免制簽、攪拌。
3、反饋練習(xí),落實(shí)知識(shí)點(diǎn),突出重點(diǎn)。
、缯n堂小結(jié):
1.簡(jiǎn)單隨機(jī)抽樣及其兩種方法
2.兩種方法的操作步驟
(采用問(wèn)答形式)
「設(shè)計(jì)意圖」通過(guò)小結(jié)使學(xué)生們對(duì)知識(shí)有一個(gè)系統(tǒng)的認(rèn)識(shí),突出重點(diǎn),抓住關(guān)鍵,培養(yǎng)概括能力。
、璨贾米鳂I(yè)
課本練習(xí)2、3
[設(shè)計(jì)意圖]課后作業(yè)的布置是為了檢驗(yàn)學(xué)生對(duì)本節(jié)課內(nèi)容的理解和運(yùn)用程度以及實(shí)際接受情況,并促使學(xué)生進(jìn)一步鞏固和掌握所學(xué)內(nèi)容。
高中數(shù)學(xué)說(shuō)課稿 篇5
一、說(shuō)教材
1.內(nèi)容分析:本節(jié)課是“反比例函數(shù)”的第一節(jié)課,是繼正比例函數(shù)、一次函數(shù)之后,二次函數(shù)之前的又一類(lèi)型函數(shù),本節(jié)課主要通過(guò)豐富的生活事例,讓學(xué)生歸納出反比例函數(shù)的概念,并進(jìn)一步體會(huì)函數(shù)是刻畫(huà)變量之間關(guān)系的數(shù)學(xué)模型,從中體會(huì)函數(shù)的模型思想。因此本節(jié)課重點(diǎn)是理解和領(lǐng)悟反比例函數(shù)的概念,所滲透的數(shù)學(xué)思想方法有:類(lèi)比,轉(zhuǎn)化,建模。
2.學(xué)情分析:對(duì)八年級(jí)學(xué)生來(lái)說(shuō),雖然他們已經(jīng)對(duì)函數(shù),正比例函數(shù),一次函數(shù)的概念、圖象、性質(zhì)以及應(yīng)用有所掌握,但他們面對(duì)新的一次函數(shù)時(shí),還可能存在一些思維障礙,如學(xué)生不能準(zhǔn)確地找出變量之間的自變量和因變量,以及如何從事例中領(lǐng)悟和總結(jié)出反比例函數(shù)的概念,因此,本節(jié)課的難點(diǎn)是理解和領(lǐng)悟反比例函數(shù)的概念。
二、說(shuō)教學(xué)目標(biāo)
根據(jù)本人對(duì)《數(shù)學(xué)課程標(biāo)準(zhǔn)》的理解與分析,考慮學(xué)生已有的認(rèn)知結(jié)構(gòu)、心理特征,我把本課的目標(biāo)定為:
1.從現(xiàn)實(shí)的情境和已有的知識(shí)經(jīng)驗(yàn)出發(fā),討論兩個(gè)變量之間的相依關(guān)系,加深對(duì)函數(shù)概念的理解。
2.經(jīng)歷抽象反比例函數(shù)概念的過(guò)程,領(lǐng)會(huì)反比例函數(shù)的意義,理解反比例函數(shù)的概念。
三、說(shuō)教法
本節(jié)課從知識(shí)結(jié)構(gòu)呈現(xiàn)的角度看,為了實(shí)現(xiàn)教學(xué)目標(biāo),我建立了“創(chuàng)設(shè)情境→建立模型→解釋知識(shí)→應(yīng)用知識(shí)”的學(xué)習(xí)模式,這種模式清晰地再現(xiàn)了知識(shí)的生成與發(fā)展的過(guò)程,也符合學(xué)生的認(rèn)知規(guī)律。于是,從教學(xué)內(nèi)容的性質(zhì)出發(fā),我設(shè)計(jì)了如下的課堂結(jié)構(gòu):創(chuàng)設(shè)出電流、行程等情境問(wèn)題讓學(xué)生發(fā)現(xiàn)新知,把上述問(wèn)題進(jìn)行類(lèi)比,導(dǎo)出概念,獲得新知,最后總結(jié)評(píng)價(jià)、內(nèi)化新知。
四、說(shuō)學(xué)法
我認(rèn)為學(xué)生將實(shí)際問(wèn)題轉(zhuǎn)化成函數(shù)的能力是有限的,所以我借助多媒體輔助教學(xué),指導(dǎo)學(xué)生通過(guò)類(lèi)比、轉(zhuǎn)化、直觀形象的觀察與演示,親身經(jīng)歷函數(shù)模型的轉(zhuǎn)化過(guò)程,為學(xué)生攻克難點(diǎn)創(chuàng)造條件,同時(shí)考慮到本課的重點(diǎn)是反比例函數(shù)概念的教學(xué),也考慮到概念教學(xué)要從大量實(shí)際出發(fā),通過(guò)事例幫助完成定義。
好學(xué)教育:
因此,我采用了“問(wèn)題式探究法”的教法,利用多媒體設(shè)置豐富的問(wèn)題情境,讓學(xué)生的思維由問(wèn)題開(kāi)始,到問(wèn)題深化,讓學(xué)生的思維始終處于積極主動(dòng)的狀態(tài),并隨著問(wèn)題的深入而跳躍。
高中數(shù)學(xué)說(shuō)課稿 篇6
一、教材分析:
1、教材的地位與作用:
線(xiàn)性規(guī)劃是運(yùn)籌學(xué)的一個(gè)重要分支,在實(shí)際生活中有著廣泛的應(yīng)用。本節(jié)內(nèi)容是在學(xué)習(xí)了不等式、直線(xiàn)方程的基礎(chǔ)上,利用不等式和直線(xiàn)方程的有關(guān)知識(shí)展開(kāi)的,它是對(duì)二元一次不等式的深化和再認(rèn)識(shí)、再理解。通過(guò)這一部分的學(xué)習(xí),使學(xué)生進(jìn)一步了解數(shù)學(xué)在解決實(shí)際問(wèn)題中的應(yīng)用,體驗(yàn)數(shù)形結(jié)合和轉(zhuǎn)化的思想方法,培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣、應(yīng)用數(shù)學(xué)的意識(shí)和解決實(shí)際問(wèn)題的能力。
2、教學(xué)重點(diǎn)與難點(diǎn):
重點(diǎn):畫(huà)可行域;在可行域內(nèi),用圖解法準(zhǔn)確求得線(xiàn)性規(guī)劃問(wèn)題的最優(yōu)解。
難點(diǎn):在可行域內(nèi),用圖解法準(zhǔn)確求得線(xiàn)性規(guī)劃問(wèn)題的最優(yōu)解。
二、目標(biāo)分析:
在新課標(biāo)讓學(xué)生經(jīng)歷“學(xué)數(shù)學(xué)、做數(shù)學(xué)、用數(shù)學(xué)”的理念指導(dǎo)下,本節(jié)課的教學(xué)目標(biāo)分設(shè)為知識(shí)目標(biāo)、能力目標(biāo)和情感目標(biāo)。
知識(shí)目標(biāo):
1、了解線(xiàn)性規(guī)劃的意義,了解線(xiàn)性約束條件、線(xiàn)性目標(biāo)函數(shù)、可行解、可行
域和最優(yōu)解等概念;
2、理解線(xiàn)性規(guī)劃問(wèn)題的圖解法;
3、會(huì)利用圖解法求線(xiàn)性目標(biāo)函數(shù)的最優(yōu)解.
能力目標(biāo):
1、在應(yīng)用圖解法解題的過(guò)程中培養(yǎng)學(xué)生的觀察能力、理解能力。
2、在變式訓(xùn)練的過(guò)程中,培養(yǎng)學(xué)生的分析能力、探索能力。
3、在對(duì)具體事例的感性認(rèn)識(shí)上升到對(duì)線(xiàn)性規(guī)劃的理性認(rèn)識(shí)過(guò)程中,培養(yǎng)學(xué)生運(yùn)用數(shù)形結(jié)合思想解題的能力和化歸能力。
情感目標(biāo):
1、讓學(xué)生體驗(yàn)數(shù)學(xué)來(lái)源于生活,服務(wù)于生活,體驗(yàn)數(shù)學(xué)在建設(shè)節(jié)約型社會(huì)中的作用,品嘗學(xué)習(xí)數(shù)學(xué)的樂(lè)趣。
2、讓學(xué)生體驗(yàn)數(shù)學(xué)活動(dòng)充滿(mǎn)著探索與創(chuàng)造,培養(yǎng)學(xué)生勤于思考、勇于探索的精神;
3、讓學(xué)生學(xué)會(huì)用運(yùn)動(dòng)觀點(diǎn)觀察事物,了解事物之間從一般到特殊、從特殊到一般的辨證關(guān)系,滲透辯證唯物主義認(rèn)識(shí)論的思想。
三、過(guò)程分析:
數(shù)學(xué)教學(xué)是數(shù)學(xué)活動(dòng)的教學(xué)。因此,我將整個(gè)教學(xué)過(guò)程分為以下六個(gè)教學(xué)環(huán)節(jié):1、創(chuàng)設(shè)情境,提出問(wèn)題;2、分析問(wèn)題,形成概念;3、反思過(guò)程,提煉方法;4、變式演練,深入探究;5、運(yùn)用新知,解決問(wèn)題;6、歸納總結(jié),鞏固提高。
1、創(chuàng)設(shè)情境,提出問(wèn)題:
在課堂教學(xué)的開(kāi)始,我以一組生動(dòng)的動(dòng)畫(huà)(配圖片)描述出在神奇的數(shù)學(xué)王國(guó)里,有一種算法廣泛應(yīng)用于工農(nóng)業(yè)、軍事、交通運(yùn)輸、決策管理與規(guī)劃等領(lǐng)域,應(yīng)用它已節(jié)約了億萬(wàn)財(cái)富,還被列為20世紀(jì)對(duì)科學(xué)發(fā)展和工程實(shí)踐影響最大的十大算法之一。它為何有如此大的魅力?它又是怎樣的一種神奇算法呢?我以景激情,以情激思,點(diǎn)燃學(xué)生的求知欲,引領(lǐng)學(xué)生進(jìn)入學(xué)習(xí)情境。
高中數(shù)學(xué)說(shuō)課稿 篇7
【一】教學(xué)背景分析
1。教材結(jié)構(gòu)分析
《圓的方程》安排在高中數(shù)學(xué)第二冊(cè)(上)第七章第六節(jié)。圓作為常見(jiàn)的簡(jiǎn)單幾何圖形,在實(shí)際生活和生產(chǎn)實(shí)踐中有著廣泛的應(yīng)用。圓的方程屬于解析幾何學(xué)的基礎(chǔ)知識(shí),是研究二次曲線(xiàn)的開(kāi)始,對(duì)后續(xù)直線(xiàn)與圓的位置關(guān)系、圓錐曲線(xiàn)等內(nèi)容的學(xué)習(xí),無(wú)論在知識(shí)上還是方法上都有著積極的意義,所以本節(jié)內(nèi)容在整個(gè)解析幾何中起著承前啟后的作用。
2。學(xué)情分析
圓的方程是學(xué)生在初中學(xué)習(xí)了圓的概念和基本性質(zhì)后,又掌握了求曲線(xiàn)方程的一般方法的基礎(chǔ)上進(jìn)行研究的。但由于學(xué)生學(xué)習(xí)解析幾何的時(shí)間還不長(zhǎng)、學(xué)習(xí)程度較淺,且對(duì)坐標(biāo)法的運(yùn)用還不夠熟練,在學(xué)習(xí)過(guò)程中難免會(huì)出現(xiàn)困難。另外學(xué)生在探究問(wèn)題的能力,合作交流的意識(shí)等方面有待加強(qiáng)。
根據(jù)上述教材結(jié)構(gòu)與內(nèi)容分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)和心理特征,我制定如下教學(xué)目標(biāo):
3。教學(xué)目標(biāo)
。1) 知識(shí)目標(biāo):①掌握?qǐng)A的標(biāo)準(zhǔn)方程;
②會(huì)由圓的標(biāo)準(zhǔn)方程寫(xiě)出圓的半徑和圓心坐標(biāo),能根據(jù)條件寫(xiě)出圓的標(biāo)準(zhǔn)方程;
、劾脠A的標(biāo)準(zhǔn)方程解決簡(jiǎn)單的實(shí)際問(wèn)題。
。2) 能力目標(biāo):①進(jìn)一步培養(yǎng)學(xué)生用代數(shù)方法研究幾何問(wèn)題的能力;
、诩由顚(duì)數(shù)形結(jié)合思想的理解和加強(qiáng)對(duì)待定系數(shù)法的運(yùn)用;
③增強(qiáng)學(xué)生用數(shù)學(xué)的意識(shí)。
(3) 情感目標(biāo):①培養(yǎng)學(xué)生主動(dòng)探究知識(shí)、合作交流的意識(shí);
②在體驗(yàn)數(shù)學(xué)美的過(guò)程中激發(fā)學(xué)生的學(xué)習(xí)興趣。
根據(jù)以上對(duì)教材、教學(xué)目標(biāo)及學(xué)情的分析,我確定如下的教學(xué)重點(diǎn)和難點(diǎn):
4。 教學(xué)重點(diǎn)與難點(diǎn)
(1)重點(diǎn):圓的標(biāo)準(zhǔn)方程的求法及其應(yīng)用。
(2)難點(diǎn): ①會(huì)根據(jù)不同的已知條件求圓的標(biāo)準(zhǔn)方程;
、谶x擇恰當(dāng)?shù)淖鴺?biāo)系解決與圓有關(guān)的實(shí)際問(wèn)題。
為使學(xué)生能達(dá)到本節(jié)設(shè)定的教學(xué)目標(biāo),我再?gòu)慕谭ê蛯W(xué)法上進(jìn)行分析:
好學(xué)教育:
【二】教法學(xué)法分析
1。教法分析 為了充分調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性,本節(jié)課采用“啟發(fā)式”問(wèn)題教學(xué)法,用環(huán)環(huán)相扣的問(wèn)題將探究活動(dòng)層層深入,使教師總是站在學(xué)生思維的最近發(fā)展區(qū)上。另外我恰當(dāng)?shù)睦枚嗝襟w課件進(jìn)行輔助教學(xué),借助信息技術(shù)創(chuàng)設(shè)實(shí)際問(wèn)題的情境既能激發(fā)學(xué)生的學(xué)習(xí)興趣,又直觀的引導(dǎo)了學(xué)生建模的過(guò)程。
2。學(xué)法分析 通過(guò)推導(dǎo)圓的標(biāo)準(zhǔn)方程,加深對(duì)用坐標(biāo)法求軌跡方程的理解。通過(guò)求圓的標(biāo)準(zhǔn)方程,理解必須具備三個(gè)獨(dú)立的條件才可以確定一個(gè)圓。通過(guò)應(yīng)用圓的標(biāo)準(zhǔn)方程,熟悉用待定系數(shù)法求的過(guò)程。 下面我就對(duì)具體的教學(xué)過(guò)程和設(shè)計(jì)加以說(shuō)明:
【三】教學(xué)過(guò)程與設(shè)計(jì)
整個(gè)教學(xué)過(guò)程是由七個(gè)問(wèn)題組成的問(wèn)題鏈驅(qū)動(dòng)的,共分為五個(gè)環(huán)節(jié):
創(chuàng)設(shè)情境 啟迪思維 深入探究 獲得新知 應(yīng)用舉例 鞏固提高
反饋訓(xùn)練 形成方法 小結(jié)反思 拓展引申
下面我從縱橫兩方面敘述我的教學(xué)程序與設(shè)計(jì)意圖。
首先:縱向敘述教學(xué)過(guò)程
。ㄒ唬﹦(chuàng)設(shè)情境——啟迪思維
問(wèn)題一 已知隧道的截面是半徑為4m的半圓,車(chē)輛只能在道路中心線(xiàn)一側(cè)行駛,一輛寬為2。7m,高為3m的貨車(chē)能不能駛?cè)脒@個(gè)隧道?
通過(guò)對(duì)這個(gè)實(shí)際問(wèn)題的探究,把學(xué)生的思維由用勾股定理求線(xiàn)段CD的長(zhǎng)度轉(zhuǎn)移為用曲線(xiàn)的方程來(lái)解決。一方面幫助學(xué)生回顧了舊知——求軌跡方程的一般方法,另一方面,在得到汽車(chē)不能通過(guò)的結(jié)論的同時(shí)學(xué)生自己推導(dǎo)出了圓心在原點(diǎn),半徑為4的圓的標(biāo)準(zhǔn)方程,從而很自然的進(jìn)入了本課的主題。用實(shí)際問(wèn)題創(chuàng)設(shè)問(wèn)題情境,讓學(xué)生感受到問(wèn)題來(lái)源于實(shí)際,應(yīng)用于實(shí)際,激發(fā)了學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)欲望。這樣獲取的知識(shí),不但易于保持,而且易于遷移。
通過(guò)對(duì)問(wèn)題一的探究,抓住了學(xué)生的注意力,把學(xué)生的思維引到用坐標(biāo)法研究圓的方程上來(lái),此時(shí)再把問(wèn)題深入,進(jìn)入第二環(huán)節(jié)。
。ǘ┥钊胩骄俊@得新知
問(wèn)題二 1。根據(jù)問(wèn)題一的探究能不能得到圓心在原點(diǎn),半徑為的圓的方程?
2。如果圓心在,半徑為時(shí)又如何呢?
好學(xué)教育:
這一環(huán)節(jié)我首先讓學(xué)生對(duì)問(wèn)題一進(jìn)行歸納,得到圓心在原點(diǎn),半徑為4的圓的標(biāo)準(zhǔn)方程后,引導(dǎo)學(xué)生歸納出圓心在原點(diǎn),半徑為r的圓的標(biāo)準(zhǔn)方程。然后再讓學(xué)生對(duì)圓心不在原點(diǎn)的情況進(jìn)行探究。我預(yù)設(shè)了三種方法等待著學(xué)生的探究結(jié)果,分別是:坐標(biāo)法、圖形變換法、向量平移法。
得到圓的標(biāo)準(zhǔn)方程后,我設(shè)計(jì)了由淺入深的三個(gè)應(yīng)用平臺(tái),進(jìn)入第三環(huán)節(jié)。
。ㄈ⿷(yīng)用舉例——鞏固提高
I。直接應(yīng)用 內(nèi)化新知
問(wèn)題三 1。寫(xiě)出下列各圓的標(biāo)準(zhǔn)方程:
。1)圓心在原點(diǎn),半徑為3;
。2)經(jīng)過(guò)點(diǎn),圓心在點(diǎn)。
2。寫(xiě)出圓的圓心坐標(biāo)和半徑。
我設(shè)計(jì)了兩個(gè)小問(wèn)題,第一題是直接或間接的給出圓心坐標(biāo)和半徑求圓的標(biāo)準(zhǔn)方程,第二題是給出圓的標(biāo)準(zhǔn)方程求圓心坐標(biāo)和半徑,這兩題比較簡(jiǎn)單,可以安排學(xué)生口答完成,目的是先讓學(xué)生熟練掌握?qǐng)A心坐標(biāo)、半徑與圓的標(biāo)準(zhǔn)方程之間的關(guān)系,為后面探究圓的切線(xiàn)問(wèn)題作準(zhǔn)備。
II。靈活應(yīng)用 提升能力
問(wèn)題四 1。求以點(diǎn)為圓心,并且和直線(xiàn)相切的圓的方程。
2。求過(guò)點(diǎn),圓心在直線(xiàn)上且與軸相切的圓的方程。
3。已知圓的方程為,求過(guò)圓上一點(diǎn)的切線(xiàn)方程。
你能歸納出具有一般性的結(jié)論嗎?
已知圓的方程是,經(jīng)過(guò)圓上一點(diǎn)的切線(xiàn)的方程是什么?
我設(shè)計(jì)了三個(gè)小問(wèn)題,第一個(gè)小題有了剛剛解決問(wèn)題三的基礎(chǔ),學(xué)生會(huì)很快求出半徑,根據(jù)圓心坐標(biāo)寫(xiě)出圓的標(biāo)準(zhǔn)方程。第二個(gè)小題有些困難,需要引導(dǎo)學(xué)生應(yīng)用待定系數(shù)法確定圓心坐標(biāo)和半徑再求解,從而理解必須具備三個(gè)獨(dú)立的條件才可以確定一個(gè)圓。第三個(gè)小題解決方法較多,我預(yù)設(shè)了四種方法再一次為學(xué)生的發(fā)散思維創(chuàng)設(shè)了空間。最后我讓學(xué)生由第三小題的結(jié)論進(jìn)行歸納、猜想,在論證經(jīng)過(guò)圓上一點(diǎn)圓的切線(xiàn)方程的過(guò)程中,又一次模擬了真理發(fā)現(xiàn)的過(guò)程,使探究氣氛達(dá)到高潮。
III。實(shí)際應(yīng)用 回歸自然
問(wèn)題五 如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度AB=20m,拱高OP=4m,在建造時(shí)每隔4m需用一個(gè)支柱支撐,求支柱的長(zhǎng)度(精確到0。01m)。
好學(xué)教育:
我選用了教材的例3,它是待定系數(shù)法求出圓的三個(gè)參數(shù)的又一次應(yīng)用,同時(shí)也與引例相呼應(yīng),使學(xué)生形成解決實(shí)際問(wèn)題的一般方法,培養(yǎng)了學(xué)生建模的習(xí)慣和用數(shù)學(xué)的意識(shí)。
。ㄋ模┓答佊(xùn)練——形成方法
問(wèn)題六 1。求過(guò)原點(diǎn)和點(diǎn),且圓心在直線(xiàn)上的圓的標(biāo)準(zhǔn)方程。
2。求圓過(guò)點(diǎn)的切線(xiàn)方程。
3。求圓過(guò)點(diǎn)的切線(xiàn)方程。
接下來(lái)是第四環(huán)節(jié)——反饋訓(xùn)練。這一環(huán)節(jié)中,我設(shè)計(jì)三個(gè)小題作為鞏固性訓(xùn)練,給學(xué)生一塊“用武”之地,讓每一位同學(xué)體驗(yàn)學(xué)習(xí)數(shù)學(xué)的樂(lè)趣,成功的喜悅,找到自信,增強(qiáng)學(xué)習(xí)數(shù)學(xué)的愿望與信心。另外第3題是我特意安排的一道求過(guò)圓外一點(diǎn)的圓的切線(xiàn)方程,由于學(xué)生剛剛歸納了過(guò)圓上一點(diǎn)圓的切線(xiàn)方程,因此很容易產(chǎn)生思維的負(fù)遷移,另外這道題目有兩解,學(xué)生容易漏掉斜率不存在的情況,這時(shí)引導(dǎo)學(xué)生用數(shù)形結(jié)合的思想,結(jié)合初中已有的圓的知識(shí)進(jìn)行判斷,這樣的設(shè)計(jì)對(duì)培養(yǎng)學(xué)生思維的嚴(yán)謹(jǐn)性具有良好的效果。
。ㄎ澹┬〗Y(jié)反思——拓展引申
1。課堂小結(jié)
把圓的標(biāo)準(zhǔn)方程與過(guò)圓上一點(diǎn)圓的切線(xiàn)方程加以小結(jié),提煉數(shù)形結(jié)合的思想和待定系數(shù)的方法 ①圓心為,半徑為r 的圓的標(biāo)準(zhǔn)方程為:
圓心在原點(diǎn)時(shí),半徑為r 的圓的標(biāo)準(zhǔn)方程為:。
②已知圓的方程是,經(jīng)過(guò)圓上一點(diǎn)的切線(xiàn)的方程是:。
2。分層作業(yè)
(A)鞏固型作業(yè):教材P81—82:(習(xí)題7。6)1,2,4。(B)思維拓展型作業(yè):試推導(dǎo)過(guò)圓上一點(diǎn)的切線(xiàn)方程。
3。激發(fā)新疑
問(wèn)題七 1。把圓的標(biāo)準(zhǔn)方程展開(kāi)后是什么形式?
2。方程表示什么圖形?
在本課的結(jié)尾設(shè)計(jì)這兩個(gè)問(wèn)題,作為對(duì)這節(jié)課內(nèi)容的鞏固與延伸,讓學(xué)生體會(huì)知識(shí)的起點(diǎn)與終點(diǎn)都蘊(yùn)涵著問(wèn)題,舊的問(wèn)題解決了,新的問(wèn)題又產(chǎn)生了。在知識(shí)的拓展中再次掀起學(xué)生探究的熱情。另外它為下節(jié)課研究圓的一般方程作了重要的準(zhǔn)備。
以上是我縱向的教學(xué)過(guò)程及簡(jiǎn)單的設(shè)計(jì)意圖,接下來(lái),我從三個(gè)方面橫向的進(jìn)一步闡述我的教學(xué)設(shè)計(jì): 橫向闡述教學(xué)設(shè)計(jì)
(一)突出重點(diǎn) 抓住關(guān)鍵 突破難點(diǎn)
好學(xué)教育:
求圓的標(biāo)準(zhǔn)方程既是本節(jié)課的教學(xué)重點(diǎn)也是難點(diǎn),為此我布設(shè)了由淺入深的學(xué)習(xí)環(huán)境,先讓學(xué)生熟悉圓心、半徑與圓的標(biāo)準(zhǔn)方程之間的關(guān)系,逐步理解三個(gè)參數(shù)的重要性,自然形成待定系數(shù)法的解題思路,在突出重點(diǎn)的同時(shí)突破了難點(diǎn)。
第二個(gè)教學(xué)難點(diǎn)就是解決實(shí)際應(yīng)用問(wèn)題,這是學(xué)生固有的難題,主要是因?yàn)閼?yīng)用問(wèn)題的題目冗長(zhǎng),學(xué)生很難根據(jù)問(wèn)題情境構(gòu)建數(shù)學(xué)模型,缺乏解決實(shí)際問(wèn)題的信心,為此我首先用一道題目簡(jiǎn)潔、貼近生活的實(shí)例進(jìn)行引入,激發(fā)學(xué)生的求知欲,同時(shí)我借助多媒體課件的演示,引導(dǎo)學(xué)生真正走入問(wèn)題的情境之中,并從中抽象出數(shù)學(xué)模型,從而消除畏難情緒,增強(qiáng)了信心。最后再形成應(yīng)用圓的標(biāo)準(zhǔn)方程解決實(shí)際問(wèn)題的一般模式,并嘗試應(yīng)用該模式分析和解決第二個(gè)應(yīng)用問(wèn)題——問(wèn)題五。這樣的設(shè)計(jì),使學(xué)生在解決問(wèn)題的同時(shí),形成了方法,難點(diǎn)自然突破。
。ǘ⿲W(xué)生主體 教師主導(dǎo) 探究主線(xiàn)
本節(jié)課的設(shè)計(jì)用問(wèn)題做鏈,環(huán)環(huán)相扣,使學(xué)生的探究活動(dòng)貫穿始終。從圓的標(biāo)準(zhǔn)方程的推導(dǎo)到應(yīng)用都是在問(wèn)題的指引、我的指導(dǎo)下,由學(xué)生探究完成的。另外,我重點(diǎn)設(shè)計(jì)了兩次思維發(fā)散點(diǎn),分別是問(wèn)題二和問(wèn)題四的第三問(wèn),要求學(xué)生分組討論,合作交流,為學(xué)生設(shè)立充分的探究空間,學(xué)生在交流成果的過(guò)程中,既體驗(yàn)了科學(xué)研究和真理發(fā)現(xiàn)的復(fù)雜與艱辛,又在我的適度引導(dǎo)、側(cè)面幫助、不斷肯定下順利完成了探究活動(dòng)并走向成功,在一個(gè)個(gè)問(wèn)題的驅(qū)動(dòng)下,高效的完成本節(jié)的學(xué)習(xí)任務(wù)。
。ㄈ┡囵B(yǎng)思維 提升能力 激勵(lì)創(chuàng)新
為了培養(yǎng)學(xué)生的理性思維,我分別在問(wèn)題一和問(wèn)題四中,設(shè)計(jì)了兩次由特殊到一般的學(xué)習(xí)思路,培養(yǎng)學(xué)生的歸納概括能力。在問(wèn)題的設(shè)計(jì)中,我利用一題多解的探究,縱向挖掘知識(shí)深度,橫向加強(qiáng)知識(shí)間的聯(lián)系,培養(yǎng)了學(xué)生的創(chuàng)新精神,并且使學(xué)生的有效思維量加大,隨時(shí)對(duì)所學(xué)知識(shí)和方法產(chǎn)生有意注意,使能力與知識(shí)的形成相伴而行。
以上是我對(duì)這節(jié)課的教學(xué)預(yù)設(shè),具體的教學(xué)過(guò)程還要根據(jù)學(xué)生在課堂中的具體情況適當(dāng)調(diào)整,向生成性課堂進(jìn)行轉(zhuǎn)變。最后我以赫爾巴特的一句名言結(jié)束我的說(shuō)課,發(fā)揮我們的創(chuàng)造性,力爭(zhēng)“使教育過(guò)程成為一種藝術(shù)的事業(yè)”。
高中數(shù)學(xué)說(shuō)課稿 篇8
說(shuō)教學(xué)目標(biāo)
A、知識(shí)目標(biāo):
掌握等差數(shù)列前n項(xiàng)和公式的推導(dǎo)方法;掌握公式的運(yùn)用。
B、能力目標(biāo):
。1)通過(guò)公式的探索、發(fā)現(xiàn),在知識(shí)發(fā)生、發(fā)展以及形成過(guò)程中培養(yǎng)學(xué)生觀察、聯(lián)想、歸納、分析、綜合和邏輯推理的能力。
(2)利用以退求進(jìn)的思維策略,遵循從特殊到一般的認(rèn)知規(guī)律,讓學(xué)生在實(shí)踐中通過(guò)觀察、嘗試、分析、類(lèi)比的方法導(dǎo)出等差數(shù)列的求和公式,培養(yǎng)學(xué)生類(lèi)比思維能力。
。3)通過(guò)對(duì)公式從不同角度、不同側(cè)面的剖析,培養(yǎng)學(xué)生思維的靈活性,提高學(xué)生分析問(wèn)題和解決問(wèn)題的能力。
C、情感目標(biāo):(數(shù)學(xué)文化價(jià)值)
(1)公式的發(fā)現(xiàn)反映了普遍性寓于特殊性之中,從而使學(xué)生受到辯證唯物主義思想的熏陶。
(2)通過(guò)公式的運(yùn)用,樹(shù)立學(xué)生"大眾教學(xué)"的思想意識(shí)。
。3)通過(guò)生動(dòng)具體的現(xiàn)實(shí)問(wèn)題,令人著迷的數(shù)學(xué)史,激發(fā)學(xué)生探究的興趣和欲望,樹(shù)立學(xué)生求真的勇氣和自信心,增強(qiáng)學(xué)生學(xué)好數(shù)學(xué)的心理體驗(yàn),產(chǎn)生熱愛(ài)數(shù)學(xué)的情感。
說(shuō)教學(xué)重點(diǎn):
等差數(shù)列前n項(xiàng)和的公式。
說(shuō)教學(xué)難點(diǎn):
等差數(shù)列前n項(xiàng)和的公式的靈活運(yùn)用。
說(shuō)教學(xué)方法:
啟發(fā)、討論、引導(dǎo)式。
教具:
現(xiàn)代教育多媒體技術(shù)。
教學(xué)過(guò)程
一、創(chuàng)設(shè)情景,導(dǎo)入新課。
師:上幾節(jié),我們已經(jīng)掌握了等差數(shù)列的概念、通項(xiàng)公式及其有關(guān)性質(zhì),今天要進(jìn)一步研究等差數(shù)列的前n項(xiàng)和公式。提起數(shù)列求和,我們自然會(huì)想到德國(guó)偉大的數(shù)學(xué)家高斯"神速求和"的故事,小高斯上小學(xué)四年級(jí)時(shí),一次教師布置了一道數(shù)學(xué)習(xí)題:"把從1到100的自然數(shù)加起來(lái),和是多少?"年僅10歲的小高斯略一思索就得到答案5050,這使教師非常吃驚,那么高斯是采用了什么方法來(lái)巧妙地計(jì)算出來(lái)的呢?如果大家也懂得那樣巧妙計(jì)算,那你們就是二十世紀(jì)末的新高斯。(教師觀察學(xué)生的表情反映,然后將此問(wèn)題縮小十倍)。我們來(lái)看這樣一道一例題。
例1,計(jì)算:1+2+3+4+5+6+7+8+9+10。
這道題除了累加計(jì)算以外,還有沒(méi)有其他有趣的解法呢?小組討論后,讓學(xué)生自行發(fā)言解答。
生1:因?yàn)?+10=2+9=3+8=4+7=5+6,所以可湊成5個(gè)11,得到55。
生2:可設(shè)S=1+2+3+4+5+6+7+8+9+10,根據(jù)加法交換律,又可寫(xiě)成 S=10+9+8+7+6+5+4+3+2+1。
上面兩式相加得2S=11+10+。。。。。。+11=10×11=110
10個(gè)
所以我們得到S=55,
即1+2+3+4+5+6+7+8+9+10=55
師:高斯神速計(jì)算出1到100所有自然數(shù)的各的方法,和上述兩位同學(xué)的方法相類(lèi)似。
理由是:1+100=2+99=3+98=。。。。。。=50+51=101,有50個(gè)101,所以1+2+3+。。。。。。+100=50×101=5050。請(qǐng)同學(xué)們想一下,上面的方法用到等差數(shù)列的哪一個(gè)性質(zhì)呢?
生3:數(shù)列{an}是等差數(shù)列,若m+n=p+q,則am+an=ap+aq。
二、教授新課(嘗試推導(dǎo))
師:如果已知等差數(shù)列的首項(xiàng)a1,項(xiàng)數(shù)為n,第n項(xiàng)an,根據(jù)等差數(shù)列的性質(zhì),如何來(lái)導(dǎo)出它的前n項(xiàng)和Sn計(jì)算公式呢?根據(jù)上面的例子同學(xué)們自己完成推導(dǎo),并請(qǐng)一位學(xué)生板演。
生4:Sn=a1+a2+。。。。。。an—1+an也可寫(xiě)成
Sn=an+an—1+。。。。。。a2+a1
兩式相加得2Sn=(a1+an)+(a2+an—1)+。。。。。。(an+a1)
n個(gè)
=n(a1+an)
所以Sn=(I)
師:好!如果已知等差數(shù)列的首項(xiàng)為a1,公差為d,項(xiàng)數(shù)為n,則an=a1+(n—1)d代入公式(1)得
Sn=na1+ d(II)
上面(I)、(II)兩個(gè)式子稱(chēng)為等差數(shù)列的前n項(xiàng)和公式。公式(I)是基本的,我們可以發(fā)現(xiàn),它可與梯形面積公式(上底+下底)×高÷2相類(lèi)比,這里的上底是等差數(shù)列的首項(xiàng)a1,下底是第n項(xiàng)an,高是項(xiàng)數(shù)n。引導(dǎo)學(xué)生總結(jié):這些公式中出現(xiàn)了幾個(gè)量?(a1,d,n,an,Sn),它們由哪幾個(gè)關(guān)系聯(lián)系?[an=a1+(n—1)d,Sn==na1+ d];這些量中有幾個(gè)可自由變化?(三個(gè))從而了解到:只要知道其中任意三個(gè)就可以求另外兩個(gè)了。下面我們舉例說(shuō)明公式(I)和(II)的一些應(yīng)用。
三、公式的應(yīng)用(通過(guò)實(shí)例演練,形成技能)。
1、直接代公式(讓學(xué)生迅速熟悉公式,即用基本量例2、計(jì)算:
(1)1+2+3+。。。。。。+n
(2)1+3+5+。。。。。。+(2n—1)
(3)2+4+6+。。。。。。+2n
(4)1—2+3—4+5—6+。。。。。。+(2n—1)—2n
請(qǐng)同學(xué)們先完成(1)—(3),并請(qǐng)一位同學(xué)回答。
生5:直接利用等差數(shù)列求和公式(I),得
。1)1+2+3+。。。。。。+n=
(2)1+3+5+。。。。。。+(2n—1)=
。3)2+4+6+。。。。。。+2n==n(n+1)
師:第(4)小題數(shù)列共有幾項(xiàng)?是否為等差數(shù)列?能否直接運(yùn)用Sn公式求解?若不能,那應(yīng)如何解答?小組討論后,讓學(xué)生發(fā)言解答。
生6:(4)中的數(shù)列共有2n項(xiàng),不是等差數(shù)列,但把正項(xiàng)和負(fù)項(xiàng)分開(kāi),可看成兩個(gè)等差數(shù)列,所以
原式=[1+3+5+。。。。。。+(2n—1)]—(2+4+6+。。。。。。+2n)
=n2—n(n+1)=—n
生7:上題雖然不是等差數(shù)列,但有一個(gè)規(guī)律,兩項(xiàng)結(jié)合都為—1,故可得另一解法:
原式=—1—1—。。。。。!1=—n
n個(gè)
師:很好!在解題時(shí)我們應(yīng)仔細(xì)觀察,尋找規(guī)律,往往會(huì)尋找到好的方法。注意在運(yùn)用Sn公式時(shí),要看清等差數(shù)列的項(xiàng)數(shù),否則會(huì)引起錯(cuò)解。
例3、(1)數(shù)列{an}是公差d=—2的等差數(shù)列,如果a1+a2+a3=12,a8+a9+a10=75,求a1,d,S10。
生8:(1)由a1+a2+a3=12得3a1+3d=12,即a1+d=4
又∵d=—2,∴a1=6
∴S12=12 a1+66×(—2)=—60
生9:(2)由a1+a2+a3=12,a1+d=4
a8+a9+a10=75,a1+8d=25
解得a1=1,d=3 ∴S10=10a1+=145
師:通過(guò)上面例題我們掌握了等差數(shù)列前n項(xiàng)和的公式。在Sn公式有5個(gè)變量。已知三個(gè)變量,可利用構(gòu)造方程或方程組求另外兩個(gè)變量(知三求二),請(qǐng)同學(xué)們根據(jù)例3自己編題,作為本節(jié)的課外練習(xí)題,以便下節(jié)課交流。
師:(繼續(xù)引導(dǎo)學(xué)生,將第(2)小題改編)
①數(shù)列{an}等差數(shù)列,若a1+a2+a3=12,a8+a9+a10=75,且Sn=145,求a1,d,n
、谌舸祟}不求a1,d而只求S10時(shí),是否一定非來(lái)求得a1,d不可呢?引導(dǎo)學(xué)生運(yùn)用等差數(shù)列性質(zhì),用整體思想考慮求a1+a10的值。
2、用整體觀點(diǎn)認(rèn)識(shí)Sn公式。
例4,在等差數(shù)列{an}, (1)已知a2+a5+a12+a15=36,求S16;(2)已知a6=20,求S11。(教師啟發(fā)學(xué)生解)
師:來(lái)看第(1)小題,寫(xiě)出的計(jì)算公式S16==8(a1+a6)與已知相比較,你發(fā)現(xiàn)了什么?
生10:根據(jù)等差數(shù)列的性質(zhì),有a1+a16=a2+a15=a5+a12=18,所以S16=8×18=144。
師:對(duì)。ê(jiǎn)單小結(jié))這個(gè)題目根據(jù)已知等式是不能直接求出a1,a16和d的,但由等差數(shù)列的性質(zhì)可求a1與an的和,于是這個(gè)問(wèn)題就得到解決。這是整體思想在解數(shù)學(xué)問(wèn)題的體現(xiàn)。
師:由于時(shí)間關(guān)系,我們對(duì)等差數(shù)列前n項(xiàng)和公式Sn的運(yùn)用一一剖析,引導(dǎo)學(xué)生觀察當(dāng)d≠0時(shí),Sn是n的二次函數(shù),那么從二次(或一次)的函數(shù)的觀點(diǎn)如何來(lái)認(rèn)識(shí)Sn公式后,這留給同學(xué)們課外繼續(xù)思考。
最后請(qǐng)大家課外思考Sn公式(1)的逆命題:
已知數(shù)列{an}的前n項(xiàng)和為Sn,若對(duì)于所有自然數(shù)n,都有Sn=。數(shù)列{an}是否為等差數(shù)列,并說(shuō)明理由。
四、小結(jié)與作業(yè)。
師:接下來(lái)請(qǐng)同學(xué)們一起來(lái)小結(jié)本節(jié)課所講的內(nèi)容。
生11:1、用倒序相加法推導(dǎo)等差數(shù)列前n項(xiàng)和公式。
2、用所推導(dǎo)的兩個(gè)公式解決有關(guān)例題,熟悉對(duì)Sn公式的運(yùn)用。
生12:1、運(yùn)用Sn公式要注意此等差數(shù)列的項(xiàng)數(shù)n的值。
2、具體用Sn公式時(shí),要根據(jù)已知靈活選擇公式(I)或(II),掌握知三求二的解題通法。
3、當(dāng)已知條件不足以求此項(xiàng)a1和公差d時(shí),要認(rèn)真觀察,靈活應(yīng)用等差數(shù)列的有關(guān)性質(zhì),看能否用整體思想的方法求a1+an的值。
師:通過(guò)以上幾例,說(shuō)明在解題中靈活應(yīng)用所學(xué)性質(zhì),要糾正那種不明理由盲目套用公式的學(xué)習(xí)方法。同時(shí)希望大家在學(xué)習(xí)中做一個(gè)有心人,去發(fā)現(xiàn)更多的性質(zhì),主動(dòng)積極地去學(xué)習(xí)。
本節(jié)所滲透的數(shù)學(xué)方法;觀察、嘗試、分析、歸納、類(lèi)比、特定系數(shù)等。
數(shù)學(xué)思想:類(lèi)比思想、整體思想、方程思想、函數(shù)思想等。
作業(yè):P49:13、14、15、17
【高中數(shù)學(xué)說(shuō)課稿范文匯總8篇】相關(guān)文章:
高中數(shù)學(xué)經(jīng)典說(shuō)課稿范文06-24
高中數(shù)學(xué)說(shuō)課稿范文匯總10篇08-06
高中數(shù)學(xué)說(shuō)課稿范文匯總九篇07-22
關(guān)于高中數(shù)學(xué)說(shuō)課稿范文匯總9篇08-13
有關(guān)高中數(shù)學(xué)說(shuō)課稿范文匯總九篇08-13
高中數(shù)學(xué)說(shuō)課稿范文匯總七篇08-13
關(guān)于高中數(shù)學(xué)說(shuō)課稿范文匯總六篇08-13