国产激情久久久久影院小草_国产91高跟丝袜_99精品视频99_三级真人片在线观看

二次根式的加減說課稿

時間:2023-07-25 21:45:08 曉怡 初中說課稿 我要投稿
  • 相關(guān)推薦

二次根式的加減說課稿(精選10篇)

  作為一名辛苦耕耘的教育工作者,時常需要用到說課稿,說課稿可以幫助我們提高教學(xué)效果。那么你有了解過說課稿嗎?下面是小編幫大家整理的二次根式的加減說課稿,歡迎大家借鑒與參考,希望對大家有所幫助。

二次根式的加減說課稿(精選10篇)

  二次根式的加減說課稿 1

  尊敬的各位評委,大家好,今天我說課的內(nèi)容是人教版義務(wù)教育課程標(biāo)準(zhǔn)試驗教科書數(shù)學(xué)八年級下冊,第十六章《二次根式》第三節(jié)《二次根式的加減》第一課時。下面我將從教材、學(xué)情、教法、學(xué)法、教學(xué)過程和板書設(shè)計等六個方面進(jìn)行陳述。

  一. 說教材

  1、教材地理位置和作用

  二次根式的加減是八年級下冊第16章第3節(jié)內(nèi)容,是實數(shù)的一種基本運(yùn)算。本節(jié)是在上節(jié)學(xué)習(xí)的化簡二次根式的基礎(chǔ)上,進(jìn)一步學(xué)習(xí)二次根式的加減。在化簡二次根式的同時,引導(dǎo)學(xué)生概括出同類二次根式的概念,類比整式的加減運(yùn)算中的合并同類項,給出二次根式的加減運(yùn)算法則,進(jìn)而進(jìn)行二次根式的加減混合運(yùn)算。

  2、教學(xué)三維目標(biāo)

  知識與能力:

  1、了解同類二次根式的概念,掌握判斷同類二次根式的方法;

  2、學(xué)生能正確合并同類二次根式,進(jìn)行二次根式的加減運(yùn)算。

  過程與方法:

  正確掌握合并同類二次根式的方法,培養(yǎng)學(xué)生思維能力及運(yùn)算能力。

  情感、態(tài)度與價值觀:

  從簡單的同類二次根式的合并,層層深入,從解題的過程中,讓學(xué)生體會轉(zhuǎn)化的思維,滲透辯證唯物主義思想,通過二次根式的加減,滲透二次根式化簡合并后的形式簡單美。

  3、說教學(xué)重、難點

  教學(xué)重點:同類二次根式的概念;掌握二次根式的`加減運(yùn)算法則。

  教學(xué)難點:熟練掌握二次根式的加減運(yùn)算。

  二、說學(xué)情

  八年級學(xué)生的數(shù)學(xué)思維特征由具體邏輯思維逐步過渡到抽象邏輯思維,但仍有很大程度的經(jīng)驗性,二次根式需要有一定的抽象思維能力,而且他們的發(fā)散思維較弱,對同類問題還不能很好的做到舉一反三,對于本節(jié)課的內(nèi)容理解還是有一定的難度,因此教學(xué)過程中應(yīng)當(dāng)對這部分引起注意,運(yùn)用恰到好處的教學(xué)方法,充分激發(fā)學(xué)生的學(xué)習(xí)興趣。

  三、說教法

  合理的教學(xué)方法可以使教學(xué)活動達(dá)到事半功倍的效果,作為老師,不僅要傳授給學(xué)生數(shù)學(xué)知識,更重要的是傳授給學(xué)生數(shù)學(xué)思想、數(shù)學(xué)意識,因此,本節(jié)課在教學(xué)中采用引導(dǎo)探究法、比較法、剖析法,不斷糾正學(xué)生錯誤,從而樹立牢固的計算方法。

  四、說學(xué)法

  為了明確教學(xué)目標(biāo),深化新課標(biāo),先復(fù)習(xí)二次根式的化簡,并由此引出同類二次根式的定義,注意引導(dǎo)學(xué)生對同類二次根式和同類項、二次根式的加減的合并同類項進(jìn)行比較學(xué)習(xí)。在理解、掌握和運(yùn)用二次根式的加減法運(yùn)算法則的學(xué)習(xí)過程中,逐步滲透類比、概括等數(shù)學(xué)思想,提高學(xué)生用數(shù)學(xué)方法和解決實際問題的能力。在學(xué)習(xí)過程中,采用小組學(xué)習(xí)方式,組間競爭,按各組表現(xiàn)評出最優(yōu)小組,激發(fā)學(xué)生學(xué)習(xí)積極性和興趣。

  五、說教學(xué)過程

  根據(jù)新課標(biāo)、教材及學(xué)生特點,為真正實現(xiàn)學(xué)生的自主學(xué)習(xí),讓學(xué)生參與知識的形成過程,我設(shè)計了五個教學(xué)流程:課前導(dǎo)入、新課講授、鞏固練習(xí)、歸納小結(jié)、布置作業(yè)

  (一)課前導(dǎo)入

  1、什么最簡二次根式?

  2、化簡下列各數(shù)

  1)2,8,18

  2) 3,12,27

  3)5,20,35

  組織學(xué)生活動以小組為單位搶答,然后我按各組表現(xiàn)給小組計分做歸納講解,引出二次根式的有關(guān)知識。

  (二)新課講授

  在本環(huán)節(jié)共設(shè)置了四組問題,通過與整式加減的類比學(xué)習(xí),便于掌握二次根式加減法法則。通過解決問題討論交流的整過程,讓感受新知識解決的方法,并學(xué)會歸納所學(xué)新知識;讓學(xué)生在歸納的過程中加深知識的記憶,并增強(qiáng)學(xué)生的分析、概括能力。

  1、復(fù)習(xí)整式的加減運(yùn)算

  通過與整式加減的類比學(xué)習(xí),便于掌握二次根式加減法法則。

  2、例題計算:

  那么減法呢?(提出同類二次根式,找出解題規(guī)律方法。)

  3、從上面的計算可以看出二次根式的加減可以怎么進(jìn)行,自己試著總結(jié),師生共同歸納。

  4、討論:二次根式加減的步驟是什么?

  1)將每個二次根式化為最簡二次根式;

  2)找出同類二次根式;

  3)合并同類二次根式

  (一化二找三合并)

  通過解決問題,討論交流的整過程,讓感受新知識解決的方法,并學(xué)會歸納所學(xué)新知識;讓學(xué)生在歸納的過程中加深知識的記憶,并增強(qiáng)學(xué)生的分析、概括能力。

  (三)鞏固練習(xí)

  (四)課堂小結(jié)

  引導(dǎo)學(xué)生對知識、方法、思想、思維的收獲進(jìn)行總結(jié),并鼓勵學(xué)生,總結(jié)情感態(tài)度價值觀的收獲,培養(yǎng)學(xué)生戰(zhàn)勝困難的決心和信心。

  1.幾個二次根式化成最簡二次根式后,如果它們的被開方式相同,那么,這幾個二次根式稱為同類二次根式。

  2.二次根式相加減,應(yīng)先把各個二次根式化成最簡二次根式,然后把同類二次根式分別合并。

  3.同類二次根式可以像同類項那樣進(jìn)行合并。

  (五)布置作業(yè)

  必做題:第17頁習(xí)題21.3第1、2題

  選做題:習(xí)題21.3第3題

  六、說板書設(shè)計

  二次根式的加減

  二次根式加減時,可以先將二次根式化成最簡二次根式后,再將同類二次根式合并。

  以上就是我說課的全部內(nèi)容,歡迎各位老師批評指正,謝謝!

  二次根式的加減說課稿 2

  一、說教材

  首先談一談我對教材的理解。本節(jié)課選自人教版八年級下冊,主要探究二次根式加減法的計算方法。此前學(xué)生在學(xué)習(xí)二次根式的性質(zhì)和乘除法時都有過化簡二次根式的經(jīng)歷,為本節(jié)課的學(xué)習(xí)做了良好的鋪墊;本節(jié)課的學(xué)習(xí)為后續(xù)學(xué)習(xí)二次根式的混合運(yùn)算打下基礎(chǔ)。

  二、說學(xué)情

  再來談?wù)剬W(xué)生的情況。這一階段的學(xué)生已經(jīng)具備了一定的發(fā)現(xiàn)問題、解決問題的能力,邏輯思維和計算能力也有了很大的提升。因此教師在教學(xué)過程中,要針對學(xué)生的特點進(jìn)行有針對的教學(xué),以便于課程內(nèi)容的有效展開。

  三、說教學(xué)目標(biāo)

  基于以上分析,我制定了如下三維教學(xué)目標(biāo):

  (一)知識與技能

  掌握二次根式加減法的計算方法,并能用以解決簡單問題。

  (二)過程與方法

  通過探究二次根式加減法的計算方法的過程,進(jìn)一步感受由特殊到一般的思想,提升運(yùn)算能力。

  (三)情感、態(tài)度與價值觀

  感受數(shù)學(xué)和生活息息相關(guān),提升學(xué)習(xí)數(shù)學(xué)的興趣。

  四、說教學(xué)重難點

  在教學(xué)目標(biāo)的`實現(xiàn)過程中,教學(xué)重點是二次根式加減法的計算方法,教學(xué)難點是二次根式加減法的計算方法的探究。

  五、說教法學(xué)法

  現(xiàn)代教學(xué)理論認(rèn)為,在教學(xué)過程中,學(xué)生是學(xué)習(xí)的主體,教師是學(xué)習(xí)的組織者、引導(dǎo)者、合作者。根據(jù)這一教學(xué)理念,本節(jié)課我將采用講授法、練習(xí)法、小組合作探究等教學(xué)方法。

  六、說教學(xué)過程

  下面重點談?wù)勎覍虒W(xué)過程的設(shè)計。

  (一)導(dǎo)入新課

  此時我會請學(xué)生嘗試總結(jié)二次根式加減法的計算方法。以學(xué)生的現(xiàn)有能力,能夠說出其中的關(guān)鍵內(nèi)容。我會在此基礎(chǔ)上予以規(guī)范:一般地,二次根式加減時,可以先將二次根式化成最簡二次根式,再將被開方數(shù)相同的二次根式進(jìn)行合并。

  以上活動使得學(xué)生親身經(jīng)歷了知識的形成過程,更容易理解和接受,同時能夠提升分析問題、解決問題與類比遷移等諸多方面的能力。

  (三)課堂練習(xí)

  對于本節(jié)課而言,探究計算方法是其中一項目標(biāo),鞏固練習(xí)也同樣重要。我會選用教材上的例1和例2作為課堂練習(xí)題。

  例1的第(1)小題是兩個具體的二次根式相減,相對簡單,直接考查二次根式加減法的計算方法;第(2)小題二次根式的被開方數(shù)中含有字母,更加具有一般性,在一定程度上考驗抽象思維。

  例2第(1)小題難度有所提升,不僅二次根式相對復(fù)雜,而且是加減混合運(yùn)算;第(2)小題更是在加減混合運(yùn)算的基礎(chǔ)上出現(xiàn)了小括號,并且各括號內(nèi)部無法合并,因此多了一個去括號的步驟。

  這樣的練習(xí)題不僅進(jìn)一步完善了二次根式加減法的計算方法,而且能讓學(xué)生體會到二次根式的加減與整式的加減在流程上的一致性,從而建立新舊知識間的聯(lián)系,完善知識體系。

  (四)小結(jié)作業(yè)

  最后,我會請學(xué)生自主總結(jié)本節(jié)課的收獲,在鍛煉學(xué)生的總結(jié)與表達(dá)能力的同時獲得教學(xué)反饋。

  課后作業(yè)一方面是完成課后練習(xí),再次鞏固二次根式的加減法;另一方面是總結(jié)二次根式的概念、性質(zhì)及運(yùn)算法則,以便形成系統(tǒng)的認(rèn)知。

  二次根式的加減說課稿 3

  一、說教材的地位和作用

  1、內(nèi)容:

  二次根式的加減,利用二次根式化簡的數(shù)學(xué)思想解應(yīng)用題,含有二次根式的單項式與單項式相乘、相除;多項式與單項式相乘、相除;多項式與多項式相乘、相除;乘法公式的應(yīng)用.

  2.本節(jié)在教材中的地位與作用:

  二次根式是在學(xué)完了八年級下冊第十七章《反比例正函數(shù)》、第十八章《勾股定理及其應(yīng)用》等內(nèi)容的基礎(chǔ)之上繼續(xù)學(xué)習(xí)的,它也是今后學(xué)習(xí)其他數(shù)學(xué)知識的基礎(chǔ)

  二、說教學(xué)目標(biāo)、重點、難點:

  1、教學(xué)目標(biāo):

  (1) 知識與技能:

  1.含有二次根式的式子進(jìn)行乘除運(yùn)算和含有二次根式的多項式乘法公式的應(yīng)用.

  2.復(fù)習(xí)整式運(yùn)算知識并將該知識運(yùn)用于含有二次根式的式子的乘除、乘方等運(yùn)算.

  理解和掌握二次根式加減的方法.

  3.運(yùn)用二次根式、化簡解應(yīng)用題.

  4.通過復(fù)習(xí),將二次根式化成被開方數(shù)相同的最簡二次根式,進(jìn)行合并后解應(yīng)用題.

 。2) 數(shù)學(xué)思考:

  先提出問題,分析問題,在分析問題中,滲透對二次根式進(jìn)行加減的方法的理解.再總結(jié)經(jīng)驗,用它來指導(dǎo)根式的計算和化簡

 。3)解決問題:先提出問題,讓學(xué)生探討、分析問題,師生共同歸納,得出概念.再對概念的內(nèi)涵進(jìn)行分析,得出幾個重要結(jié)論,并運(yùn)用這些重要結(jié)論進(jìn)行二次根式的'計算和化簡.

 。3) 情感態(tài)度與價值觀:通過本單元的學(xué)習(xí)培養(yǎng)學(xué)生:利用規(guī)定準(zhǔn)確計算和化簡的嚴(yán)謹(jǐn)?shù)目茖W(xué)精神,經(jīng)過探索二次根式的重要結(jié)論,二次根式的乘除規(guī)定,發(fā)展學(xué)生觀察、分析、發(fā)現(xiàn)問題的能力.

  2、教學(xué)重點、難點:二次根式化簡為最簡根式.二次根式的乘除、乘方等運(yùn)算規(guī)律;

  三、說如何突出重點、突破難點:

  難點關(guān)鍵:會判定是否是最簡二次根式,講清如何解答應(yīng)用題既是本節(jié)課的重點,又是本節(jié)課的難點、關(guān)鍵點.由整式運(yùn)算知識遷移到含二次根式的運(yùn)算

  為了突破難點,教學(xué)中我注意:

  1.潛移默化地培養(yǎng)學(xué)生從具體到一般的推理能力,突出重點,突破難點.

  2.培養(yǎng)學(xué)生利用二次根式的規(guī)定和重要結(jié)論進(jìn)行準(zhǔn)確計算的能力,培養(yǎng)學(xué)生一絲不茍的科學(xué)精神.

  四、學(xué)情分析:二 次根式是在學(xué)完了八年級下冊第十七章《反比例正函數(shù)》、第十八章《勾股定理及其應(yīng)用》等內(nèi)容的基礎(chǔ)之上繼續(xù)學(xué)習(xí)的,它也是今后學(xué)習(xí)其他數(shù)學(xué)知識的基礎(chǔ)

  五、說教學(xué)教學(xué)策略和學(xué)法

  (一) 教法分析

  根據(jù)課程標(biāo)準(zhǔn),當(dāng)學(xué)生面對實際問題時,能主動嘗試著,從數(shù)學(xué)的角度運(yùn)用所學(xué)的知識和方法尋求解決問題的策略。教學(xué)方法是學(xué)生分組討論,合作探究、問題教學(xué)法,盡量做到問題讓學(xué)生提,答案讓學(xué)生想,過程讓學(xué)生寫,讓學(xué)生自己歸納總結(jié)。讓一個個有階梯的問題充滿課堂教學(xué),時時啟發(fā)學(xué)生的思維,這種教學(xué)方法符合以下教育規(guī)律:

  1、遵循由淺入深,由特殊到一般再到特殊,體現(xiàn)掌握知識與發(fā)展智力相統(tǒng)一的規(guī)律。

  2、創(chuàng)設(shè)問題情境,教師不斷啟發(fā)引導(dǎo)學(xué)生思考,由易到難,化繁為簡,體現(xiàn)教師的主導(dǎo)作用與學(xué)生主體作用相結(jié)合的規(guī)律。

 。ǘ 學(xué)法分析

  使得學(xué)生學(xué)會觀察生活,注意生活中的實際問題,學(xué)會自己探求知識;培養(yǎng)學(xué)生善于觀察思考的習(xí)慣,鼓勵學(xué)生將所學(xué)知識應(yīng)用到生活中去。學(xué)會尋找、發(fā)現(xiàn),學(xué)會歸納總結(jié),逐步掌握主動獲取知識的本領(lǐng)。

 。ㄈ 教學(xué)手段

  采用多媒體教學(xué),通過直觀演示圖象,更好地教會學(xué)生“二次根式的加減的研究方法,同時通過多媒體輔助手段展示教學(xué)內(nèi)容,擴(kuò)大課堂容量,提高教學(xué)效率。

  六、說教學(xué)過程的設(shè)計:

  本課共分為五個環(huán)節(jié):

 。ㄒ唬(fù)習(xí)引入新課;

 。ǘ⑻剿餍轮;

 。ㄈ㈧柟叹毩(xí);

 。ㄋ模、總結(jié)反思;

  (五)、布置作業(yè) 拓展升華。

  (一)、復(fù)習(xí)引入新課:利用"同類二次根式的"引入,激發(fā)學(xué)生好奇心和求知欲,創(chuàng)設(shè)情景,旨在引出新課題。既達(dá)到了復(fù)習(xí)的目的,又引出了新課.

  (二)、探索新知:本環(huán)節(jié)通過1個引題,2個例題的活動達(dá)到讓學(xué)生學(xué)會從實際問題中抽象出中心對稱的基本性質(zhì),并會用二次根式的加減法則解決有關(guān)實際問題。既培養(yǎng)了學(xué)生的觀察能力,又培養(yǎng)了學(xué)生的有理有據(jù)的作圖能力。

  (三)、鞏固練習(xí):在此環(huán)節(jié)中,利用課后的練習(xí)和選取的課外習(xí)題來鞏固二次根式的加減,來達(dá)到突出重點的目的。

  (四)、總結(jié)反思:在此環(huán)節(jié)中,我讓學(xué)生談收獲和體會。使學(xué)生對本節(jié)課有一個全面的回顧與思考,從中抓住本節(jié)課的主旨與重點,即充分調(diào)動學(xué)生的積極性,從而達(dá)到培養(yǎng)學(xué)生歸納概括能力和語言表達(dá)能力。

  (五)、布置作業(yè) 拓展升華:在此部分中分為必做題:教科書上的題。選做題:(思考題)來自練習(xí)冊。必做題面向全體學(xué)生,鞏固重點,達(dá)標(biāo)訓(xùn)練。選做題使不同的學(xué)生有不同的發(fā)展。這樣做既達(dá)到了面向全體學(xué)生,又做到了因材施教的目的。

  二次根式的加減說課稿 4

  一、素質(zhì)教育目標(biāo)

 。ㄒ唬┲R教學(xué)點

  1.使學(xué)生了解最簡二次根式的概念和同類二次根式的概念.

  2.能判斷二次根式中的同類二次根式.

  3.會用同類二次根式進(jìn)行二次根式的加減.

  (二)能力訓(xùn)練點

  通過本節(jié)的學(xué)習(xí),培養(yǎng)學(xué)生的思維能力并提高學(xué)生的運(yùn)算能力.

 。ㄈ┑掠凉B透點

  從簡單的同類二次根式的合并,層層深入,從解題的過程中,讓學(xué)生體會轉(zhuǎn)化的思維,滲透辯證唯物主義思想.

 。ㄋ模┟烙凉B透點

  通過二次根式的加減,滲透二次根式化簡合并后的形式簡單美.

  二、學(xué)法引導(dǎo)

  1.教師教法引導(dǎo)法、比較法、剖析法,在比較和剖析中,不斷糾正錯誤,從而樹立牢固的計算方法.

  2.學(xué)生學(xué)法通過不斷的練習(xí),從中體會、比較、二次根式加減法中,正確的方法使用,并注重小結(jié)出二次根式加減法的法則.

  三、重點·難點·疑點及解決辦法

  1.教學(xué)重點二次根式的加減法運(yùn)算.

  2.教學(xué)難點二次根式的化簡.

  3.疑點及解決辦法二次根式的加減法的關(guān)鍵在于二次根式的化簡,在適當(dāng)復(fù)習(xí)二次根的化簡后進(jìn)行一步引入幾個整式加減法的,以引起學(xué)生的求知欲與興趣,從而最后引入同類二次根式的加減法,可進(jìn)行階梯式教學(xué),由淺到深、由簡單到復(fù)雜的教學(xué)方法,以利于學(xué)生的理解、掌握和運(yùn)用,通過具體例題的計算,可由教師引導(dǎo),由學(xué)生總結(jié)出計算的步驟和注意的問題,還可以通過反例,讓學(xué)生去偽存真,這種比較法的教學(xué)可使學(xué)生對概念的理解、法則的運(yùn)用更加準(zhǔn)確和熟練,并能提高學(xué)生的學(xué)習(xí)興趣,以達(dá)到更好的學(xué)習(xí)效果.

  四、課時安排

  2課時

  五、教具學(xué)具準(zhǔn)備

  投影片

  六、師生互動活動設(shè)計

  1.復(fù)習(xí)最簡二根式整式及的加減運(yùn)算,引入二次根式的加減運(yùn)算,盡量讓學(xué)生回答問題.

  2.教師通過例題的.示范讓學(xué)生了解什么是二次根式的加減法,并引入同類的二次根式的定義.

  3.再通過較復(fù)雜的二次根式的加減法計算,引導(dǎo)學(xué)生小結(jié)歸納出二次根式的加減法的法則.

  4.通過學(xué)生的反復(fù)訓(xùn)練,發(fā)現(xiàn)問題及時糾正,并引導(dǎo)學(xué)生從解題過程中體會理解二次根式加減法的實質(zhì)及解決的方法.

  七、教學(xué)步驟

 。ㄒ唬┟鞔_目標(biāo)

  學(xué)習(xí)二次根式化簡的目的是為了能將一些最終能化為同類二次根式項相合并,從而達(dá)到化繁為簡的目的,本節(jié)課就是研究二次根式的加減法.

 。ǘ┱w感知

  同類二次根式的概念應(yīng)分二層含義去理解

  (1)化簡后

 。2)被開方數(shù)還相同.通過正確理解二次根式加減法的法則來準(zhǔn)確地實施二次根式加減法的運(yùn)算,應(yīng)特別注意合并同類二次根式時僅將它們的系數(shù)相加減,根式一定要保持不變,并可對比整式的加減法則以增加對合并同類二次根式的理解,增強(qiáng)綜合運(yùn)算的能力.

  二次根式的加減說課稿 5

  教材分析:

  本節(jié)內(nèi)容出自九年級數(shù)學(xué)上冊第二十一章第三節(jié)的第一課時,本節(jié)在研究最簡二次根式和二次根式的乘除的基礎(chǔ)上,來學(xué)習(xí)二次根式的加減運(yùn)算法則和進(jìn)一步完善二次根式的化簡。本小節(jié)重點是二次根式的加減運(yùn)算,教材從一個實際問題引出二次根式的加減運(yùn)算,使學(xué)生感到研究二次根式的加減運(yùn)算是解決實際問題的需要。通過探索二次根式加減運(yùn)算,并用其解決一些實際問題,來提高我們用數(shù)學(xué)解決實際問題的意識和能力。另外,通過本小節(jié)學(xué)習(xí)為后面學(xué)生熟練進(jìn)行二次根式的加減運(yùn)算以及加、減、乘、除混合運(yùn)算打下了鋪墊。

  學(xué)生分析:

  本節(jié)課的內(nèi)容是知識的延續(xù)和創(chuàng)新,學(xué)生積極主動的投入討論、交流、建構(gòu)中,自主探索、動手操作、協(xié)作交流,全班學(xué)生具有較扎實的知識和創(chuàng)新能力,通過自學(xué)、小組討論大部分學(xué)生能夠達(dá)到教學(xué)目標(biāo),少部分學(xué)生有困難,基礎(chǔ)差、自學(xué)能力差,因此要提供賞識性評價教學(xué)策略,給予個別關(guān)照、心理暗示以及適當(dāng)?shù)木窦,克服自卑心理,讓他們逐步樹立自尊心與自信心,從而完成自己的學(xué)習(xí)任務(wù)。

  設(shè)計理念:

  新課程有效課堂教學(xué)明確倡導(dǎo),學(xué)生是學(xué)習(xí)的主人,在學(xué)生自學(xué)文本的基礎(chǔ)上動手實踐、自主探究、合作交流,來倡導(dǎo)新的學(xué)習(xí)觀,讓他們完成二次根式加減知識研究。教師從過去知識的傳授者轉(zhuǎn)變?yōu)閷W(xué)生的自主性、探究性、合作性學(xué)習(xí)活動的設(shè)計者和組織者,與學(xué)生零距離接觸共同探究。在教學(xué)過程中教師設(shè)置開放的、面向?qū)嶋H的、富有挑戰(zhàn)性的問題情境,使學(xué)生在嘗試、探索、思考、交流與合作中培養(yǎng)分析、歸納、總結(jié)的能力,把“要我學(xué)”變成“我要學(xué)”,通過開放式命題,嘗試從不同角度尋求解決問題的方法,養(yǎng)成良好的學(xué)習(xí)習(xí)慣,掌握學(xué)習(xí)策略,并根據(jù)活動中示范和指導(dǎo)培養(yǎng)學(xué)生大膽闡述并討論觀點,說明所獲討論的有效性,并對推論進(jìn)行評價。從而營造一個接納的、支持的、寬容的良好氛圍進(jìn)行學(xué)習(xí)。

  教學(xué)目標(biāo)知識與技能目標(biāo):

  會化簡二次根式,了解同類二次根式的概念,會進(jìn)行簡單的二次根式的加減法;通過加減運(yùn)算解決生活的實際問題。

  過程與方法目標(biāo):

  通過類比整式加減法運(yùn)算體驗二次根式加減法運(yùn)算的過程;學(xué)生經(jīng)歷由實際問題引入數(shù)學(xué)問題的過程,發(fā)展學(xué)生的.抽象概括能力。

  情感態(tài)度與價值觀:

  通過對二次根式加減法的探究,激發(fā)學(xué)生的探索熱情,讓學(xué)生充分參與到數(shù)學(xué)學(xué)習(xí)的過程中來,使他們體驗到成功的樂趣.

  重點、難點:重點:

  合并被開放數(shù)相同的同類二次根式,會進(jìn)行簡單的二次根式的加減法。

  難點:

  二次根式加減法的實際應(yīng)用。

  關(guān)鍵問題 :

  了解同類二次根式的概念,合并同類二次根式,會進(jìn)行二次根式的加減法。

  教學(xué)方法:.

  1. 引導(dǎo)發(fā)現(xiàn)法:在教師的啟發(fā)引導(dǎo)下,鼓勵學(xué)生積極參與,與實際問題相結(jié)合,采用“問題—探索—發(fā)現(xiàn)”的研究模式,讓學(xué)生自主探索,合作學(xué)習(xí),歸納結(jié)論,掌握規(guī)律。

  2. 類比法:由實際問題導(dǎo)入二次根式加減運(yùn)算;類比合并同類項合并同類二次根式。

  3.嘗試訓(xùn)練法:通過學(xué)生嘗試,教師針對個別問題進(jìn)行點撥指導(dǎo),實現(xiàn)全優(yōu)的教育效果。

  二次根式的加減說課稿 6

  教學(xué)目的

  1.使學(xué)生掌握最簡二次根式的定義,并會應(yīng)用此定義判斷一個根式是否為最簡二次根式;

  2.會運(yùn)用積和商的算術(shù)平方根的性質(zhì),把一個二次根式化為最簡二次根式。

  教學(xué)重點

  最簡二次根式的定義。

  教學(xué)難點

  一個二次根式化成最簡二次根式的方法。

  教學(xué)過程

  一、復(fù)習(xí)引入

  1.把下列各根式化簡,并說出化簡的根據(jù):

  2.引導(dǎo)學(xué)生觀察考慮:

  化簡前后的根式,被開方數(shù)有什么不同?

  化簡前的被開方數(shù)有分?jǐn)?shù),分式;化簡后的被開方數(shù)都是整數(shù)或整式,且被開方數(shù)中開得盡方的因數(shù)或因式,被移到根號外。

  3.啟發(fā)學(xué)生回答:

  二次根式,請同學(xué)們考慮一下被開方數(shù)符合什么條件的二次根式叫做最簡二次根式?

  二、講解新課

  1.總結(jié)學(xué)生回答的內(nèi)容后,給出最簡二次根式定義:

  滿足下列兩個條件的二次根式叫做最簡二次根式:

  (1)被開方數(shù)的因數(shù)是整數(shù),因式是整式;

  (2)被開方數(shù)中不含能開得盡的因數(shù)或因式。2;特

  最簡二次根式定義中第(1)條說明被開方數(shù)不含有分母;分母是1的例外。第(2)條說明被開方數(shù)中每個因式的指數(shù)小于別注意被開方數(shù)應(yīng)化為因式連乘積的形式。

  2.練習(xí):

  下列各根式是否為最簡二次根式,不是最簡二次根式的說明原因:

  3.例題:

  例1 把下列各式化成最簡二次根式:

  例2 把下列各式化成最簡二次根式:

  4.總結(jié)

  把二次根式化成最簡二次根式的根據(jù)是什么?應(yīng)用了什么方法?

  當(dāng)被開方數(shù)為整數(shù)或整式時,把被開方數(shù)進(jìn)行因數(shù)或因式分解,根據(jù)積的算術(shù)平方根的性質(zhì),把開得盡方的因數(shù)或因式用它的算術(shù)平方根代替移到根號外面去。

  當(dāng)被開方數(shù)是分?jǐn)?shù)或分式時,根據(jù)分式的基本性質(zhì)和商的算術(shù)平方根的性質(zhì)化去分母。

  此方法是先根據(jù)分式的基本性質(zhì)把被開方數(shù)的`分母化成能開得盡方的因式,然后分子、分母再分別化簡。

  三、鞏固練習(xí)

  1.把下列各式化成最簡二次根式:

  2.判斷下列各根式,哪些是最簡二次根式?哪些不是最簡二次根式?如果不是,把它化成最簡二次根式。

  四、小結(jié)

  本節(jié)課學(xué)習(xí)了最簡二次根式的定義及化簡二次根式的方法。同學(xué)們掌握用最簡二次根式的定義判斷一個根式是否為最簡二次根式,要根據(jù)積的算術(shù)平方根和商的算術(shù)平方根的性質(zhì)把一個根式化成最簡二次根式,特別注意當(dāng)被開方數(shù)為多項式時要進(jìn)行因式分解,被開方數(shù)為兩個分?jǐn)?shù)的和則要先通分,再化簡。

  五、布置作業(yè)

  下列各式化成最簡二次根式:

  二次根式的加減說課稿 7

  教學(xué)目的:

  1、在二次根式的混合運(yùn)算中,使學(xué)生掌握應(yīng)用有理化分母的方法化簡和計算二次根式;

  2、會求二次根式的代數(shù)的值;

  3、進(jìn)一步提高學(xué)生的綜合運(yùn)算能力。

  教學(xué)重點:在二次根式的混合運(yùn)算中,靈活選擇有理化分母的方法化簡二次根式

  教學(xué)難點:正確進(jìn)行二次根式的混合運(yùn)算和求含有二次根式的代數(shù)式的值

  教學(xué)過程:

  一、二次根式的混合運(yùn)算

  例1 計算:

  分析:(1)題是二次根式的加減運(yùn)算,可先把前三個二次根式化最簡二次根式,把第四式的分母有理化,然后再進(jìn)行二次根式的加減運(yùn)算。

  (2)題是含乘方、加、減和除法的混合運(yùn)算,應(yīng)按運(yùn)算的順序進(jìn)行計算,先算括號內(nèi)的式子,最后進(jìn)行除法運(yùn)算。注意的計算。

  練習(xí)1:P206 / 8--① P207 / 1①②

  例2 計算

  問:計算思路是什么?

  答:先把第一人的括號內(nèi)的式子通分,把第二個括號內(nèi)的式子的分母有理化,再進(jìn)行計算。

  二、求代數(shù)式的值。 注意兩點:

  (1)如果已知條件為含二次根式的式子,先把它化簡;

  (2)如果代數(shù)式是含二次根式的式子,應(yīng)先把代數(shù)式化簡,再求值。

  例3 已知,求的值。

  分析:多項式可轉(zhuǎn)化為用與表示的式子,因此可根據(jù)已知條件中的及的值。求得與的值。在計算中,先把及的式了有理化分母?墒褂嬎愫啽。

  例4 已知,求的值。

  觀察代數(shù)式的特點,請說出求這個代數(shù)式的'值的思路。

  答:所求的代數(shù)式中,相減的兩個式子的分母都含有二次根式,為化去它們的分母中的根號,可以分別先把各自的分母有理化或進(jìn)行]通分,把這個代數(shù)式化簡后,再求值。

  三、小結(jié)

  1、對于二次根式的混合混合運(yùn)算。應(yīng)根據(jù)二次根式的加、減、乘除和乘方運(yùn)算的順序進(jìn)行,即先進(jìn)行乘方運(yùn)算,再進(jìn)行乘、除運(yùn)算,最后進(jìn)行加、減運(yùn)算。如果有括號,先進(jìn)行括號內(nèi)的式子的運(yùn)算,運(yùn)算結(jié)果要化為最簡二次根式。

  2、在代數(shù)式求值問題中,如果已知條件所求式子中有含二次根式(或分式)的式子,應(yīng)先把它們化簡,然后再求值。

  3、在進(jìn)行二次根式的混合運(yùn)算時,要根據(jù)題目特點,靈活選擇解題方法,目的在于使計算更簡捷。

  四、作業(yè)

  P206 / 7 P206 / 8---②③

  二次根式的加減說課稿 8

  教學(xué)目標(biāo)

  1.使學(xué)生進(jìn)一步理解二次根式的意義及基本性質(zhì),并能熟練 地化簡含二次根式的式子;

  2.熟練地進(jìn)行二次根式的加、減、乘、除混合運(yùn)算.

  教學(xué)重點和難點

  重點:含二次根式的式子的混合運(yùn)算.

  難點:綜合運(yùn)用二次根式的 性質(zhì)及運(yùn)算法則化簡和計算含二次根式的式子.

  教學(xué)過程設(shè)計

  一、復(fù)習(xí)

  1.請同學(xué)回憶二次根式有哪些基本性質(zhì)?用式子表示出來,并說明各 式成立的條件.

  指出:二次根式的這些基本性質(zhì)都是在一定條件 下才成立的,主要應(yīng)用于化簡二次根式.

  2.二次根式 的乘法及除法的法則是什么?用式子表示出來.

  指出:二次根式的乘、除法則也是在一定條件下成立的.把兩個二次根式相除,

  計算結(jié)果要把分母有理化.

  3.在二次根式的化簡或計算中,還常用到以下兩個二次根式的關(guān)系式:

  4.在含有二次根式的式子的'化簡及求值等問題中,常運(yùn)用三個可逆的式子:

  二、例題

  例1 x取什么值時,下列各式在實數(shù)范圍內(nèi)有意義:

  分析:

  (1)題是兩個二次根式的和,x的取值必須使兩個二次根式都有意義;

  (3)題是兩個二次根式的和, x的取值必須使兩個二次根式都有意義;

  (4)題的分子是二次根式,分母是含x的單項式,因此x的取值必須使二次根式有意義,同時使分母的值不等于零.

  x-2且x0.

  解因為n2-90, 9-n20,且n-30,所以n2=9且n3,所以

  例3

  分析:第一個二次根式的被開方數(shù)的分子與分母都可以分解因式.把它們分別分解因式后,再利用二次根式的基本性質(zhì)把式子化簡,化簡中應(yīng)注意利用題中的隱含條件3 -a0和1-a>0.

  解 因為1-a>0,3-a0,所以

  a<1,|a-2|=2-a.

  (a-1)(a-3)=[-(1-a)][-(3-a)]=(1-a)(3-a)0.

  這些性質(zhì)化簡含二次根式的式子時,要注意上述條件,并要闡述清楚是怎樣滿足這些條件的.

  問:上面的代數(shù)式中的兩個二次根式的被開方數(shù)的式子如何化為完全平方式?

  分析:先把第二個式子化簡,再把兩個式子進(jìn)行通分,然后進(jìn)行計算.

  注意:

  所以在化簡過程中,

  例6

  分析:如果把兩個式子通分,或把每一個式子的分母有理化再進(jìn)行計算,這兩種方法的運(yùn)算量都較大,根據(jù)式子的結(jié)構(gòu)特點,分別把兩個式子的分母看作一個整體,用換元法把式子變形,就可以使運(yùn)算變?yōu)楹喗荩?/p>

  a+b=2(n+2),ab=(n+2)2-(n2-4)=4(n+2),

  三、課堂練習(xí)

  1.選擇題:

  A.a(chǎn)2B.a(chǎn)2

  C.a(chǎn)2D.a(chǎn)<2

  A .x+2 B.-x-2

  C.-x+2D.x-2

  A.2x B.2a

  C.-2x D.-2a

  2.填空題:

  4.計算:

  四、小結(jié)

  1.本節(jié)課復(fù)習(xí)的五個基本問題是“二次根式”這一章的主要基礎(chǔ)知識,同學(xué)們要深刻理解并牢固掌握.

  2.在一次根式的化簡、計算及求值的過程中,應(yīng)注意利用題中的使二次根式有意義的條件(或題中的隱含條件),即被開方數(shù)為非負(fù)數(shù),以確定被開方數(shù)中的字母或式子的取值范圍.

  3.運(yùn)用二次根式的四個基本性質(zhì)進(jìn)行二次根式的運(yùn)算時,一定要注意論述每一個性質(zhì)中字母的取值范圍的條件.

  4.通過例題的討論,要學(xué)會綜合、靈活運(yùn)用二次根式的意義、基本性質(zhì)和法則以及有關(guān)多項式的因式分解,解答有關(guān)含二次根式的式子的化簡、計算及求值等問題.

  五、作業(yè)

  1.x是什么值時,下列各式在實數(shù)范圍內(nèi)有意義?

  2.把下列各式化成最簡二次根式:

  二次根式的加減說課稿 9

  教學(xué)目標(biāo)

  1、根據(jù)了解二次根式的概念:

  2、知道被開方數(shù)必須是非負(fù)數(shù)的理由;

  3、能運(yùn)用二次根式的性質(zhì)解決實際問題

  4新設(shè)計:我們知道,用字母表示數(shù),可以將字母和數(shù)一起運(yùn)算。前面已經(jīng)學(xué)習(xí)了單項式、多項式和分式等概念和運(yùn)算,可以發(fā)現(xiàn),式的運(yùn)算本質(zhì)上就是對符號運(yùn)用運(yùn)算律所進(jìn)行的形式運(yùn)算。本節(jié)課主要討論如何對數(shù)和字母開平方而得到的特殊式子——二次根式的加、減、乘、除運(yùn)算。前面我們學(xué)習(xí)的平方根和算術(shù)平方根的概念和性質(zhì)是學(xué)習(xí)二次根式的基礎(chǔ),我們先來回憶一下平方根和算術(shù)平方根的有關(guān)知識。

  5、新設(shè)計:問題1平方根的概念,算術(shù)平方根的概念,平方根的性質(zhì)。

  6、學(xué)情分析:本班40名學(xué)生,成績參差不齊,程度差距很大,鑒于此,對于學(xué)生要分層教學(xué)。

  7、重點難點:1.重點:形如(a≥0)的式子叫做二次根式的概念;2.難點:運(yùn)用二次根式的性質(zhì)解決實際問題。

  8、教學(xué)過程6.1第一學(xué)時教學(xué)活動

  活動1【講授】二次根式

  教學(xué)過程設(shè)計

  創(chuàng)設(shè)情境,提出問題

  引言

  我們知道,用字母表示數(shù),可以將字母和數(shù)一起運(yùn)算。前面已經(jīng)學(xué)習(xí)了單項式、多項式和分式等概念和運(yùn)算,可以發(fā)現(xiàn),式的運(yùn)算本質(zhì)上就是對符號運(yùn)用運(yùn)算律所進(jìn)行的形式運(yùn)算。本節(jié)課主要討論如何對數(shù)和字母開平方而得到的特殊式子——二次根式的加、減、乘、除運(yùn)算。前面我們學(xué)習(xí)的平方根和算術(shù)平方根的概念和性質(zhì)是學(xué)習(xí)二次根式的基礎(chǔ),我們先來回憶一下平方根和算術(shù)平方根的有關(guān)知識。

  問題1平方根的概念,算術(shù)平方根的概念,平方根的性質(zhì)。

  師生活動:給學(xué)生充分思考和討論時間,讓他們回憶有關(guān)平方根和算術(shù)平方根的有關(guān)知識,才能在此基礎(chǔ)上再進(jìn)一步研究二次根式概念。

  設(shè)計意圖:回顧已學(xué)的數(shù)和式的'運(yùn)算,叢數(shù)和式運(yùn)算的完整性角度提出要研究的問題,讓學(xué)生了解本章將要學(xué)習(xí)的主要內(nèi)容,起到先行組織者的作用。

  問題2請思考下列問題

  面積為3的正方形的邊長為,面積為S的正方形邊長為。

  一個長方形圍欄,長是寬的2倍,面積為130㎡,則它的寬為m。

  一個物體從高處自由落下,落在地面所用的時間t(單位:s)與開始落下的高度h(單位:m)滿足關(guān)系h=5t2。如果用含有h的式子表示t,則t為。

  師生活動:學(xué)生思考并完成上述問題,用算術(shù)平方根表示結(jié)果,教師進(jìn)行適當(dāng)引導(dǎo)和評價。關(guān)鍵是幫助學(xué)生實現(xiàn)從數(shù)的算術(shù)平方根到用含有字母的式子表示算術(shù)平方根的抽象。

  設(shè)計意圖:為概括二次根式的概念提供具體例子,同時發(fā)展符號意識。

  抽象概括,形成概念

  問題3上面得到的式子有什么共同特征?

  師生活動:教師引導(dǎo)學(xué)生概括得出共同特征,并給出二次根式的定義。

  追問1中a的取值有要求嗎?為什么?

  師生活動:教師引導(dǎo)學(xué)生討論,分析共同特點,歸納得到二次根式的概念,并強(qiáng)調(diào)“被開方數(shù)非負(fù)”。

  追問2二次根式有什么樣的特點?

  師生活動:給學(xué)生充分的思考和討論時間,讓學(xué)生總結(jié)二次根式的特點,教師歸納總結(jié)。

  設(shè)計意圖:采用從具體到抽象的方式,通過歸納的出二次根式的概念。

  辨析概念,應(yīng)用鞏固

  例1下列各式是二次根式嗎?

  師生活動:教師引導(dǎo)學(xué)生從二次根式的特征出發(fā)思考問題。

  例2求下列二次根式中字母的取值范圍:

  師生活動:教師可以通過問題“觀察各式被開方數(shù)是什么?你能根據(jù)二次根式的概念的帶答案嗎?”引導(dǎo)學(xué)生從概念出發(fā)思考問題。

  追問:求二次根式中字母的取值范圍的基本依據(jù):

  師生活動:給學(xué)生充分的思考和討論時間,讓學(xué)生總結(jié)回答,教師歸納總結(jié)。

  問題4 x取何值時,下列二次根式有意義?

  師生活動:學(xué)生搶答加分,調(diào)動學(xué)大亨的積極性。

  設(shè)計意圖:讓學(xué)生獨立思考,再追問。

  問題5計算

  師生活動:通過簡單計算讓學(xué)生總結(jié)規(guī)律。

  例3計算

  師生活動:學(xué)生直接回答。

  設(shè)計意圖:通過加分制調(diào)動學(xué)生的積極性,提高學(xué)生的注意力,通過練習(xí)鞏固知識點。

  問題7計算

  師生活動:通過簡單計算讓學(xué)生總結(jié)規(guī)律。

  追問:

  師生活動:學(xué)生討論回答,教師歸納總結(jié)。

  設(shè)計意圖:通過簡單計算學(xué)生自己歸納總結(jié)二次根式的性質(zhì),加深學(xué)生的印象。

  綜合應(yīng)用,深化提高

  練習(xí)1學(xué)生完成教科書第3頁的練習(xí)。

  練習(xí)2若1<x<4,則化簡

  設(shè)計意圖:辨別二次根式的概念,確定二次根式有意的條件。利用二次根式的性質(zhì)解題。

  小結(jié)

  教師與學(xué)生一起回顧本節(jié)課所學(xué)主要內(nèi)容,并請學(xué)生回答下列問題:

  什么叫二次根式?二次根式有意義的條件是什么?二次根式的值的范圍是什么?

  二次根式與算術(shù)平方根有什么聯(lián)系與區(qū)別?

  我們以前學(xué)過整式、分式都能像數(shù)一樣進(jìn)行運(yùn)算,你認(rèn)為對于二次根式應(yīng)該進(jìn)一步研究哪些問題?

  設(shè)計意圖:共同回顧本節(jié)課學(xué)習(xí)的概念,再次練習(xí)算術(shù)平方根理解二次根式的概念,提出二次根式應(yīng)該研究的問題。

  布置作業(yè)

  教科書習(xí)題16.1第1、2題。

  教學(xué)反思:

  1、在實際授課中,通過以下步驟讓學(xué)生認(rèn)識、理解、并掌握本節(jié)知識:

  (1)讓學(xué)生回顧了算術(shù)平方根與平方根的概念,并且通過一個思考欄目的兩道題,得出二次根式的定義后又復(fù)習(xí)了算術(shù)平方根具有雙重非負(fù)性;

 。2)通過練習(xí)掌握如何判斷一個式子是否是二次根式的條件,并經(jīng)過例1掌握二次根式在實數(shù)范圍內(nèi)有意義的條件;

 。3)通過練習(xí)讓學(xué)生得出二次根式的兩個性質(zhì),體會從特殊到一般的思維過程,進(jìn)而掌握公式的一般推導(dǎo)方法;……,本節(jié)課大部分時間都是引導(dǎo)學(xué)生邊學(xué)邊做,讓學(xué)生經(jīng)歷了整個學(xué)習(xí)過程。

  2.在學(xué)習(xí)過程中,突出了引導(dǎo)學(xué)生自己得出結(jié)論,特別是二次根式的兩個性質(zhì),在做完思考題之后,學(xué)生自己就初步得出了結(jié)論,而且通過其他學(xué)生的補(bǔ)充越來越完善。

  3.讓學(xué)生自己找出性質(zhì)1和性質(zhì)2的區(qū)別與聯(lián)系,雖然不夠系統(tǒng)和完整,但通過這樣的訓(xùn)練,培養(yǎng)了學(xué)生總結(jié)規(guī)律的能力。

  4.在實際教學(xué)中,仍然存在著對課堂時間把握不精確的問題,出現(xiàn)了前松后緊的現(xiàn)象,以致有深度的練習(xí)沒時間完成,結(jié)束的也比較倉促。在今后教學(xué)中,應(yīng)注意時間的掌控。

  5.在引導(dǎo)學(xué)生探索求知和互動學(xué)習(xí)方面還有欠缺。新的教學(xué)理念要求教師在課堂教學(xué)中注意引導(dǎo)學(xué)生探究學(xué)習(xí),在我的課堂教學(xué)中,對學(xué)生探索求知進(jìn)行了引導(dǎo),并且鼓勵大家自己得出結(jié)論,但在互動方面做的還不夠,大部分學(xué)生都是獨立思考,很少與同學(xué)合作交流,今后的教學(xué)中應(yīng)多培養(yǎng)學(xué)生合作交流的意識,這樣有助于他們今后的生活和學(xué)習(xí)。

  二次根式的加減說課稿 10

  一、教學(xué)目標(biāo)

  1.了解二次根式的意義;

  2. 掌握用簡單的一元一次不等式解決二次根式中字母的取值問題;

  3. 掌握二次根式的性質(zhì) 和 ,并能靈活應(yīng)用;

  4.通過二次根式的計算培養(yǎng)學(xué)生的邏輯思維能力;

  5. 通過二次根式性質(zhì) 和 的介紹滲透對稱性、規(guī)律性的數(shù)學(xué)美.

  二、教學(xué)重點和難點

  重點:(1)二次根的意義;

  (2)二次根式中字母的取值范圍.

  難點:確定二次根式中字母的取值范圍.

  三、教學(xué)方法

  啟發(fā)式、講練結(jié)合.

  四、教學(xué)過程

  (一)復(fù)習(xí)提問

  1.什么叫平方根、算術(shù)平方根?

  2.說出下列各式的意義,并計算:

  通過練習(xí)使學(xué)生進(jìn)一步理解平方根、算術(shù)平方根的概念.

  觀察上面幾個式子的特點,引導(dǎo)學(xué)生總結(jié)它們的被平方數(shù)都大于或等于零,其中 ,

  表示的是算術(shù)平方根.

  (二)引入新課

  我們已遇到的這樣的式子是我們這節(jié)課研究的內(nèi)容,引出:

  新課:二次根式

  定義: 式子 叫做二次根式.

  對于 請同學(xué)們討論論應(yīng)注意的問題,引導(dǎo)學(xué)生總結(jié):

  (1)式子 只有在條件a0時才叫二次根式, 是二次根式嗎? 呢?

  若根式中含有字母必須保證根號下式子大于等于零,因此字母范圍的限制也是根式的一部分.

  (2) 是二次根式,而 ,提問學(xué)生:2是二次根式嗎?顯然不是,因此二次

  根式指的是某種式子的外在形態(tài).請學(xué)生舉出幾個二次根式的例子,并說明為什么是二次根式.下面例題根據(jù)二次根式定義,由學(xué)生分析、回答.

  例1 當(dāng)a為實數(shù)時,下列各式中哪些是二次根式?

  分析: , , , 、 、 、 四個是二次根式. 因為a是實數(shù)時,a+10、a2-1不能保證是非負(fù)數(shù),即a+10、a2-1可以是負(fù)數(shù)(如當(dāng)a-10時,a+10又如當(dāng)0

  例2 x是怎樣的實數(shù)時,式子 在實數(shù)范圍有意義?

  解:略.

  說明:這個問題實質(zhì)上是在x是什么數(shù)時,x-3是非負(fù)數(shù),式子 有意義.

  例3 當(dāng)字母取何值時,下列各式為二次根式:

  (1) (2) (3) (4)

  分析:由二次根式的定義 ,被開方數(shù)必須是非負(fù)數(shù),把問題轉(zhuǎn)化為解不等式.

  解:(1)∵a、b為任意實數(shù)時,都有a2+b20,當(dāng)a、b為任意實數(shù)時, 是二次根式.

  (2)-3x0,x0,即x0時, 是二次根式.

  (3) ,且x0,x0,當(dāng)x0時, 是二次根式.

  (4) ,即 ,故x-20且x-20, x2.當(dāng)x2時, 是二次根式.

  例4 下列各式是二次根式,求式子中的.字母所滿足的條件:

  (1) ; (2) ; (3) ; (4)

  分析:這個例題根據(jù)二次根式定義,讓學(xué)生分析式子中字母應(yīng)滿足的條件,進(jìn)一步鞏固二次根式的定義,.即: 只有在條件a0時才叫二次根式,本題已知各式都為二次根式,故要求各式中的被開方數(shù)都大于等于零.

  解:(1)由2a+30,得 .

  (2)由 ,得3a-10,解得 .

  (3)由于x取任何實數(shù)時都有|x|0,因此,|x|+0.10,于是 ,式子 是二次根式. 所以所求字母x的取值范圍是全體實數(shù).

  (4)由-b20得b20,只有當(dāng)b=0時,才有b2=0,因此,字母b所滿足的條件是:b=0.

  (三)小結(jié)(引導(dǎo)學(xué)生做出本節(jié)課學(xué)習(xí)內(nèi)容小結(jié))

  1.式子 叫做二次根式,實際上是一個非負(fù)的實數(shù)a的算術(shù)平方根的表達(dá)式.

  2.式子中,被開方數(shù)(式)必須大于等于零.

  (四)練習(xí)和作業(yè)

  練習(xí):

  1.判斷下列各式是否是二次根式

  分析:(2) 中, 是二次根式;(5)是二次根式. 因為x是實數(shù)時,x、x+1不能保證是非負(fù)數(shù),即x、x+1可以是負(fù)數(shù)(如x0時,又如當(dāng)x-1時=,因此(1)(3)(4)不是二次根式,(6)無意義.

  2.a是怎樣的實數(shù)時,下列各式在實數(shù)范圍內(nèi)有意義?

  五、作業(yè)

  教材P.172習(xí)題11.1;A組1;B組1.

  六、板書設(shè)計

【二次根式的加減說課稿】相關(guān)文章:

初中數(shù)學(xué)《二次根式》說課稿(通用6篇)12-15

二次根式的乘除教案01-01

二次根式測試題03-09

同類二次根式是什么03-16

初中二次根式教案03-09

二次根式練習(xí)題03-09

小數(shù)加減法說課稿08-08

小學(xué)數(shù)學(xué)整十加減說課稿04-01

異分母分?jǐn)?shù)加減法說課稿08-08