勾股定理說課稿
尊敬的各位評委、老師,您們好,我是臨沂市蒼山縣實驗中學的宋寧。今天我說課的內(nèi)容是人教版《數(shù)學》八年級下冊第十八章第一節(jié)《勾股定理》第一課時,我將從教材、教法與學法、教學過程、教學評價以及設計說明五個方面來闡述對本節(jié)課的理解與設計。
一、教材分析:
(一) 教材的地位與作用
從知識結(jié)構(gòu)上看,勾股定理揭示了直角三角形三條邊之間的數(shù)量關系,為后續(xù)學習解直角三角形提供重要的理論依據(jù),在現(xiàn)實生活中有著廣泛的應用。
從學生認知結(jié)構(gòu)上看,它把形的特征轉(zhuǎn)化成數(shù)量關系,架起了幾何與代數(shù)之間的橋梁;
勾股定理又是對學生進行愛國主義教育的良好素材,因此具有相當重要的地位和作用。
根據(jù)數(shù)學新課程標準以及八年級學生的認知水平我確定如下學習目標:知識技能、數(shù)學思考、問題解決、情感態(tài)度。其中【情感態(tài)度】方面,以我國數(shù)學文化為主線,激發(fā)學生熱愛祖國悠久文化的情感。
(二)重點與難點
為變被動接受為主動探究,我確定本節(jié)課的重點為:勾股定理的探索過程。限于八年級學生的思維水平,我將面積法(拼圖法)發(fā)現(xiàn)勾股定理確定為本節(jié)課的難點,我將引導學生動手實驗突出重點,合作交流突破難點。
二、教學與學法分析
教學方法 葉圣陶說過“教師之為教,不在全盤授予,而在相機誘導。”因此教師利用幾何直觀提出問題,引導學生由淺入深的探索,設計實驗讓學生進行驗證,感悟其中所蘊涵的思想方法。
學法指導 為把學習的主動權(quán)還給學生,教師鼓勵學生采用動手實踐,自主探索、合作交流的學習方法,讓學生親自感知體驗知識的形成過程。
三、教學過程
我國數(shù)學文化源遠流長、博大精深,為了使學生感受其傳承的魅力,我將本節(jié)課設計為以下五個環(huán)節(jié)。
首先,情境導入 古韻今風
給出《七巧八分圖》中的一組圖片,讓學生利用兩組七巧板進行合作拼圖。(請看視頻)讓學生觀察并思考三個正方形面積之間的關系?它們圍成了什么三角形?反映在三邊上,又蘊含著什么數(shù)學奧秘呢?寓教于樂,激發(fā)學生好奇、探究的欲望。
第二步 追溯歷史 解密真相
勾股定理的探索過程是本節(jié)課的重點,依照數(shù)學知識的循序漸進、螺旋上升的原則,我設計如下三個活動。
從上面低起點的問題入手,有利于學生參與探索。學生很容易發(fā)現(xiàn),在等腰三角形中存在如下關系。巧妙的將面積之間的關系轉(zhuǎn)化為邊長之間的關系,體現(xiàn)了轉(zhuǎn)化的思想。觀察發(fā)現(xiàn)雖然直觀,但面積計算更具說服力。將圖形轉(zhuǎn)化為邊在格線上的圖形,以便于計算圖形面積,體現(xiàn)了數(shù)形結(jié)合的思想。學生會想到用“數(shù)格子”的方法,這種方法雖然簡單易行,但對于下一步探索一般直角三角形并不適用,具有局限性。因此教師應引導學生利用“割”和“補”的方法求正方形C的面積,為下一步探索復雜圖形的面積做鋪墊。
突破等腰直角三角形的束縛,探索在一般情況下的直角三角形是否也存在這一結(jié)論呢?體現(xiàn)了“從特殊到一般”的認知規(guī)律。教師給出邊長單位長度分別為3、4、5的直角三角形,避免了學生因作圖不準確而產(chǎn)生的錯誤,也為下面 “勾三股四弦五”的提出埋下伏筆。有了上一環(huán)節(jié)的鋪墊,有效地分散了難點。在求正方形C的面積時,學生將展示“割”的方法, “補”的方法,有的學生可能會發(fā)現(xiàn)平移的方法,旋轉(zhuǎn)的方法,對于這兩種新方法教師應給于表揚,肯定學生的研究成果,培養(yǎng)學生的類比、遷移以及探索問題的能力。
使用幾何畫板動態(tài)演示,使幾何與代數(shù)之間的關系可視化。當為直角三角形時,改變?nèi)呴L度三邊關系不變,當∠α為銳角或鈍角時,三邊關系就改變了,進而強調(diào)了命題成立的前提條件必須是直角三角形。加深學生對勾股定理理解的同時也拓展了學生的視野。
以上三個環(huán)節(jié)層層深入步步引導,學生歸納得到命題1,從而培養(yǎng)學生的合情推理能力以及語言表達能力。
感性認識未必是正確的,推理驗證證實我們的猜想。
第三步 推陳出新 借古鼎新
教材中直接給出“趙爽弦圖”的證法對學生的思維是一種禁錮,教師創(chuàng)新使用教材,利用拼圖活動解放學生的大腦,讓學生發(fā)揮自己的聰明才智證明勾股定理。這是教學的難點也是重點,教師應給學生充分的自主探索的時間與空間,讓學生的思維在相互討論中碰撞、在相互學習中完善。教師深入到學生中間,觀察學生探究方法接受學生的質(zhì)疑,對于不同的拼圖方案給予肯定。從而體現(xiàn)出“學生是學習的主體,教師是組織者、引導者與合作者”這一教學理念。學生會發(fā)現(xiàn)兩種證明方案。
方案1為趙爽弦圖,學生講解論證過程,再現(xiàn)古代數(shù)學家的探索方法。方案2為學生自己探索的結(jié)果,論證之巧較方案1有異曲同工之妙。整個探索過程,讓學生經(jīng)歷由表面到本質(zhì),由合情推理到演繹推理的發(fā)掘過程,體會數(shù)學的嚴謹性。對比“古”、“今”兩種證法,讓學生體會“吹盡黃沙始到金”的喜悅,感受到“青出于藍而勝于藍”的自豪感。板書勾股定理,進而給出字母表示,培養(yǎng)學生的符號意識。
教師對“勾、股、弦”的含義以及古今中外對勾股定理的研究做一個介紹,使學生感受數(shù)學文化,培養(yǎng)民族自豪感和愛國主義精神。利用勾股樹動態(tài)演示,讓學生欣賞數(shù)學的精巧、優(yōu)美。
第四步 取其精華 古為今用
我按照“理解—掌握—運用”的梯度設計了如下三組習題。
(1)對應難點,鞏固所學;(2)考查重點,深化新知;(3)解決問題,感受應用
第五步 溫故反思 任務后延
在課堂接近尾聲時,我鼓勵學生從“四基”的要求對本節(jié)課進行小結(jié)。進而總結(jié)出一個定理、二個方案、三種思想、四種經(jīng)驗。
然后布置作業(yè),分層作業(yè)體現(xiàn)了教育面向全體學生的理念。
四、教學評價
在探究活動中,教師評價、學生自評與互評相結(jié)合,從而體現(xiàn)評價主體多元化和評價方式的多樣化。
五、設計說明
本節(jié)課探究體驗貫穿始終,展示交流貫穿始終,習慣養(yǎng)成貫穿始終,情感教育貫穿始終,文化育人貫穿始終。
采用 “七巧板”代替教材中“畢達哥拉斯地板磚”利用我國傳統(tǒng)文化引入課題,趙爽弦圖證明定理,符合本節(jié)課以我國數(shù)學文化為主線這一設計理念,展現(xiàn)了我國古代數(shù)學璀璨的歷史,激發(fā)學生再創(chuàng)數(shù)學輝煌的愿望。
以上就是我對《勾股定理》這一課的設計說明,有不足之處請評委老師們指正,謝謝大家。
【勾股定理說課稿】相關文章:
勾股定理說課稿范文08-08
初中勾股定理的說課稿07-18
初中數(shù)學《勾股定理》說課稿03-04
初中數(shù)學《勾股定理》說課稿06-25
初中數(shù)學勾股定理說課稿整理02-18
初中數(shù)學《勾股定理》說課稿7篇11-10
《探索勾股定理》初中數(shù)學說課稿11-11