考研數(shù)學(xué)高數(shù)里要牢記的八大知識點
1.函數(shù)、極限與連續(xù)
重點考查極限的計算、已知極限確定原式中的未知參數(shù)、函數(shù)連續(xù)性的討論、間斷點類型的判斷、無窮小階的比較、討論連續(xù)函數(shù)在給定區(qū)間上零點的個數(shù)、確定方程在給定區(qū)間上有無實根。
2.一元函數(shù)微分學(xué)
重點考查導(dǎo)數(shù)與微分的定義、函數(shù)導(dǎo)數(shù)與微分的計算(包括隱函數(shù)求導(dǎo))、利用洛比達(dá)法則求不定式極限、函數(shù)極值與最值、方程根的個數(shù)、函數(shù)不等式的證明、與中值定理相關(guān)的證明、在物理和經(jīng)濟等方面的實際應(yīng)用、曲線漸近線的求法。
3.一元函數(shù)積分學(xué)
重點考查不定積分的計算、定積分的計算、廣義積分的計算及判斂、變上限函數(shù)的求導(dǎo)和極限、利用積分中值定理和積分性質(zhì)的證明、定積分的幾何應(yīng)用和物理應(yīng)用。
4.向量代數(shù)與空間解析幾何(數(shù)一)
主要考查向量的`運算、平面方程和直線方程及其求法、平面與平面、平面與直線、直線與直線之間的夾角,并會利用平面、直線的相互關(guān)系(平行、垂直、相交等))解決有關(guān)問題等,該部分一般不單獨考查,主要作為曲線積分和曲面積分的基礎(chǔ)。
5.多元函數(shù)微分學(xué)
重點考查多元函數(shù)極限存在、連續(xù)性、偏導(dǎo)數(shù)存在、可微分及偏導(dǎo)連續(xù)等問題、多元函數(shù)和隱函數(shù)的一階、二階偏導(dǎo)數(shù)求法、有條件極值和無條件極值。另外,數(shù)一還要求掌握方向?qū)?shù)、梯度、曲線的切線與法平面、曲面的切平面與法線。
6.多元函數(shù)積分學(xué)
重點考查二重積分在直角坐標(biāo)和極坐標(biāo)下的計算、累次積分、積分換序。此外,數(shù)一還要求掌握三重積分的計算、兩類曲線積分和兩種曲面積分的計算、格林公式、高斯公式及斯托克斯公式。
7.無窮級數(shù)(數(shù)一、數(shù)三)
重點考查正項級數(shù)的基本性質(zhì)和斂散性判別、一般項級數(shù)絕對收斂和條件收斂的判別、冪級數(shù)收斂半徑、收斂域及和函數(shù)的求法以及冪級數(shù)在特定點的展開問題。
8.常微分方程及差分方程
重點考查一階微分方程的通解或特解、二階線性常系數(shù)齊次和非齊次方程的特解或通解、微分方程的建立與求解。此外,數(shù)三考查差分方程的基本概念與一介常系數(shù)線形方程求解方法。數(shù)一還要求會伯努利方程、歐拉公式等。
【考研數(shù)學(xué)高數(shù)里要牢記的八大知識點】相關(guān)文章:
考研數(shù)學(xué)高數(shù)重要知識點總結(jié)05-21
考研數(shù)學(xué)高數(shù)必考定理06-08
考研數(shù)學(xué):高數(shù)重點考點05-30
考研數(shù)學(xué)秘籍:高數(shù)口訣05-27
考研數(shù)學(xué)高數(shù)的注意事項01-23
數(shù)學(xué)考研大綱解析:高數(shù)高分策略06-09
關(guān)于暑期考研數(shù)學(xué)的高數(shù)復(fù)習(xí)攻略06-29