高中數(shù)學(xué)說課稿合集9篇
在教學(xué)工作者實(shí)際的教學(xué)活動中,時(shí)常會需要準(zhǔn)備好說課稿,說課稿有助于教學(xué)取得成功、提高教學(xué)質(zhì)量。那么你有了解過說課稿嗎?下面是小編精心整理的高中數(shù)學(xué)說課稿9篇,歡迎大家分享。
高中數(shù)學(xué)說課稿 篇1
一、本節(jié)內(nèi)容的地位與重要性
"分類計(jì)數(shù)原理與分步計(jì)數(shù)原理"是《高中數(shù)學(xué)》一節(jié)獨(dú)特內(nèi)容。這一節(jié)課與排列、組合的基本概念有著緊密的聯(lián)系,通過對這一節(jié)課的學(xué)習(xí),既可以讓學(xué)生接受、理解分類計(jì)數(shù)原理與分步計(jì)數(shù)原理,還為日后排列、組合和二項(xiàng)式定理的教學(xué)做好準(zhǔn)備,起到奠基的重要作用。
二、關(guān)于教學(xué)目標(biāo)的確定
根據(jù)兩個(gè)基本原理的地位和作用,我認(rèn)為本節(jié)課的教學(xué)目標(biāo)是:
(1)使學(xué)生正確理解兩個(gè)基本原理的概念;
。2)使學(xué)生能夠正確運(yùn)用兩個(gè)基本原理分析、解決一些簡單問題;
(3)提高分析、解決問題的能力
。4)使學(xué)生樹立"由個(gè)別到一般,由一般到個(gè)別"的認(rèn)識事物的辯證唯物主義哲學(xué)思想觀點(diǎn)。
三、關(guān)于教學(xué)重點(diǎn)、難點(diǎn)的選擇和處理
中學(xué)數(shù)學(xué)課程中引進(jìn)的關(guān)于排列、組合的計(jì)算公式都是以兩個(gè)計(jì)數(shù)原理為基礎(chǔ)的,而一些較復(fù)雜的排列、組合應(yīng)用題的求解,更是離不開兩個(gè)基本原理,所以正確理解兩個(gè)基本原理并能解決實(shí)際問題是學(xué)習(xí)本章的重點(diǎn)內(nèi)容。
正確使用兩個(gè)基本原理的前提是要學(xué)生清楚兩個(gè)基本原理使用的條件。而原理中提到的分步和分類,學(xué)生不是一下子就能理解深刻的,面對復(fù)雜的事物和現(xiàn)象學(xué)生對分類和分步的選擇容易產(chǎn)生錯(cuò)誤的認(rèn)識,所以分類計(jì)數(shù)原理和分步計(jì)數(shù)原理的準(zhǔn)確應(yīng)用是本節(jié)課的教學(xué)難點(diǎn)。必需使學(xué)生認(rèn)清兩個(gè)基本原理的實(shí)質(zhì)就是完成一件事需要分類還是分步,才能使學(xué)生接受概念并對如何運(yùn)用這兩個(gè)基本原理有正確清楚的認(rèn)識。教學(xué)中兩個(gè)基本問題的引用及引伸,就是為突破難點(diǎn)做準(zhǔn)備。
四、關(guān)于教學(xué)方法和教學(xué)手段的選用
根據(jù)本節(jié)課的內(nèi)容及學(xué)生的實(shí)際水平,我采取啟發(fā)引導(dǎo)式教學(xué)方法并充分發(fā)揮電腦多媒體的輔助教學(xué)作用。
啟發(fā)引導(dǎo)式作為一種啟發(fā)式教學(xué)方法,體現(xiàn)了認(rèn)知心理學(xué)的基本理論。符合教學(xué)論中的自覺性和積極性、鞏固性、可接受性、教學(xué)與發(fā)展相結(jié)合、教師的主導(dǎo)作用與學(xué)生的主體地位相統(tǒng)一等原則,教學(xué)過程中,教師采用點(diǎn)撥的方法,啟發(fā)學(xué)生通過主動思考、動手操作來達(dá)到對知識的"發(fā)現(xiàn)"和接受,進(jìn)而完成知識的內(nèi)化,使書本的知識成為自己的知識。
電腦多媒體以聲音、動畫、影像等多種形式強(qiáng)化對學(xué)生感觀的刺激,這一點(diǎn)是粉筆和黑板所不能比擬的,采取這種形式,可以極大提高學(xué)生的學(xué)習(xí)興趣,加大一堂課的信息容量,使教學(xué)目標(biāo)更完美地體現(xiàn)。另外,電腦軟件具有良好的交互性,可以將教師的思路和策略以軟件的形式來體現(xiàn),更好地為教學(xué)服務(wù)。
五、關(guān)于學(xué)法的指導(dǎo)
"授人以魚,不如授人以漁",在教學(xué)過程中,不但要傳授學(xué)生課本知識,還要培養(yǎng)學(xué)生主動觀察、主動思考、自我發(fā)現(xiàn)的學(xué)習(xí)能力,增強(qiáng)學(xué)生的綜合素質(zhì),從而達(dá)到教學(xué)的目標(biāo)。教學(xué)中,教師創(chuàng)設(shè)疑問,學(xué)生想辦法解決疑問,通過教師的啟發(fā)點(diǎn)撥,類比推理,在積極的雙邊活動中,學(xué)生找到了解決疑難的方法。整個(gè)過程貫穿"設(shè)疑"——"思索"——"發(fā)現(xiàn)"——"解惑"四個(gè)環(huán)節(jié),學(xué)生隨時(shí)對所學(xué)知識產(chǎn)生有意注意,思想上經(jīng)歷了從肯定到否定、又從否定到肯定的辨證思維過程,符合學(xué)生認(rèn)知水平,培養(yǎng)了學(xué)習(xí)能力。
六、關(guān)于教學(xué)程序的設(shè)計(jì)
(一)課題導(dǎo)入
這是本章的第一節(jié)課,是起始課,講起始課時(shí),把這一學(xué)科的內(nèi)容作一個(gè)大概的介紹,能使學(xué)生從一開始就對將要學(xué)習(xí)的知識有一個(gè)初步的了解,并為下面的學(xué)習(xí)打下思想基礎(chǔ)。所以,首先閱讀引言,明確任務(wù),激發(fā)興趣。由學(xué)生感興趣的乒乓球比賽提出問題,引出學(xué)習(xí)本節(jié)的必要性,明確研究計(jì)數(shù)方法是本章內(nèi)容的獨(dú)特性,從應(yīng)用的廣泛看學(xué)習(xí)本章內(nèi)容的重要性。同時(shí)板書課題(分類計(jì)數(shù)原理與分步計(jì)數(shù)原理)
這樣做,能使學(xué)生明白本節(jié)內(nèi)容的地位和作用,激發(fā)其學(xué)習(xí)新知識的欲望,為順利完成教學(xué)任務(wù)做好思維上的準(zhǔn)備。
。ǘ┬抡n講授
通過幻燈片給出問題,配圖分析,講清坐火車與坐汽車兩類方法均可,每類中任一種辦法都可以獨(dú)立地把從甲地到乙地這件事辦好。
緊跟著給出:
引申1:若甲地到乙地一天中還有4班輪船可乘,那么一天中,坐這些交通工具從甲地到一點(diǎn)共有多少種不同的走法?
引伸2:若完成一件事,有 類辦法。在第1類辦法中有 種不同方法,在第2類辦法中有 種不同的方法,……,在第 類辦法中有 種不同方法,每一類中的每一種方法均可完成這件事,那么完成這件事共有多少種不同方法?
這個(gè)問題的兩個(gè)引申由漸入深、循序漸進(jìn)為學(xué)生接受分類計(jì)數(shù)原理做好了準(zhǔn)備。
板書分類計(jì)數(shù)原理內(nèi)容:
完成一件事,有 類辦法。在第1類辦法中有 種不同方法,在第2類辦法中有 種不同的方法,……,在第 類辦法中有 種不同方法,那么完成這件事共有 種不同的方法。(也稱加法原理)
此時(shí),趁學(xué)生對于原理有了一個(gè)較清晰的認(rèn)識,引導(dǎo)學(xué)生分析分類計(jì)數(shù)原理內(nèi)容,啟發(fā)總結(jié)得下面三點(diǎn)注意:(出示幻燈片)
。1)各分類之間相互獨(dú)立,都能完成這件事;
。2)根據(jù)問題的特點(diǎn)在確定的分類標(biāo)準(zhǔn)下進(jìn)行分類;
。3)完成這件事的任何一種方法必屬于某一類,并且分別屬于不同兩類的兩種方法都是不同的方法。
這樣做加深學(xué)生對分類計(jì)數(shù)原理的正確理解,突出了重點(diǎn),突破了難點(diǎn)。
接下來給出問題2:(出示幻燈片)
由A村去B村的道路有3條,由B村去C村的道路有2條(見圖9-1),從A村經(jīng)B村去C村,共有多少種不同的走法?
提出問題:問題1與問題2同是研究從甲地到乙地的不同走法,請找出這兩個(gè)問題的不之處?學(xué)生會發(fā)現(xiàn)問題1中采用乘火車或乘汽車都可以從甲地到乙地,而問題2中必須經(jīng)過先乘火車后乘汽車兩個(gè)步驟才能完成從甲地到乙地這件事。
問題2的講授采用給出問題,配圖分析,組織討論,強(qiáng)調(diào)分步。用多媒體配不同的顏色閃現(xiàn)出六種不同的走法,讓學(xué)生列式求出不同走法數(shù),并列舉所有走法。
歸納得出:分步計(jì)數(shù)原理(板書原理內(nèi)容)
分步計(jì)數(shù)原理:做一件事,完成它需要分成n個(gè)步驟,做第一步有m1種不同的方法,做第二步有m2種不同的方法,……,做第n步有mn種不同的方法。那么,完成這件事共有
N=m1×m2×…×mn
種不同的方法。
同樣趁學(xué)生對定理有一定的認(rèn)識,引導(dǎo)學(xué)生分析分步計(jì)數(shù)原理內(nèi)容,啟發(fā)總結(jié)得下面三點(diǎn)注意:(出示幻燈片)
。1) 各步驟相互依存,只有各個(gè)步驟完成了,這件事才算完成;
。2) 根據(jù)問題的特點(diǎn)在確定的分步標(biāo)準(zhǔn)下分步;
(3) 分步時(shí)要注意滿足完成一件事必須并且只需連續(xù)完成這N個(gè)步驟這件事才算完成。
(三)應(yīng)用舉例
教材例1:(書架取書問題)引導(dǎo)學(xué)生分析解答,注意區(qū)分是分類還是分步。
例2:由數(shù)字0,1,2,3,4可以組成多少個(gè)三位整數(shù)(各位上的數(shù)字允許重復(fù))?本題設(shè)置了4個(gè)問題:
。1) 每一個(gè)三位數(shù)是由什么構(gòu)成的?(三個(gè)整數(shù)字)
。2) 023是一個(gè)三位數(shù)嗎?(百位上不能是0)
。3) 組成一個(gè)三位數(shù)需要怎么做?(分成三個(gè)步驟來完成:第一步確定百位上的數(shù)字;第二步確定十位上的數(shù)字;第三步確定個(gè)位上的數(shù)字)
。4) 怎樣表述?
教師巡視指導(dǎo)、并歸納
解:要組成一個(gè)三位數(shù),需要分成三個(gè)步驟:第一步確定百位上的數(shù)字,從1~4這4個(gè)數(shù)字中任選一個(gè)數(shù)字,有4種選法;第二步確定十位上的數(shù)字,由于數(shù)字允許重復(fù),共有5種選法;第三步確定個(gè)位上的數(shù)字,仍有5種選法。根據(jù)分步計(jì)數(shù)原理,得到可以組成的三位整數(shù)的個(gè)數(shù)是N=4×5×5=100.
答:可以組成100個(gè)三位整數(shù)。
。ń處煹倪B續(xù)發(fā)問、啟發(fā)、引導(dǎo),幫助學(xué)生找到正確的解題思路和計(jì)算方法,使學(xué)生的分析問題能力有所提高。
教師在第二個(gè)例題中給出板書示范,能幫助學(xué)生進(jìn)一步加深對兩個(gè)基本原理實(shí)質(zhì)的理解,周密的考慮,準(zhǔn)確的表達(dá)、規(guī)范的書寫,對于學(xué)生周密思考、準(zhǔn)確表達(dá)、規(guī)范書寫良好習(xí)慣的形成有著積極的促進(jìn)作用,也可以為學(xué)生后面應(yīng)用兩個(gè)基本原理解排列、組合綜合題打下基礎(chǔ))
。ㄋ模w納小結(jié)
師:什么時(shí)候用分類計(jì)數(shù)原理、什么時(shí)候用分步計(jì)數(shù)原理呢?
生:分類時(shí)用分類計(jì)數(shù)原理,分步時(shí)用分步計(jì)數(shù)原理。
師:應(yīng)用兩個(gè)基本原理時(shí)需要注意什么呢?
生:分類時(shí)要求各類辦法彼此之間相互排斥;分步時(shí)要求各步是相互獨(dú)立的。
。ㄎ澹┱n堂練習(xí)
P222:練習(xí)1~4.學(xué)生板演第4題
。▽τ陬}4,教師有必要對三個(gè)多項(xiàng)式乘積展開后各項(xiàng)的構(gòu)成給以提示)
。┎贾米鳂I(yè)
P222:練習(xí)5,6,7.
補(bǔ)充題:
1.在所有的兩位數(shù)中,個(gè)位數(shù)字小于十位數(shù)字的共有多少個(gè)?
(提示:按十位上數(shù)字的大小可以分為9類,共有9+8+7+…+2+1=45個(gè)個(gè)位數(shù)字小于十位數(shù)字的兩位數(shù))
2.某學(xué)生填報(bào)高考志愿,有m個(gè)不同的志愿可供選擇,若只能按第一、二、三志愿依次填寫3個(gè)不同的志愿,求該生填寫志愿的方式的種數(shù)。
。ㄌ崾荆盒枰慈齻(gè)志愿分成三步。共有m(m-1)(m-2)種填寫方式)
3.在所有的三位數(shù)中,有且只有兩個(gè)數(shù)字相同的三位數(shù)共有多少個(gè)?
。ㄌ崾荆嚎梢杂孟旅娣椒▉砬蠼猓海1)△△□,(2)△□△,(3)□△□,(1),(2),(3)類中每類都是9×9種,共有9×9+9×9+9×9=3×9×9=243個(gè)只有兩個(gè)數(shù)字相同的三位數(shù))
4.某小組有10人,每人至少會英語和日語中的一門,其中8人會英語,5人會日語,(1)從中任選一個(gè)會外語的人,有多少種選法?(2)從中選出會英語與會日語的各1人,有多少種不同的選法?
。ㄌ崾荆河捎8+5=13>10,所以10人中必有3人既會英語又會日語。(1)N=5+2+3;(2)N=5×2+5×3+2×3)
只要大家用心學(xué)習(xí),認(rèn)真復(fù)習(xí),就有可能在高中的戰(zhàn)場上考取自己理想的成績。
高中數(shù)學(xué)說課稿 篇2
一、教學(xué)目標(biāo)
(一)知識與技能
1、進(jìn)一步熟練掌握求動點(diǎn)軌跡方程的基本方法。
2、體會數(shù)學(xué)實(shí)驗(yàn)的直觀性、有效性,提高幾何畫板的操作能力。
(二)過程與方法
1、培養(yǎng)學(xué)生觀察能力、抽象概括能力及創(chuàng)新能力。
2、體會感性到理性、形象到抽象的思維過程。
3、強(qiáng)化類比、聯(lián)想的方法,領(lǐng)會方程、數(shù)形結(jié)合等思想。
。ㄈ┣楦袘B(tài)度價(jià)值觀
1、感受動點(diǎn)軌跡的動態(tài)美、和諧美、對稱美。
2、樹立競爭意識與合作精神,感受合作交流帶來的成功感,樹立自信心,激發(fā)提出問題和解決問題的勇氣。
二、教學(xué)重點(diǎn)與難點(diǎn)
教學(xué)重點(diǎn):運(yùn)用類比、聯(lián)想的方法探究不同條件下的軌跡。
教學(xué)難點(diǎn):圖形、文字、符號三種語言之間的過渡。
三、、教學(xué)方法和手段
教學(xué)方法:觀察發(fā)現(xiàn)、啟發(fā)引導(dǎo)、合作探究相結(jié)合的教學(xué)方法。啟發(fā)引導(dǎo)學(xué)生積極思考并對學(xué)生的思維進(jìn)行調(diào)控,幫助學(xué)生優(yōu)化思維過程,在此基礎(chǔ)上,提供給學(xué)生交流的機(jī)會,幫助學(xué)生對自己的思維進(jìn)行組織和澄清,并能清楚地、準(zhǔn)確地表達(dá)自己的數(shù)學(xué)思維。
教學(xué)手段:利用網(wǎng)絡(luò)教室,四人一機(jī),多媒體教學(xué)手段。通過上述教學(xué)手段,一方面:再現(xiàn)知識產(chǎn)生的過程,通過多媒體動態(tài)演示,突破學(xué)生在舊知和新知形成過程中的障礙(靜態(tài)到動態(tài));另一方面:節(jié)省了時(shí)間,提高了課堂教學(xué)的效率,激發(fā)了學(xué)生學(xué)習(xí)的興趣。
教學(xué)模式:重點(diǎn)中學(xué)實(shí)施素質(zhì)教育的課堂模式“創(chuàng)設(shè)情境、激發(fā)情感、主動發(fā)現(xiàn)、主動發(fā)展”。
四、教學(xué)過程
1、創(chuàng)設(shè)情景,引入課題
生活中我們四處可見軌跡曲線的影子。
演示:這是美麗的城市夜景圖。
演示:許多人認(rèn)為天體運(yùn)行的軌跡都是圓錐曲線,研究表明,天體數(shù)目越多,軌跡種類也越多。
演示建筑中也有許多美麗的軌跡曲線。
設(shè)計(jì)意圖:讓學(xué)生感受數(shù)學(xué)就在我們身邊,感受軌跡,曲線的動態(tài)美、和諧美、對稱美,激發(fā)學(xué)習(xí)興趣。
2、激發(fā)情感,引導(dǎo)探索
靠在墻角的梯子滑落了,如果梯子上站著一個(gè)人,我們不禁會想,這個(gè)人是直直的摔下去呢?還是劃了一條優(yōu)美的曲線飛出去呢?我們把這個(gè)問題轉(zhuǎn)化為數(shù)學(xué)問題就是新教材高二上冊88頁20題,也就是這里的例題1。
高中數(shù)學(xué)說課稿 篇3
一、說設(shè)計(jì)理念
《數(shù)學(xué)課程標(biāo)準(zhǔn)》指出要讓學(xué)生感受生活中處處有數(shù)學(xué),用數(shù)學(xué)知識解決生活中的實(shí)際問題。
基于這一理念,我在教學(xué)過程中力求聯(lián)系學(xué)生生活實(shí)際和已有的知識經(jīng)驗(yàn),從學(xué)生感興趣的素材,設(shè)計(jì)新穎的導(dǎo)入與例題教學(xué),給數(shù)學(xué)課富予新的生命力。課堂中力求構(gòu)建一種自主探究、和諧合作的教學(xué)氛圍,讓學(xué)生經(jīng)歷知識的探究過程,培養(yǎng)學(xué)生感受生活中的數(shù)學(xué)和用數(shù)學(xué)知識解決生活問題的能力,體驗(yàn)數(shù)學(xué)的應(yīng)用價(jià)值。
二、教材分析:
。ㄒ唬┙滩牡牡匚缓妥饔
有關(guān)統(tǒng)計(jì)圖的認(rèn)識,小學(xué)階段主要認(rèn)識條形統(tǒng)計(jì)圖、折線統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖?紤]到扇形統(tǒng)計(jì)圖在日常生活中的廣泛應(yīng)用,《標(biāo)準(zhǔn)》把它作為必學(xué)內(nèi)容安排在本單元。本單元是在前面學(xué)習(xí)了條形統(tǒng)計(jì)圖和折線統(tǒng)計(jì)圖的特點(diǎn)和作用的基礎(chǔ)上進(jìn)行教學(xué)的。主要通過熟悉的事例使學(xué)生體會到扇形統(tǒng)計(jì)圖的實(shí)用價(jià)值。
。ǘ┙虒W(xué)目標(biāo)
1、聯(lián)系生活情境了解扇形統(tǒng)計(jì)圖的特點(diǎn)和作用
2、能讀懂扇形統(tǒng)計(jì)圖,從中獲取有效的信息。
3、讓學(xué)生在觀察、比較、討論和交流中體會扇形統(tǒng)計(jì)圖反映的是整體和部分的關(guān)系。
。ㄈ┙虒W(xué)重點(diǎn):
1、能讀懂扇形統(tǒng)計(jì)圖,理解扇形統(tǒng)計(jì)圖的特點(diǎn)和作用,并能從中獲取有效信息。
2、認(rèn)識折線統(tǒng)計(jì)圖,了解折線統(tǒng)計(jì)圖的特點(diǎn)。
。ㄋ模┙虒W(xué)難點(diǎn):
1、能從扇形統(tǒng)計(jì)圖中獲得有用信息,并做出合理推斷。
2、能根據(jù)統(tǒng)計(jì)圖和數(shù)據(jù)進(jìn)行數(shù)據(jù)變化趨勢的分析。
二、學(xué)情分析
本單元的教學(xué)是在學(xué)生已有統(tǒng)計(jì)經(jīng)驗(yàn)的基礎(chǔ)上,學(xué)習(xí)新知的。六年級的學(xué)生已經(jīng)學(xué)習(xí)了條形統(tǒng)計(jì)圖和折線統(tǒng)計(jì)圖,知道他們的特點(diǎn),并具有一定的概括、分析能力,在此基礎(chǔ)上,通過新舊知識對比,自然生成新知識點(diǎn)。
三、設(shè)計(jì)理念和教法分析
1、本堂課力爭做到由“關(guān)注知識”轉(zhuǎn)向“關(guān)注學(xué)生”,由“傳授知識”轉(zhuǎn)向“引導(dǎo)探索”,“教師是組織者、領(lǐng)導(dǎo)者。”將課堂設(shè)置問題給學(xué)生,讓學(xué)生自己獲取信息、分析信息,自主探索、合作交流,參與知識的構(gòu)建。
2、運(yùn)用探究法。探究學(xué)習(xí)的內(nèi)容以問題的形式出現(xiàn)在教師的引導(dǎo)下,學(xué)生自主探究,讓學(xué)生在課堂上多活動、多思考,自主構(gòu)建知識體系。引導(dǎo)學(xué)生獲取信息并合作交流。
四、說學(xué)法
《數(shù)學(xué)課程標(biāo)準(zhǔn)》指出有效的數(shù)學(xué)學(xué)習(xí)不能單純的依賴模仿和記憶,動手操作、自主探索與合作交流是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式。教學(xué)時(shí),我通過學(xué)生感興趣的話題引入,引導(dǎo)學(xué)生關(guān)注身邊的數(shù)學(xué),使學(xué)生體會到觀察、概括、想象、遷移等數(shù)學(xué)學(xué)習(xí)方法,在師生互動中讓每個(gè)學(xué)生都動口,動手,動腦。培養(yǎng)學(xué)生學(xué)習(xí)的主動性和積極性。
五、說教學(xué)程序
本課分成創(chuàng)設(shè)情境,感知特點(diǎn)——分析數(shù)據(jù),理解特征——嘗試制圖,看圖分析——實(shí)踐應(yīng)用,全課總結(jié)四環(huán)節(jié)。
六、說教學(xué)過程
。ㄒ唬⿵(fù)習(xí)引新
1、復(fù)習(xí)舊知
提問:我們學(xué)習(xí)過哪些統(tǒng)計(jì)方法?其中條形統(tǒng)計(jì)圖和折線統(tǒng)計(jì)圖各有什么特點(diǎn)?
2、引入新課
。ǘ┳灾魈剿,學(xué)習(xí)新知
新知識教學(xué)分二步教學(xué):第一步整體感知,看懂統(tǒng)計(jì)圖,理解特征,這是本節(jié)課的重點(diǎn)。在教學(xué)中,以知識遷移的方式建立新舊知識之間的聯(lián)系,放手讓學(xué)生獨(dú)立思考,互相合作,進(jìn)一步了解統(tǒng)計(jì)圖的特征。
第二步實(shí)踐應(yīng)用環(huán)節(jié)。在教學(xué)中,精心地選取了大量的生活素材,使統(tǒng)計(jì)知識與生活建立緊密的聯(lián)系。根據(jù)統(tǒng)計(jì)圖回答問題,是讓學(xué)生運(yùn)用到剛才學(xué)習(xí)到的知識來解決生活中的一些問題,并鞏固剛才所學(xué)的知識,為學(xué)生自己發(fā)現(xiàn)問題、提出問題及自己解決問題提供了較大的空間。同時(shí),讓學(xué)生感悟由于數(shù)據(jù)變化帶來的啟示,并能合理地進(jìn)行推理與判斷
三、課堂總結(jié)
四、布置作業(yè)。
五、板書設(shè)計(jì):
高中數(shù)學(xué)說課稿 篇4
各位老師:
大家好!
我叫***,來自**。我說課的題目是《古典概型》,內(nèi)容選自于高中教材新課程人教A版必修3第三章第二節(jié),課時(shí)安排為兩個(gè)課時(shí),本節(jié)課內(nèi)容為第一課時(shí)。下面我將從教材分析、教學(xué)目標(biāo)分析、教法與學(xué)法分析、教學(xué)過程分析四大方面來闡述我對這節(jié)課的分析和設(shè)計(jì):
一、教材分析
1.教材所處的地位和作用
古典概型是一種特殊的數(shù)學(xué)模型,也是一種最基本的概率模型,在概率論中占有相當(dāng)重要的地位。它承接著前面學(xué)過的隨機(jī)事件的概率及其性質(zhì),又是以后學(xué)習(xí)條件概率的基礎(chǔ),起到承前啟后的作用。
2.教學(xué)的重點(diǎn)和難點(diǎn)
重點(diǎn):理解古典概型及其概率計(jì)算公式。
難點(diǎn):古典概型的判斷及把一些實(shí)際問題轉(zhuǎn)化成古典概型。
二、教學(xué)目標(biāo)分析
1.知識與技能目標(biāo)
(1)通過試驗(yàn)理解基本事件的概念和特點(diǎn)
。2)在數(shù)學(xué)建模的過程中,抽離出古典概型的兩個(gè)基本特征,推導(dǎo)出古典概型下的概率的計(jì)算公式。
2、過程與方法:
經(jīng)歷公式的推導(dǎo)過程,體驗(yàn)由特殊到一般的數(shù)學(xué)思想方法。
3、情感態(tài)度與價(jià)值觀:
。1)用具有現(xiàn)實(shí)意義的實(shí)例,激發(fā)學(xué)生的學(xué)習(xí)興趣,培養(yǎng)學(xué)生勇于探索,善于發(fā)現(xiàn)的創(chuàng)新思想。
。2)讓學(xué)生掌握"理論來源于實(shí)踐,并把理論應(yīng)用于實(shí)踐"的辨證思想。
三、教法與學(xué)法分析
1、教法分析:根據(jù)本節(jié)課的特點(diǎn),采用引導(dǎo)發(fā)現(xiàn)和歸納概括相結(jié)合的教學(xué)方法,通過提出問題、思考問題、解決問題等教學(xué)過程,觀察對比、概括歸納古典概型的概念及其概率公式,再通過具體問題的提出和解決,來激發(fā)學(xué)生的學(xué)習(xí)興趣,調(diào)動學(xué)生的主體能動性,讓每一個(gè)學(xué)生充分地參與到學(xué)習(xí)活動中來。
2、學(xué)法分析:學(xué)生在教師創(chuàng)設(shè)的問題情景中,通過觀察、類比、思考、探究、概括、歸納和動手嘗試相結(jié)合,體現(xiàn)了學(xué)生的主體地位,培養(yǎng)了學(xué)生由具體到抽象,由特殊到一般的數(shù)學(xué)思維能力,形成了實(shí)事求是的科學(xué)態(tài)度。
、鍎(chuàng)設(shè)情景、引入新課
在課前,教師布置任務(wù),以小組為單位,完成下面兩個(gè)模擬試驗(yàn):
試驗(yàn)一:拋擲一枚質(zhì)地均勻的硬幣,分別記錄"正面朝上"和"反面朝上"的次數(shù),要求每個(gè)數(shù)學(xué)小組至少完成20次(最好是整十?dāng)?shù)),最后由代表匯總;
試驗(yàn)二:拋擲一枚質(zhì)地均勻的骰子,分別記錄"1點(diǎn)"、"2點(diǎn)"、"3點(diǎn)"、"4點(diǎn)"、"5點(diǎn)"和"6點(diǎn)"的次數(shù),要求每個(gè)數(shù)學(xué)小組至少完成60次(最好是整十?dāng)?shù)),最后由代表匯總。
在課上,學(xué)生展示模擬試驗(yàn)的操作方法和試驗(yàn)結(jié)果,并與同學(xué)交流活動感受,教師最后匯總方法、結(jié)果和感受,并提出兩個(gè)問題。
1.用模擬試驗(yàn)的方法來求某一隨機(jī)事件的概率好不好?為什么?
不好,要求出某一隨機(jī)事件的概率,需要進(jìn)行大量的試驗(yàn),并且求出來的結(jié)果是頻率,而不是概率。
2.根據(jù)以前的學(xué)習(xí),上述兩個(gè)模擬試驗(yàn)的每個(gè)結(jié)果之間都有什么特點(diǎn)?]
「設(shè)計(jì)意圖」通過課前的模擬實(shí)驗(yàn),讓學(xué)生感受與他人合作的重要性,培養(yǎng)學(xué)生運(yùn)用數(shù)學(xué)語言的能力。隨著新問題的提出,激發(fā)了學(xué)生的求知欲望,通過觀察對比,培養(yǎng)了學(xué)生發(fā)現(xiàn)問題的能力。
、嫠伎冀涣、形成概念
學(xué)生觀察對比得出兩個(gè)模擬試驗(yàn)的`相同點(diǎn)和不同點(diǎn),教師給出基本事件的概念,并對相關(guān)特點(diǎn)加以說明,加深對新概念的理解。
[基本事件有如下的兩個(gè)特點(diǎn):
。1)任何兩個(gè)基本事件是互斥的;
。2)任何事件(除不可能事件)都可以表示成基本事件的和.]
「設(shè)計(jì)意圖」讓學(xué)生從問題的相同點(diǎn)和不同點(diǎn)中找出研究對象的對立統(tǒng)一面,這能培養(yǎng)學(xué)生分析問題的能力,同時(shí)也教會學(xué)生運(yùn)用對立統(tǒng)一的辯證唯物主義觀點(diǎn)來分析問題的一種方法。教師的注解可以使學(xué)生更好的把握問題的關(guān)鍵。
例1從字母a、b、c、d中任意取出兩個(gè)不同字母的試驗(yàn)中,有哪些基本事件?
先讓學(xué)生嘗試著列出所有的基本事件,教師再講解用樹狀圖列舉問題的優(yōu)點(diǎn)。
「設(shè)計(jì)意圖」將數(shù)形結(jié)合和分類討論的思想滲透到具體問題中來。由于沒有學(xué)習(xí)排列組合,因此用列舉法列舉基本事件的個(gè)數(shù),不僅能讓學(xué)生直觀的感受到對象的總數(shù),而且還能使學(xué)生在列舉的時(shí)候作到不重不漏。解決了求古典概型中基本事件總數(shù)這一難點(diǎn)
觀察對比,發(fā)現(xiàn)兩個(gè)模擬試驗(yàn)和例1的共同特點(diǎn):
讓學(xué)生先觀察對比,找出兩個(gè)模擬試驗(yàn)和例1的共同特點(diǎn),再概括總結(jié)得到的結(jié)論,教師最后補(bǔ)充說明。
[經(jīng)概括總結(jié)后得到:
。1)試驗(yàn)中所有可能出現(xiàn)的基本事件只有有限個(gè);(有限性)
。2)每個(gè)基本事件出現(xiàn)的可能性相等。(等可能性)
我們將具有這兩個(gè)特點(diǎn)的概率模型稱為古典概率概型,簡稱古典概型。
「設(shè)計(jì)意圖」培養(yǎng)運(yùn)用從具體到抽象、從特殊到一般的辯證唯物主義觀點(diǎn)分析問題的能力,充分體現(xiàn)了數(shù)學(xué)的化歸思想。啟發(fā)誘導(dǎo)的同時(shí),訓(xùn)練了學(xué)生觀察和概括歸納的能力。通過列出相同和不同點(diǎn),能讓學(xué)生很好的理解古典概型。
、缬^察分析、推導(dǎo)方程
問題思考:在古典概型下,基本事件出現(xiàn)的概率是多少?隨機(jī)事件出現(xiàn)的概率如何計(jì)算?
教師提出問題,引導(dǎo)學(xué)生類比分析兩個(gè)模擬試驗(yàn)和例1的概率,先通過用概率加法公式求出隨機(jī)事件的概率,再對比概率結(jié)果,發(fā)現(xiàn)其中的聯(lián)系,最后概括總結(jié)得出古典概型計(jì)算任何事件的概率計(jì)算公式:
「設(shè)計(jì)意圖」鼓勵學(xué)生運(yùn)用觀察類比和從具體到抽象、從特殊到一般的辯證唯物主義方法來分析問題,同時(shí)讓學(xué)生感受數(shù)學(xué)化歸思想的優(yōu)越性和這一做法的合理性,突出了古典概型的概率計(jì)算公式這一重點(diǎn)。
提問:
。1)在例1的實(shí)驗(yàn)中,出現(xiàn)字母"d"的概率是多少?
。2)在使用古典概型的概率公式時(shí),應(yīng)該注意什么?
「設(shè)計(jì)意圖」教師提問,學(xué)生回答,深化對古典概型的概率計(jì)算公式的理解,也抓住了解決古典概型的概率計(jì)算的關(guān)鍵。
㈣例題分析、推廣應(yīng)用
例2單選題是標(biāo)準(zhǔn)化考試中常用的題型,一般是從A,B,c,D四個(gè)選項(xiàng)中選擇一個(gè)正確答案。如果考生掌握了考差的內(nèi)容,他可以選擇唯一正確的答案。假設(shè)考生不會做,他隨機(jī)的選擇一個(gè)答案,問他答對的概率是多少?
學(xué)生先思考再回答,教師對學(xué)生沒有注意到的關(guān)鍵點(diǎn)加以說明。
「設(shè)計(jì)意圖」讓學(xué)生明確決概率的計(jì)算問題的關(guān)鍵是:先要判斷該概率模型是不是古典概型,再要找出隨機(jī)事件A包含的基本事件的個(gè)數(shù)和試驗(yàn)中基本事件的總數(shù)。鞏固學(xué)生對已學(xué)知識的掌握。
例3同時(shí)擲兩個(gè)骰子,計(jì)算:
。1)一共有多少種不同的結(jié)果?
。2)其中向上的點(diǎn)數(shù)之和是5的結(jié)果有多少種?
。3)向上的點(diǎn)數(shù)之和是5的概率是多少?
先給出問題,再讓學(xué)生完成,然后引導(dǎo)學(xué)生分析問題,發(fā)現(xiàn)解答中存在的問題。引導(dǎo)學(xué)生用列表來列舉試驗(yàn)中的基本事件的總數(shù)。
「設(shè)計(jì)意圖」利用列表數(shù)形結(jié)合和分類討論,既能形象直觀地列出基本事件的總數(shù),又能做到列舉的不重不漏。深化鞏固對古典概型及其概率計(jì)算公式的理解。培養(yǎng)學(xué)生運(yùn)用數(shù)形結(jié)合的思想,提高發(fā)現(xiàn)問題、分析問題、解決問題的能力,增強(qiáng)學(xué)生數(shù)學(xué)思維情趣,形成學(xué)習(xí)數(shù)學(xué)知識的積極態(tài)度。
、樘骄克枷、鞏固深化
問題思考:為什么要把兩個(gè)骰子標(biāo)上記號?如果不標(biāo)記號會出現(xiàn)什么情況?你能解釋其中的原因嗎?
要求學(xué)生觀察對比兩種結(jié)果,找出問題產(chǎn)生的原因。
「設(shè)計(jì)意圖」通過觀察對比,發(fā)現(xiàn)兩種結(jié)果不同的根本原因是--研究的問題是否滿足古典概型,從而再次突出了古典概型這一教學(xué)重點(diǎn),體現(xiàn)了學(xué)生的主體地位,逐漸養(yǎng)成自主探究能力。
、昕偨Y(jié)概括、加深理解
1.基本事件的特點(diǎn)
2.古典概型的特點(diǎn)
3.古典概型的概率計(jì)算公式
學(xué)生小結(jié)歸納,不足的地方老師補(bǔ)充說明。
「設(shè)計(jì)意圖」使學(xué)生對本節(jié)課的知識有一個(gè)系統(tǒng)全面的認(rèn)識,并把學(xué)過的相關(guān)知識有機(jī)地串聯(lián)起來,便于記憶和應(yīng)用,也進(jìn)一步升華了這節(jié)課所要表達(dá)的本質(zhì)思想,讓學(xué)生的認(rèn)知更上一層。
、氩贾米鳂I(yè)
課本練習(xí)1、2、3
「設(shè)計(jì)意圖」進(jìn)一步讓學(xué)生掌握古典概型及其概率公式,并能夠?qū)W以致用,加深對本節(jié)課的理解。
高中數(shù)學(xué)說課稿 篇5
各位評委老師好:今天我說課的題目是
是必修章第節(jié)的內(nèi)容,我將以新課程標(biāo)準(zhǔn)的理念指導(dǎo)本節(jié)課的教學(xué),從教材分析,教法學(xué)法,教學(xué)過程,教學(xué)評價(jià)四個(gè)方面加以說明。
一、 教材分析
是在學(xué)習(xí)了基礎(chǔ)上進(jìn)一步研究 并為后面學(xué)習(xí) 做準(zhǔn)備,在整個(gè)
高中數(shù)學(xué)中起著承上啟下的作用,因此本節(jié)內(nèi)容十分重要。
根據(jù)新課標(biāo)要求和學(xué)生實(shí)際水平我制定以下教學(xué)目標(biāo)
1、 知識能力目標(biāo):使學(xué)生理解掌握
2、 過程方法目標(biāo):通過觀察歸納抽象概括使學(xué)生構(gòu)建領(lǐng)悟 數(shù)學(xué)思想,培養(yǎng) 能力
3、 情感態(tài)度價(jià)值觀目標(biāo):通過學(xué)習(xí)體驗(yàn)數(shù)學(xué)的科學(xué)價(jià)值和應(yīng)用價(jià)值,培養(yǎng)善于
觀察勇于思考的學(xué)習(xí)習(xí)慣和嚴(yán)謹(jǐn) 的科學(xué)態(tài)度
根據(jù)教學(xué)目標(biāo)、本節(jié)特點(diǎn)和學(xué)生實(shí)際情況本節(jié)重點(diǎn)是 ,由于學(xué)生對 缺少感性認(rèn)識,所以本節(jié)課的重點(diǎn)是
二、教法學(xué)法
根據(jù)教師主導(dǎo)地位和學(xué)生主體地位相統(tǒng)一的規(guī)律,我采用引導(dǎo)發(fā)現(xiàn)法為本節(jié)課的主要教學(xué)方法并借助多媒體為輔助手段。在教師點(diǎn)撥下,學(xué)生自主探索、合作交流來尋求解決問題的方法。
三、 教學(xué)過程
四、 教學(xué)程序及設(shè)想
1、由……引入:
把教學(xué)內(nèi)容轉(zhuǎn)化為具有潛在意義的問題,讓學(xué)生產(chǎn)生強(qiáng)烈的問題意識,使學(xué)生的整個(gè)學(xué)習(xí)過程成為“猜想”,繼而緊張地沉思,期待尋找理由和證明過程。 在實(shí)際情況下進(jìn)行學(xué)習(xí),可以使學(xué)生利用已有知識與經(jīng)驗(yàn),同化和索引出當(dāng)前學(xué)習(xí)的新知識,這樣獲取的知識,不但易于保持,而且易于遷移到陌生的問題情境中。
對于本題:……
2、由實(shí)例得出本課新的知識點(diǎn)是:……
3、講解例題。
我們在講解例題時(shí),不僅在于怎樣解,更在于為什么這樣解,而及時(shí)對解題方法和規(guī)律進(jìn)行概括,有利于發(fā)展學(xué)生的思維能力。在題中:
4、能力訓(xùn)練。
課后練習(xí)……
使學(xué)生能鞏固羨慕自覺運(yùn)用所學(xué)知識與解題思想方法。
5、總結(jié)結(jié)論,強(qiáng)化認(rèn)識。
知識性內(nèi)容的小結(jié),可把課堂教學(xué)傳授的知識盡快化為學(xué)生的素質(zhì);數(shù)學(xué)思想方法的小結(jié),可使學(xué)生更深刻地理解數(shù)學(xué)思想方法在解題中的地位和應(yīng)用,并且逐漸培養(yǎng)學(xué)生的良好的個(gè)性品質(zhì)目標(biāo)。
6、變式延伸,進(jìn)行重構(gòu)。
重視課本例題,適當(dāng)對題目進(jìn)行引申,使例題的作用更加突出,有利于學(xué)生對知識的串聯(lián)、累積、加工,從而達(dá)到舉一反三的效果。
五、教學(xué)評價(jià)
學(xué)生學(xué)習(xí)的學(xué)習(xí)結(jié)果評價(jià)當(dāng)然重要,但是更重要的是學(xué)生學(xué)習(xí)的過程評價(jià),教師應(yīng)
當(dāng)高度重視學(xué)生學(xué)習(xí)過程中的參與度、自信心、團(tuán)隊(duì)精神合作意識數(shù)學(xué)能力的發(fā)現(xiàn),以及學(xué)習(xí)的興趣和成就感。
高中數(shù)學(xué)說課稿 篇6
一、教材地位與作用
本節(jié)知識是必修五第一章《解三角形》的第一節(jié)內(nèi)容,與初中學(xué)習(xí)的三角形的邊和角的基本關(guān)系有密切的聯(lián)系與判定三角形的全等也有密切聯(lián)系,在日常生活和工業(yè)生產(chǎn)中也時(shí)常有解三角形的問題,而且解三角形和三角函數(shù)聯(lián)系在高考當(dāng)中也時(shí)?家恍┙獯痤}。因此,正弦定理的知識非常重要。
二、學(xué)情分析
作為高一學(xué)生,同學(xué)們已經(jīng)掌握了基本的三角函數(shù),特別是在一些特殊三角形中,而學(xué)生們在解決任意三角形的邊與角問題,就比較困難。
教學(xué)重點(diǎn):正弦定理的內(nèi)容,正弦定理的證明及基本應(yīng)用。
教學(xué)難點(diǎn):正弦定理的探索及證明,已知兩邊和其中一邊的對角解三角形時(shí)判斷解的個(gè)數(shù)。
根據(jù)我的教學(xué)內(nèi)容與學(xué)情分析以及教學(xué)重難點(diǎn),我制定了如下幾點(diǎn)教學(xué)目標(biāo)
教學(xué)目標(biāo)分析:
知識目標(biāo):理解并掌握正弦定理的證明,運(yùn)用正弦定理解三角形。
能力目標(biāo):探索正弦定理的證明過程,用歸納法得出結(jié)論。
情感目標(biāo):通過推導(dǎo)得出正弦定理,讓學(xué)生感受數(shù)學(xué)公式的整潔對稱美和數(shù)學(xué)的實(shí)際應(yīng)用價(jià)值。
三、教法學(xué)法分析
教法:采用探究式課堂教學(xué)模式,在教師的啟發(fā)引導(dǎo)下,以學(xué)生獨(dú)立自主和合作交流為前提,以“正弦定理的發(fā)現(xiàn)”為基本探究內(nèi)容,以生活實(shí)際為參照對象,讓學(xué)生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導(dǎo),并逐步得到深化。
學(xué)法:指導(dǎo)學(xué)生掌握“觀察——猜想——證明——應(yīng)用”這一思維方法,采取個(gè)人、小組、集體等多種解難釋疑的嘗試活動,將自己所學(xué)知識應(yīng)用于對任意三角形性質(zhì)的探究。讓學(xué)生在問題情景中學(xué)習(xí),觀察,類比,思考,探究,動手嘗試相結(jié)合,增強(qiáng)學(xué)生由特殊到一般的數(shù)學(xué)思維能力,鍥而不舍的求學(xué)精神。
四、教學(xué)過程
(一)創(chuàng)設(shè)情境,布疑激趣
“興趣是最好的老師”,如果一節(jié)課有個(gè)好的開頭,那就意味著成功了一半,本節(jié)課由一個(gè)實(shí)際問題引入,“工人師傅的一個(gè)三角形的模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長為1m,想修好這個(gè)零件,但他不知道AC和BC的長度是多少好去截料,你能幫師傅這個(gè)忙嗎?”激發(fā)學(xué)生幫助別人的熱情和學(xué)習(xí)的興趣,從而進(jìn)入今天的學(xué)習(xí)課題。
(二)探尋特例,提出猜想
1.激發(fā)學(xué)生思維,從自身熟悉的特例(直角三角形)入手進(jìn)行研究,發(fā)現(xiàn)正弦定理。
2.那結(jié)論對任意三角形都適用嗎?指導(dǎo)學(xué)生分小組用刻度尺、量角器、計(jì)算器等工具對一般三角形進(jìn)行驗(yàn)證。
3.讓學(xué)生總結(jié)實(shí)驗(yàn)結(jié)果,得出猜想:
在三角形中,角與所對的邊滿足關(guān)系
這為下一步證明樹立信心,不斷的使學(xué)生對結(jié)論的認(rèn)識從感性逐步上升到理性。
(三)邏輯推理,證明猜想
1.強(qiáng)調(diào)將猜想轉(zhuǎn)化為定理,需要嚴(yán)格的理論證明。
2.鼓勵學(xué)生通過作高轉(zhuǎn)化為熟悉的直角三角形進(jìn)行證明。
3.提示學(xué)生思考哪些知識能把長度和三角函數(shù)聯(lián)系起來,繼而思考向量分析層面,用數(shù)量積作為工具證明定理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。
4.思考是否還有其他的方法來證明正弦定理,布置課后練習(xí),提示,做三角形的外接圓構(gòu)造直角三角形,或用坐標(biāo)法來證明。
(四)歸納總結(jié),簡單應(yīng)用
1.讓學(xué)生用文字?jǐn)⑹稣叶ɡ恚龑?dǎo)學(xué)生發(fā)現(xiàn)定理具有對稱和諧美,提升對數(shù)學(xué)美的享受。
2.正弦定理的內(nèi)容,討論可以解決哪幾類有關(guān)三角形的問題。
3.運(yùn)用正弦定理求解本節(jié)課引入的三角形零件邊長的問題。自己參與實(shí)際問題的解決,能激發(fā)學(xué)生知識后用于實(shí)際的價(jià)值觀。
(五)講解例題,鞏固定理
1.例1:在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形。
例1簡單,結(jié)果為唯一解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來解三角形。
2.例2:在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形。
例2較難,使學(xué)生明確,利用正弦定理求角有兩種可能。要求學(xué)生熟悉掌握已知兩邊和其中一邊的對角時(shí)解三角形的各種情形。完了把時(shí)間交給學(xué)生。
(六)課堂練習(xí),提高鞏固
1.在△ABC中,已知下列條件,解三角形。
(1)A=45°,C=30°,c=10cm(2)A=60°,B=45°,c=20cm
2.在△ABC中,已知下列條件,解三角形。
(1)a=20cm,b=11cm,B=30°(2)c=54cm,b=39cm,C=115°
學(xué)生板演,老師巡視,及時(shí)發(fā)現(xiàn)問題,并解答。
(七)小結(jié)反思,提高認(rèn)識
通過以上的研究過程,同學(xué)們主要學(xué)到了那些知識和方法?你對此有何體會?
1.用向量證明了正弦定
理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。
2.它表述了三角形的邊與對角的正弦值的關(guān)系。
3.定理證明分別從直角、銳角、鈍角出發(fā),運(yùn)用分類討論的思想。
(從實(shí)際問題出發(fā),通過猜想、實(shí)驗(yàn)、歸納等思維方法,最后得到了推導(dǎo)出正弦定理。我們研究問題的突出特點(diǎn)是從特殊到一般,我們不僅收獲著結(jié)論,而且整個(gè)探索過程我們也掌握了研究問題的一般方法。在強(qiáng)調(diào)研究性學(xué)習(xí)方法,注重學(xué)生的主體地位,調(diào)動學(xué)生積極性,使數(shù)學(xué)教學(xué)成為數(shù)學(xué)活動的教學(xué)。)
(八)任務(wù)后延,自主探究
如果已知一個(gè)三角形的兩邊及其夾角,要求第三邊,怎么辦?發(fā)現(xiàn)正弦定理不適用了,那么自然過渡到下一節(jié)內(nèi)容,余弦定理。布置作業(yè),預(yù)習(xí)下一節(jié)內(nèi)容。
高中數(shù)學(xué)說課稿 篇7
一、教材分析
1!吨笖(shù)函數(shù)》在教材中的地位、作用和特點(diǎn)
《指數(shù)函數(shù)》是人教版高中數(shù)學(xué)(必修)第一冊第二章“函數(shù)”的第六節(jié)內(nèi)容,是在學(xué)習(xí)了《指數(shù)》一節(jié)內(nèi)容之后編排的。通過本節(jié)課的學(xué)習(xí),既可以對指數(shù)和函數(shù)的概念等知識進(jìn)一步鞏固和深化,又可以為后面進(jìn)一步學(xué)習(xí)對數(shù)、對數(shù)函數(shù)尤其是利用互為反函數(shù)的圖象間的關(guān)系來研究對數(shù)函數(shù)的性質(zhì)打下堅(jiān)實(shí)的概念和圖象基礎(chǔ),又因?yàn)椤吨笖?shù)函數(shù)》是進(jìn)入高中以后學(xué)生遇到的第一個(gè)系統(tǒng)研究的函數(shù),對高中階段研究對數(shù)函數(shù)、三角函數(shù)等完整的函數(shù)知識,初步培養(yǎng)函數(shù)的應(yīng)用意識打下了良好的學(xué)習(xí)基礎(chǔ),所以《指數(shù)函數(shù)》不僅是本章《函數(shù)》的重點(diǎn)內(nèi)容,也是高中學(xué)段的主要研究內(nèi)容之一,有著不可替代的重要作用。
此外,《指數(shù)函數(shù)》的知識與我們的日常生產(chǎn)、生活和科學(xué)研究有著緊密的聯(lián)系,尤其體現(xiàn)在細(xì)胞分裂、貸款利率的計(jì)算和考古中的年代測算等方面,因此學(xué)習(xí)這部分知識還有著廣泛的現(xiàn)實(shí)意義。本節(jié)內(nèi)容的特點(diǎn)之一是概念性強(qiáng),特點(diǎn)之二是凸顯了數(shù)學(xué)圖形在研究函數(shù)性質(zhì)時(shí)的重要作用。
2。教學(xué)目標(biāo)、重點(diǎn)和難點(diǎn)
通過初中學(xué)段的學(xué)習(xí)和高中對集合、函數(shù)等知識的系統(tǒng)學(xué)習(xí),學(xué)生對函數(shù)和圖象的關(guān)系已經(jīng)構(gòu)建了一定的認(rèn)知結(jié)構(gòu),主要體現(xiàn)在三個(gè)方面:
知識維度:對正比例函數(shù)、反比例函數(shù)、一次函數(shù),二次函數(shù)等最簡單的函數(shù)概念和性質(zhì)已有了初步認(rèn)識,能夠從初中運(yùn)動變化的角度認(rèn)識函數(shù)初步轉(zhuǎn)化到從集合與對應(yīng)的觀點(diǎn)來認(rèn)識函數(shù)。
技能維度:學(xué)生對采用“描點(diǎn)法”描繪函數(shù)圖象的方法已基本掌握,能夠?yàn)檠芯俊吨笖?shù)函數(shù)》的性質(zhì)做好準(zhǔn)備。
素質(zhì)維度:由觀察到抽象的數(shù)學(xué)活動過程已有一定的體會,已初步了解了數(shù)形結(jié)合的思想。
鑒于對學(xué)生已有的知識基礎(chǔ)和認(rèn)知能力的分析,根據(jù)《教學(xué)大綱》的要求,我確定本節(jié)課的教學(xué)目標(biāo)、教學(xué)重點(diǎn)和難點(diǎn)如下:
。1)知識目標(biāo):①掌握指數(shù)函數(shù)的概念;②掌握指數(shù)函數(shù)的圖象和性質(zhì);③能初步利用指數(shù)函數(shù)的概念解決實(shí)際問題;
(2)技能目標(biāo):①滲透數(shù)形結(jié)合的基本數(shù)學(xué)思想方法②培養(yǎng)學(xué)生觀察、聯(lián)想、類比、猜測、歸納的能力;
。3)情感目標(biāo):①體驗(yàn)從特殊到一般的學(xué)習(xí)規(guī)律,認(rèn)識事物之間的普遍聯(lián)系與相互轉(zhuǎn)化,培養(yǎng)學(xué)生用聯(lián)系的觀點(diǎn)看問題②通過教學(xué)互動促進(jìn)師生情感,激發(fā)學(xué)生的學(xué)習(xí)興趣,提高學(xué)生抽象、概括、分析、綜合的能力③領(lǐng)會數(shù)學(xué)科學(xué)的應(yīng)用價(jià)值。
(4)教學(xué)重點(diǎn):指數(shù)函數(shù)的圖象和性質(zhì)。
。5)教學(xué)難點(diǎn):指數(shù)函數(shù)的圖象性質(zhì)與底數(shù)a的關(guān)系。
突破難點(diǎn)的關(guān)鍵:尋找新知生長點(diǎn),建立新舊知識的聯(lián)系,在理解概念的基礎(chǔ)上充分結(jié)合圖象,利用數(shù)形結(jié)合來掃清障礙。
二、教法設(shè)計(jì)
由于《指數(shù)函數(shù)》這節(jié)課的特殊地位,在本節(jié)課的教法設(shè)計(jì)中,我力圖通過這一節(jié)課的教學(xué)達(dá)到不僅使學(xué)生初步理解并能簡單應(yīng)用指數(shù)函數(shù)的知識,更期望能引領(lǐng)學(xué)生掌握研究初等函數(shù)圖象性質(zhì)的一般思路和方法,為今后研究其它的函數(shù)做好準(zhǔn)備,從而達(dá)到培養(yǎng)學(xué)生學(xué)習(xí)能力的目的,我根據(jù)自己對“誘思探究”教學(xué)模式和“情景式”教學(xué)模式的認(rèn)識,將二者結(jié)合起來,主要突出了幾個(gè)方面:
1。創(chuàng)設(shè)問題情景。按照指數(shù)函數(shù)的在生活中的實(shí)際背景給出兩個(gè)實(shí)例,充分調(diào)動學(xué)生的學(xué)習(xí)興趣,激發(fā)學(xué)生的探究心理,順利引入課題,而這兩個(gè)例子又恰好為研究指數(shù)函數(shù)中底數(shù)大于1和底數(shù)大于0小于1的圖象做好了準(zhǔn)備。
2。強(qiáng)化“指數(shù)函數(shù)”概念。引導(dǎo)學(xué)生結(jié)合指數(shù)的有關(guān)概念來歸納出指數(shù)函數(shù)的定義,并向?qū)W生指出指數(shù)函數(shù)的形式特點(diǎn),請學(xué)生思考對于底數(shù)a是否需要限制,如不限制會有什么問題出現(xiàn),這樣避免了學(xué)生對于底數(shù)a范圍分類的不清楚,也為研究指數(shù)函數(shù)的圖象做了“分類討論”的鋪墊。
3。突出圖象的作用。在數(shù)學(xué)學(xué)習(xí)過程中,圖形始終使我們需要借助的重要輔助手段。一位數(shù)學(xué)家曾經(jīng)說過“數(shù)離形時(shí)少直觀,形離數(shù)時(shí)難入微”,而在研究指數(shù)函數(shù)的性質(zhì)時(shí),更是直接由圖象觀察得出性質(zhì),因此圖象發(fā)揮了主要的作用。
4。注意數(shù)學(xué)與生活和實(shí)踐的聯(lián)系。數(shù)學(xué)的本質(zhì)是來源于生活,服務(wù)于實(shí)踐。在課堂教學(xué)的引入、例題的講解和課外知識的拓展部分,都介紹了與指數(shù)函數(shù)息息相關(guān)的生活問題,力圖使學(xué)生了解到數(shù)學(xué)的基礎(chǔ)學(xué)科作用,培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用意識。
三、學(xué)法指導(dǎo)
本節(jié)課是在學(xué)習(xí)完“指數(shù)”的概念和運(yùn)算后編排的,針對學(xué)生實(shí)際情況,我主要在以下幾個(gè)方面做了嘗試:
1。再現(xiàn)原有認(rèn)知結(jié)構(gòu)。在引入兩個(gè)生活實(shí)例后,請學(xué)生回憶有關(guān)指數(shù)的概念,幫助學(xué)生再現(xiàn)原有認(rèn)知結(jié)構(gòu),為理解指數(shù)函數(shù)的概念做好準(zhǔn)備。
2。領(lǐng)會常見數(shù)學(xué)思想方法。在借助圖象研究指數(shù)函數(shù)的性質(zhì)時(shí)會遇到分類討論、數(shù)形結(jié)合等基本數(shù)學(xué)思想方法,這些方法將會貫穿整個(gè)高中的數(shù)學(xué)學(xué)習(xí)。
3。在互相交流和自主探
高中數(shù)學(xué)說課稿 篇8
各位領(lǐng)導(dǎo)、專家、同仁:您們好!
我說課的內(nèi)容是高中數(shù)學(xué)第二冊(上冊)第七章《直線和圓的方程》中的第六節(jié)“曲線和方程”的第一課時(shí),下面我的說課將從以下幾個(gè)方面進(jìn)行闡述:
一、教材分析
教材的地位和作用
“曲線和方程”這節(jié)教材揭示了幾何中的形與代數(shù)中的數(shù)相統(tǒng)一的關(guān)系,為“作形判數(shù)”與“就數(shù)論形”的相互轉(zhuǎn)化開辟了途徑,這正體現(xiàn)了解析幾何這門課的基本思想,對全部解析幾何教學(xué)有著深遠(yuǎn)的影響。學(xué)生只有透徹理解了曲線和方程的意義,才算是尋得了解析幾何學(xué)習(xí)的入門之徑。如果以為學(xué)生不真正領(lǐng)悟曲線和方程的關(guān)系,照樣能求出方程、照樣能計(jì)算某些難題,因而可以忽視這個(gè)基本概念的教學(xué),這不能不說是一種“舍本逐題”的偏見,應(yīng)該認(rèn)識到這節(jié)“曲線和方程”的開頭課是解析幾何教學(xué)的“重頭戲”!
根據(jù)以上分析,確立教學(xué)重點(diǎn)是:“曲線的方程”與“方程的曲線”的概念;難點(diǎn)是:怎樣利用定義驗(yàn)證曲線是方程的曲線,方程是曲線的方程。
二、教學(xué)目標(biāo)
根據(jù)教學(xué)大綱的要求以及本教材的地位和作用,結(jié)合高二學(xué)生的認(rèn)知特點(diǎn)確定教學(xué)目標(biāo)如下:
知識目標(biāo):
1、了解曲線上的點(diǎn)與方程的解之間的一一對應(yīng)關(guān)系;
2、初步領(lǐng)會“曲線的方程”與“方程的曲線”的概念;
3、學(xué)會根據(jù)已有的情景資料找規(guī)律,進(jìn)而分析、判斷、歸納結(jié)論;
4、強(qiáng)化“形”與“數(shù)”一致并相互轉(zhuǎn)化的思想方法。
能力目標(biāo):
1、通過直線方程的引入,加強(qiáng)學(xué)生對方程的解和曲線上的點(diǎn)的一一對應(yīng)關(guān)系的認(rèn)識;
2、在形成曲線和方程的概念的教學(xué)中,學(xué)生經(jīng)歷觀察、分析、討論等數(shù)學(xué)活動過程,探索出結(jié)論,并能有條理的闡述自己的觀點(diǎn);
3、能用所學(xué)知識理解新的概念,并能運(yùn)用概念解決實(shí)際問題,從中體會轉(zhuǎn)化化歸的思想方法,提高思維品質(zhì),發(fā)展應(yīng)用意識。
情感目標(biāo):
1、通過概念的引入,讓學(xué)生感受從特殊到一般的認(rèn)知規(guī)律;
2、通過反例辨析和問題解決,培養(yǎng)合作交流、獨(dú)立思考等良好的個(gè)性品質(zhì),以及勇于批判、敢于創(chuàng)新的科學(xué)精神。
三、重難點(diǎn)突破
“曲線的方程”與“方程的曲線”的概念是本節(jié)的重點(diǎn),這是由于本節(jié)課是由直觀表象上升到抽象概念的過程,學(xué)生容易對定義中為什么要規(guī)定兩個(gè)關(guān)系產(chǎn)生困惑,原因是不理解兩者缺一都將擴(kuò)大概念的外延。由于學(xué)生已經(jīng)具備了用方程表示直線、拋物線等實(shí)際模型,積累了感性認(rèn)識的基礎(chǔ),所以可用舉反例的方法來解決困惑,通過反例揭示“兩者缺一”與直覺的矛盾,從而又促使學(xué)生對概念表述的嚴(yán)密性進(jìn)行探索,自然地得出定義。為了強(qiáng)化其認(rèn)識,又決定用集合相等的概念來解釋曲線和方程的對應(yīng)關(guān)系,并以此為工具來分析實(shí)例,這將有助于學(xué)生的理解,有助于學(xué)生通其法,知其理。
怎樣利用定義驗(yàn)證曲線是方程的曲線,方程是曲線的方程是本節(jié)的難點(diǎn)。因?yàn)閷W(xué)生在作業(yè)中容易犯想當(dāng)然的錯(cuò)誤,通常在由已知曲線建立方程的時(shí)候,不驗(yàn)證方程的解為坐標(biāo)的點(diǎn)在曲線上,就斷然得出所求的是曲線方程。這種現(xiàn)象在高考中也屢見不鮮。為了突破難點(diǎn),本節(jié)課設(shè)計(jì)了三種層次的問題,幻燈片9是概念的直接運(yùn)用,幻燈片10是概念的逆向運(yùn)用,幻燈片11是證明曲線的方程。通過這些例題讓學(xué)生再一次體會“二者”缺一不可。
四、學(xué)情分析
此前,學(xué)生已知,在建立了直角坐標(biāo)系后平面內(nèi)的點(diǎn)和有序?qū)崝?shù)對之間建立了一一對應(yīng)關(guān)系,已有了用方程(有時(shí)以函數(shù)式的形式出現(xiàn))表示曲線的感性認(rèn)識(特別是二元一次方程表示直線),現(xiàn)在要進(jìn)一步研究平面內(nèi)的曲線和含有兩個(gè)變數(shù)的方程之間的關(guān)系,是由直觀表象上升到抽象概念的過程,對學(xué)生有相當(dāng)大的難度。學(xué)生在學(xué)習(xí)時(shí)容易產(chǎn)生的問題是,不理解“曲線上的點(diǎn)的坐標(biāo)都是方程的解”和“以這個(gè)方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn)”這兩句話在揭示“曲線和方程”關(guān)系時(shí)各自所起的作用。本節(jié)課的教學(xué)目標(biāo)也只能是初步領(lǐng)會,要求學(xué)生能答出曲線和方程間必須滿足兩個(gè)關(guān)系時(shí)才能稱作“曲線的方程”和“方程的曲線”,兩者缺一不可,并能借助實(shí)例指出兩個(gè)關(guān)系的區(qū)別。
五、教法分析
新課程強(qiáng)調(diào)教師要調(diào)整自己的角色,改變傳統(tǒng)的教育方式,教師要由傳統(tǒng)意義上的知識的傳授者和學(xué)生的管理者,轉(zhuǎn)變?yōu)閷W(xué)生發(fā)展的促進(jìn)者和幫助者,簡單的教書匠轉(zhuǎn)變?yōu)閷?shí)踐的研究者,或研究的實(shí)踐者,在教育方式上,也要體現(xiàn)出以人為本,以學(xué)生為中心,讓學(xué)生真正成為學(xué)習(xí)的主人而不是知識的奴隸,基于此,本節(jié)課遵循了概念學(xué)習(xí)的四個(gè)基本步驟,重點(diǎn)采用了問題探究和啟發(fā)式相結(jié)合的教學(xué)方法。
從實(shí)例、到類比、到推廣的問題探究,它對激發(fā)學(xué)生學(xué)習(xí)興趣,培養(yǎng)學(xué)習(xí)能力都十分有利。啟發(fā)引導(dǎo)學(xué)生得出概念,深化概念,并應(yīng)用它去討論、研究和解決問題。在生生合作,師生互動中解決問題,為提高學(xué)生分析問題、解決問題的能力打下了基礎(chǔ)。
利用多媒體輔助教學(xué),節(jié)省了時(shí)間,增大了信息量,增強(qiáng)了直觀形象性。
六、學(xué)法分析
基礎(chǔ)教育課程改革要求加強(qiáng)學(xué)習(xí)方式的改變,提倡學(xué)習(xí)方式的多樣化,各學(xué)科課程通過引導(dǎo)學(xué)生主動參與,親身實(shí)踐,獨(dú)立思考,合作探究,發(fā)展學(xué)生搜集處理信息的能力,獲取新知識的能力,分析和解決問題的能力,以及交流合作的能力,基于此,本節(jié)課從實(shí)例引入→類比→推廣→得概念→概念挖掘深化→具體應(yīng)用→作業(yè)中的研究性問題的思考,始終讓學(xué)生主動參與,親身實(shí)踐,獨(dú)立思考,與合作探究相結(jié)合,在生生合作,師生互動中,使學(xué)生真正成為知識的發(fā)現(xiàn)者和知識的研究者。
七、教學(xué)過程分析
1、感性認(rèn)識階段——以舊帶新、提出課題
高中數(shù)學(xué)說課稿 篇9
一、教學(xué)背景分析
1、教材結(jié)構(gòu)分析
《圓的方程》安排在高中數(shù)學(xué)第二冊(上)第七章第六節(jié)。圓作為常見的簡單幾何圖形,在實(shí)際生活和生產(chǎn)實(shí)踐中有著廣泛的應(yīng)用。圓的方程屬于解析幾何學(xué)的基礎(chǔ)知識,是研究二次曲線的開始,對后續(xù)直線與圓的位置關(guān)系、圓錐曲線等內(nèi)容的學(xué)習(xí),無論在知識上還是方法上都有著積極的意義,所以本節(jié)內(nèi)容在整個(gè)解析幾何中起著承前啟后的作用。
2、學(xué)情分析
圓的方程是學(xué)生在初中學(xué)習(xí)了圓的概念和基本性質(zhì)后,又掌握了求曲線方程的一般方法的基礎(chǔ)上進(jìn)行研究的。但由于學(xué)生學(xué)習(xí)解析幾何的時(shí)間還不長、學(xué)習(xí)程度較淺,且對坐標(biāo)法的運(yùn)用還不夠熟練,在學(xué)習(xí)過程中難免會出現(xiàn)困難。另外學(xué)生在探究問題的能力,合作交流的意識等方面有待加強(qiáng)。
根據(jù)上述教材結(jié)構(gòu)與內(nèi)容分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)和心理特征,我制定如下教學(xué)目標(biāo):
3、教學(xué)目標(biāo)
(1) 知識目標(biāo):①掌握圓的標(biāo)準(zhǔn)方程;
、跁蓤A的標(biāo)準(zhǔn)方程寫出圓的半徑和圓心坐標(biāo),能根據(jù)條件寫出圓的標(biāo)準(zhǔn)方程;
③利用圓的標(biāo)準(zhǔn)方程解決簡單的實(shí)際問題。
(2) 能力目標(biāo):①進(jìn)一步培養(yǎng)學(xué)生用代數(shù)方法研究幾何問題的能力;
、诩由顚(shù)形結(jié)合思想的理解和加強(qiáng)對待定系數(shù)法的運(yùn)用;
、墼鰪(qiáng)學(xué)生用數(shù)學(xué)的意識。
(3) 情感目標(biāo):①培養(yǎng)學(xué)生主動探究知識、合作交流的意識;
②在體驗(yàn)數(shù)學(xué)美的過程中激發(fā)學(xué)生的學(xué)習(xí)興趣。
根據(jù)以上對教材、教學(xué)目標(biāo)及學(xué)情的分析,我確定如下的教學(xué)重點(diǎn)和難點(diǎn):
4、教學(xué)重點(diǎn)與難點(diǎn)
(1)重點(diǎn):圓的標(biāo)準(zhǔn)方程的求法及其應(yīng)用。
(2)難點(diǎn): ①會根據(jù)不同的已知條件求圓的標(biāo)準(zhǔn)方程;
、谶x擇恰當(dāng)?shù)淖鴺?biāo)系解決與圓有關(guān)的實(shí)際問題。
為使學(xué)生能達(dá)到本節(jié)設(shè)定的教學(xué)目標(biāo),我再從教法和學(xué)法上進(jìn)行分析:
二、教法學(xué)法分析
1、教法分析 為了充分調(diào)動學(xué)生學(xué)習(xí)的積極性,本節(jié)課采用“啟發(fā)式”問題教學(xué)法,用環(huán)環(huán)相扣的問題將探究活動層層深入,使教師總是站在學(xué)生思維的最近發(fā)展區(qū)上。另外我恰當(dāng)?shù)睦枚嗝襟w課件進(jìn)行輔助教學(xué),借助信息技術(shù)創(chuàng)設(shè)實(shí)際問題的情境既能激發(fā)學(xué)生的學(xué)習(xí)興趣,又直觀的引導(dǎo)了學(xué)生建模的過程。
2、學(xué)法分析 通過推導(dǎo)圓的標(biāo)準(zhǔn)方程,加深對用坐標(biāo)法求軌跡方程的理解。通過求圓的標(biāo)準(zhǔn)方程,理解必須具備三個(gè)獨(dú)立的條件才可以確定一個(gè)圓。通過應(yīng)用圓的標(biāo)準(zhǔn)方程,熟悉用待定系數(shù)法求的過程。
下面我就對具體的教學(xué)過程和設(shè)計(jì)加以說明:
三、教學(xué)過程與設(shè)計(jì)
整個(gè)教學(xué)過程是由七個(gè)問題組成的問題鏈驅(qū)動的,共分為五個(gè)環(huán)節(jié):
創(chuàng)設(shè)情境 啟迪思維 深入探究 獲得新知 應(yīng)用舉例 鞏固提高
反饋訓(xùn)練 形成方法 小結(jié)反思 拓展引申
下面我從縱橫兩方面敘述我的教學(xué)程序與設(shè)計(jì)意圖。
首先:縱向敘述教學(xué)過程
(一)創(chuàng)設(shè)情境——啟迪思維
問題一 已知隧道的截面是半徑為4m的半圓,車輛只能在道路中心線一側(cè)行駛,一輛寬為2。7m,高為3m的貨車能不能駛?cè)脒@個(gè)隧道?
通過對這個(gè)實(shí)際問題的探究,把學(xué)生的思維由用勾股定理求線段CD的長度轉(zhuǎn)移為用曲線的方程來解決。一方面幫助學(xué)生回顧了舊知——求軌跡方程的一般方法,另一方面,在得到汽車不能通過的結(jié)論的同時(shí)學(xué)生自己推導(dǎo)出了圓心在原點(diǎn),半徑為4的圓的標(biāo)準(zhǔn)方程,從而很自然的進(jìn)入了本課的主題。用實(shí)際問題創(chuàng)設(shè)問題情境,讓學(xué)生感受到問題來源于實(shí)際,應(yīng)用于實(shí)際,激發(fā)了學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)欲望。這樣獲取的知識,不但易于保持,而且易于遷移。
通過對問題一的探究,抓住了學(xué)生的注意力,把學(xué)生的思維引到用坐標(biāo)法研究圓的方程上來,此時(shí)再把問題深入,進(jìn)入第二環(huán)節(jié)。
(二)深入探究——獲得新知
問題二 1、根據(jù)問題一的探究能不能得到圓心在原點(diǎn),半徑為的圓的方程?
2、如果圓心在,半徑為時(shí)又如何呢?
這一環(huán)節(jié)我首先讓學(xué)生對問題一進(jìn)行歸納,得到圓心在原點(diǎn),半徑為4的圓的標(biāo)準(zhǔn)方程后,引導(dǎo)學(xué)生歸納出圓心在原點(diǎn),半徑為r的圓的標(biāo)準(zhǔn)方程。然后再讓學(xué)生對圓心不在原點(diǎn)的情況進(jìn)行探究。我預(yù)設(shè)了三種方法等待著學(xué)生的探究結(jié)果,分別是:坐標(biāo)法、圖形變換法、向量平移法。
得到圓的標(biāo)準(zhǔn)方程后,我設(shè)計(jì)了由淺入深的三個(gè)應(yīng)用平臺,進(jìn)入第三環(huán)節(jié)。
(三)應(yīng)用舉例——鞏固提高
I、直接應(yīng)用 內(nèi)化新知
問題三 1、寫出下列各圓的標(biāo)準(zhǔn)方程:
(1)圓心在原點(diǎn),半徑為3;
(2)經(jīng)過點(diǎn),圓心在點(diǎn)。
2、寫出圓的圓心坐標(biāo)和半徑。
我設(shè)計(jì)了兩個(gè)小問題,第一題是直接或間接的給出圓心坐標(biāo)和半徑求圓的標(biāo)準(zhǔn)方程,第二題是給出圓的標(biāo)準(zhǔn)方程求圓心坐標(biāo)和半徑,這兩題比較簡單,可以安排學(xué)生口答完成,目的是先讓學(xué)生熟練掌握圓心坐標(biāo)、半徑與圓的標(biāo)準(zhǔn)方程之間的關(guān)系,為后面探究圓的切線問題作準(zhǔn)備。
II、靈活應(yīng)用 提升能力
問題四 1、求以點(diǎn)為圓心,并且和直線相切的圓的方程。
2、求過點(diǎn),圓心在直線上且與軸相切的圓的方程。
3、已知圓的方程為,求過圓上一點(diǎn)的切線方程。
你能歸納出具有一般性的結(jié)論嗎?
已知圓的方程是,經(jīng)過圓上一點(diǎn)的切線的方程是什么?
我設(shè)計(jì)了三個(gè)小問題,第一個(gè)小題有了剛剛解決問題三的基礎(chǔ),學(xué)生會很快求出半徑,根據(jù)圓心坐標(biāo)寫出圓的標(biāo)準(zhǔn)方程。第二個(gè)小題有些困難,需要引導(dǎo)學(xué)生應(yīng)用待定系數(shù)法確定圓心坐標(biāo)和半徑再求解,從而理解必須具備三個(gè)獨(dú)立的條件才可以確定一個(gè)圓。第三個(gè)小題解決方法較多,我預(yù)設(shè)了四種方法再一次為學(xué)生的發(fā)散思維創(chuàng)設(shè)了空間。最后我讓學(xué)生由第三小題的結(jié)論進(jìn)行歸納、猜想,在論證經(jīng)過圓上一點(diǎn)圓的切線方程的過程中,又一次模擬了真理發(fā)現(xiàn)的過程,使探究氣氛達(dá)到高潮。
III、實(shí)際應(yīng)用 回歸自然
問題五 如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度AB=20m,拱高OP=4m,在建造時(shí)每隔4m需用一個(gè)支柱支撐,求支柱的長度(精確到0。01m)。
我選用了教材的例3,它是待定系數(shù)法求出圓的三個(gè)參數(shù)的又一次應(yīng)用,同時(shí)也與引例相呼應(yīng),使學(xué)生形成解決實(shí)際問題的一般方法,培養(yǎng)了學(xué)生建模的習(xí)慣和用數(shù)學(xué)的意識。
(四)反饋訓(xùn)練——形成方法
問題六 1、求過原點(diǎn)和點(diǎn),且圓心在直線上的圓的標(biāo)準(zhǔn)方程。
2、求圓過點(diǎn)的切線方程。
3、求圓過點(diǎn)的切線方程。
接下來是第四環(huán)節(jié)——反饋訓(xùn)練。這一環(huán)節(jié)中,我設(shè)計(jì)三個(gè)小題作為鞏固性訓(xùn)練,給學(xué)生一塊“用武”之地,讓每一位同學(xué)體驗(yàn)學(xué)習(xí)數(shù)學(xué)的樂趣,成功的喜悅,找到自信,增強(qiáng)學(xué)習(xí)數(shù)學(xué)的愿望與信心。另外第3題是我特意安排的一道求過圓外一點(diǎn)的圓的切線方程,由于學(xué)生剛剛歸納了過圓上一點(diǎn)圓的切線方程,因此很容易產(chǎn)生思維的負(fù)遷移,另外這道題目有兩解,學(xué)生容易漏掉斜率不存在的情況,這時(shí)引導(dǎo)學(xué)生用數(shù)形結(jié)合的思想,結(jié)合初中已有的圓的知識進(jìn)行判斷,這樣的設(shè)計(jì)對培養(yǎng)學(xué)生思維的嚴(yán)謹(jǐn)性具有良好的效果。
(五)小結(jié)反思——拓展引申
1、課堂小結(jié)
把圓的標(biāo)準(zhǔn)方程與過圓上一點(diǎn)圓的切線方程加以小結(jié),提煉數(shù)形結(jié)合的思想和待定系數(shù)的方法
、賵A心為,半徑為r 的圓的標(biāo)準(zhǔn)方程為:
圓心在原點(diǎn)時(shí),半徑為r 的圓的標(biāo)準(zhǔn)方程為:。
、谝阎獔A的方程是,經(jīng)過圓上一點(diǎn)的切線的方程是:。
2、分層作業(yè)
(A)鞏固型作業(yè):教材P81-82:(習(xí)題7。6)1,2,4。(B)思維拓展型作業(yè):試推導(dǎo)過圓上一點(diǎn)的切線方程。
3、激發(fā)新疑
問題七 1、把圓的標(biāo)準(zhǔn)方程展開后是什么形式?
2、方程表示什么圖形?
在本課的結(jié)尾設(shè)計(jì)這兩個(gè)問題,作為對這節(jié)課內(nèi)容的鞏固與延伸,讓學(xué)生體會知識的起點(diǎn)與終點(diǎn)都蘊(yùn)涵著問題,舊的問題解決了,新的問題又產(chǎn)生了。在知識的拓展中再次掀起學(xué)生探究的熱情。另外它為下節(jié)課研究圓的一般方程作了重要的準(zhǔn)備。
以上是我縱向的教學(xué)過程及簡單的設(shè)計(jì)意圖,接下來,我從三個(gè)方面橫向的進(jìn)一步闡述我的教學(xué)設(shè)計(jì):
橫向闡述教學(xué)設(shè)計(jì)
(一)突出重點(diǎn) 抓住關(guān)鍵 突破難點(diǎn)
求圓的標(biāo)準(zhǔn)方程既是本節(jié)課的教學(xué)重點(diǎn)也是難點(diǎn),為此我布設(shè)了由淺入深的學(xué)習(xí)環(huán)境,先讓學(xué)生熟悉圓心、半徑與圓的標(biāo)準(zhǔn)方程之間的關(guān)系,逐步理解三個(gè)參數(shù)的重要性,自然形成待定系數(shù)法的解題思路,在突出重點(diǎn)的同時(shí)突破了難點(diǎn)。
第二個(gè)教學(xué)難點(diǎn)就是解決實(shí)際應(yīng)用問題,這是學(xué)生固有的難題,主要是因?yàn)閼?yīng)用問題的題目冗長,學(xué)生很難根據(jù)問題情境構(gòu)建數(shù)學(xué)模型,缺乏解決實(shí)際問題的信心,為此我首先用一道題目簡潔、貼近生活的實(shí)例進(jìn)行引入,激發(fā)學(xué)生的求知欲,同時(shí)我借助多媒體課件的演示,引導(dǎo)學(xué)生真正走入問題的情境之中,并從中抽象出數(shù)學(xué)模型,從而消除畏難情緒,增強(qiáng)了信心。最后再形成應(yīng)用圓的標(biāo)準(zhǔn)方程解決實(shí)際問題的一般模式,并嘗試應(yīng)用該模式分析和解決第二個(gè)應(yīng)用問題——問題五。這樣的設(shè)計(jì),使學(xué)生在解決問題的同時(shí),形成了方法,難點(diǎn)自然突破。
(二)學(xué)生主體 教師主導(dǎo) 探究主線
本節(jié)課的設(shè)計(jì)用問題做鏈,環(huán)環(huán)相扣,使學(xué)生的探究活動貫穿始終。從圓的標(biāo)準(zhǔn)方程的推導(dǎo)到應(yīng)用都是在問題的指引、我的指導(dǎo)下,由學(xué)生探究完成的。另外,我重點(diǎn)設(shè)計(jì)了兩次思維發(fā)散點(diǎn),分別是問題二和問題四的第三問,要求學(xué)生分組討論,合作交流,為學(xué)生設(shè)立充分的探究空間,學(xué)生在交流成果的過程中,既體驗(yàn)了科學(xué)研究和真理發(fā)現(xiàn)的復(fù)雜與艱辛,又在我的適度引導(dǎo)、側(cè)面幫助、不斷肯定下順利完成了探究活動并走向成功,在一個(gè)個(gè)問題的驅(qū)動下,高效的完成本節(jié)的學(xué)習(xí)任務(wù)。
(三)培養(yǎng)思維 提升能力 激勵創(chuàng)新
為了培養(yǎng)學(xué)生的理性思維,我分別在問題一和問題四中,設(shè)計(jì)了兩次由特殊到一般的學(xué)習(xí)思路,培養(yǎng)學(xué)生的歸納概括能力。在問題的設(shè)計(jì)中,我利用一題多解的探究,縱向挖掘知識深度,橫向加強(qiáng)知識間的聯(lián)系,培養(yǎng)了學(xué)生的創(chuàng)新精神,并且使學(xué)生的有效思維量加大,隨時(shí)對所學(xué)知識和方法產(chǎn)生有意注意,使能力與知識的形成相伴而行。
以上是我對這節(jié)課的教學(xué)預(yù)設(shè),具體的教學(xué)過程還要根據(jù)學(xué)生在課堂中的具體情況適當(dāng)調(diào)整,向生成性課堂進(jìn)行轉(zhuǎn)變。最后我以赫爾巴特的一句名言結(jié)束我的說課,發(fā)揮我們的創(chuàng)造性,力爭“使教育過程成為一種藝術(shù)的事業(yè)”。
【高中數(shù)學(xué)說課稿合集9篇】相關(guān)文章:
有關(guān)高中數(shù)學(xué)說課稿合集八篇07-24
有關(guān)高中數(shù)學(xué)說課稿合集8篇07-19