国产激情久久久久影院小草_国产91高跟丝袜_99精品视频99_三级真人片在线观看

五年級數(shù)學(xué)《解簡易方程》教學(xué)反思

時間:2023-05-22 16:28:16 泓淇 小學(xué)教學(xué)反思 我要投稿
  • 相關(guān)推薦

五年級數(shù)學(xué)《解簡易方程》教學(xué)反思(精選11篇)

  隨著社會不斷地進(jìn)步,我們都希望有一流的課堂教學(xué)能力,反思指回頭、反過來思考的意思。反思應(yīng)該怎么寫呢?以下是小編整理的五年級數(shù)學(xué)《解簡易方程》教學(xué)反思(精選11篇),僅供參考,大家一起來看看吧。

五年級數(shù)學(xué)《解簡易方程》教學(xué)反思(精選11篇)

  五年級數(shù)學(xué)《解簡易方程》教學(xué)反思 篇1

  學(xué)生經(jīng)歷由天平上的具體操作抽象為代數(shù)問題的過程,能用等式的性質(zhì)(天平平衡的道理)列出方程,對于解比較簡單的方程,學(xué)生并不陌生。

  比如:x+4=7學(xué)生能夠很快說出x=3,但是就方程的書寫規(guī)范來說,有必要一開始就強(qiáng)化訓(xùn)練,老師規(guī)范的板書,以發(fā)揮首次感知先入為主的強(qiáng)勢效應(yīng),促進(jìn)良好的書寫習(xí)慣的形成。對于稍復(fù)雜的方程要放手讓學(xué)生去試一試,這樣就可以使探究式課堂教學(xué)進(jìn)入一個理想的境界。

  不難看出,學(xué)生經(jīng)歷了把運算符號“+”看錯成了“-”,又自行改正的過程,在這一過程中學(xué)生體驗到了緊張、焦急、期待,成功的感覺,這時的數(shù)學(xué)學(xué)習(xí)已進(jìn)入了學(xué)生的內(nèi)心,并成為學(xué)生生命成長的過程,真正落實了《數(shù)學(xué)課程標(biāo)準(zhǔn)》中“在數(shù)學(xué)學(xué)習(xí)活動中獲得成功的體驗,鍛煉克服困難的意志,建立自信心”的目標(biāo),在這個思維過程中,學(xué)生獲得了情感體驗和發(fā)現(xiàn)錯誤又自己解決問題的機(jī)會。老師以人為本,充分尊重學(xué)生,也體現(xiàn)在耐心的等待,熱切的期待的教學(xué)行為上,老師的教學(xué)行為充滿了人文關(guān)懷的氣息,微笑的臉龐、期待的眼神、鼓勵的話語,無時無刻不使學(xué)生感到這不僅是數(shù)學(xué)學(xué)習(xí)的過程,更是一種生命交往的過程,學(xué)生有了很安全的.心理空間,不然,他怎么會對老師說“老師,我太緊張了”,這是學(xué)生對老師的信任和自己不安的復(fù)雜情緒的表現(xiàn)。反思我們的教學(xué)行為,如果在課堂中多一些耐心和期待,就會有更多的愛灑向更多的學(xué)生,學(xué)生的人生歷程中就會多一份信心,多一份勇氣,多一份靈氣。

  五年級數(shù)學(xué)《解簡易方程》教學(xué)反思 篇2

  新課程的改革,使得小學(xué)的知識要體現(xiàn)與初中更加的接軌,五年級上冊第四單元“解簡易方程”中進(jìn)行了一次新的改革。能過本次活動我課下反思如下:

  1、在本課開始出示天平,提出“怎樣才能使得天平左邊只剩下X,而保持天平平衡”這一問題,引導(dǎo)學(xué)生由天平保持平衡的變化規(guī)律,推出 議程兩過保持相等的變換方法,這樣的過程做到了“寓知識于游戲,化抽象為形象,變空沒為具體”,使學(xué)生的學(xué)習(xí)具有形象性、趣味性。

  2、如果我在課前準(zhǔn)備一些“小蛋珠”來代替演示砝碼,學(xué)生會更直觀的明白方程保持不變與等式一樣的規(guī)律了。

  要求方程的解法要根據(jù)天平的原理來進(jìn)行解答,也就是說要通過等式的性質(zhì)來解方程,這一方法雖然說讓方程的解法找到了本質(zhì)的東西,但是也讓我感到了許多困惑:

  1、從教材的編排上,整體難度下降,有意避開了,形如:45-X=23等類型的題目。把用等式解決的'方法單一化了。在實際教學(xué)中我們要求學(xué)生較熟練地利用等式的方法來解方程,但用這樣的方法來解方程之后,書本不再出現(xiàn)X前面是減號或除號的方程題了,學(xué)生在列方程解實際應(yīng)用時,我們并不能刻意地強(qiáng)調(diào)學(xué)生不會列出X在后面的方程,我們更頭痛于學(xué)生的實際解答能力。在實際的方程應(yīng)用中,這種情況是不可避免的。很顯然這存在著目前的局限性了。對于好的學(xué)生來說,我們會讓他們嘗試接受--解答X在后面這類方程的解答方法,就是等號二邊同時加上X,再左右換位置,再二邊減一個數(shù),真有點麻煩了。而且有的學(xué)生還很難掌握這樣方法。

  2、 內(nèi)容看似少實際教得多。難度下降后,看起來教師要教的內(nèi)容變得少了,可以實際上反而是多了。教師要給他們補(bǔ)充X前面是除號或減號的方程的解法。要教他們列方程時怎么避免X前面是除號或減號的方程的出現(xiàn)等等。

  五年級數(shù)學(xué)《解簡易方程》教學(xué)反思 篇3

  解方程是數(shù)學(xué)領(lǐng)域里一塊兒重要內(nèi)容,在實際生活中,學(xué)會了列方程解決問題之后,很多不易用算術(shù)方法解答的習(xí)題,卻能列方程很容易地解答出來,這足以說明列方程解決問題比算術(shù)法解決問題有非常明顯的優(yōu)越性。

  今年我教的是四年級,所用教材是青島版五四制教材,第一單元就出現(xiàn)了解方程的內(nèi)容,這部分教材我已經(jīng)教學(xué)了四遍了,按理說這第五次教學(xué)這部分內(nèi)容應(yīng)該是易如反掌、揮灑自如,可是面對新教材的設(shè)計,我這個五年不教學(xué)高年級的老師卻有了很大困惑----本教材的教學(xué)設(shè)計打破了傳統(tǒng)的教學(xué)方法,而出乎我預(yù)料的則是借用天平演示使學(xué)生感悟“等式”,知道“等式兩邊都加上或減去都乘或除以同一個非零的數(shù),等式仍然成立”這個規(guī)律,從而使學(xué)生進(jìn)一步從真正意義上理解方程的意義,并學(xué)會運用等式的性質(zhì)解方程。在以前幾輪教材中,學(xué)習(xí)解方程之前都是先要求學(xué)生熟練掌握加、減、乘、除法各部分之間的關(guān)系,然后利用:一個加數(shù)=和-另一個加數(shù);被減數(shù)=減數(shù)+差;減數(shù)=被減數(shù)-差;被除數(shù)=商×除數(shù);除數(shù)=被除數(shù)÷商等關(guān)系式來求出方程的解,就連我自己小時候?qū)W習(xí)的解方程也都是根據(jù)加減、乘除法各部分之間的關(guān)系求方程的解的。

  開始我有些懷疑,以為只有青島版五四制這個版本的教材利用了等式的性質(zhì)教學(xué)的,于是急切的打開電腦找到各種版本的電子教材翻看這部分內(nèi)容,卻發(fā)現(xiàn)各種版本的教材設(shè)計思路是一樣的,都是先學(xué)習(xí)等式的基本性質(zhì),接著再運用等式的基本性質(zhì)解方程。為了徹底弄明白教材的編寫意圖,我又找到了這幾個版本的教材所配套的教師教學(xué)用書翻看,新教材編寫者大致都是這樣解釋的:長期以來,小學(xué)教學(xué)簡易方程時,方程變形的依據(jù)總是加減、乘除運算之間的關(guān)系,這實際上是用算術(shù)的思路求未知數(shù)。到了中學(xué)又要另起爐灶,引入等式的基本性質(zhì)或方程的同解原理來教學(xué)解方程。小學(xué)的思路及其算法掌握得越牢固,對中學(xué)代數(shù)起步教學(xué)的負(fù)遷移就越明顯。因此,現(xiàn)在根據(jù)《標(biāo)準(zhǔn)》的要求,從小學(xué)起就引入等式的基本性質(zhì),并以此為基礎(chǔ)導(dǎo)出解方程的方法。這就較為徹底地避免了同一內(nèi)容兩種思路、兩種算理解釋的現(xiàn)象,有利于加強(qiáng)中小學(xué)數(shù)學(xué)教學(xué)的銜接?戳诉@些內(nèi)容,我才從思想上認(rèn)可了這種設(shè)計思路,原來是為了使小學(xué)教學(xué)解方程和中學(xué)教學(xué)解方程的方法保持一致。

  理解了教材的設(shè)計意圖,我開始強(qiáng)迫自己扭轉(zhuǎn)老的教學(xué)思路。結(jié)果學(xué)生因為是初次接觸,課堂上學(xué)習(xí)的竟是那樣的有滋有味。但在后面的教學(xué)中,我漸漸發(fā)現(xiàn)采用等式的基本性質(zhì)解方程給學(xué)生帶來的竟然是局部的銜接,而存在局部的銜接對學(xué)生會更困難。從教材的編排上,整體難度雖然有所下降,卻把用等式的性質(zhì)解方程的方法單一化了。教材有意避開了形如a—X=b a÷x=b等類型的題目,不教學(xué)此類方程的求解方法,因為這類題目如果采用等式的性質(zhì)來解非常麻煩。很顯然采用等式的性質(zhì)這種方法教學(xué)小學(xué)階段的解方程目前存在著很大的局限性。

  但在教學(xué)列方程解決實際問題時,我們又不能避免學(xué)生在列方程時,依然出現(xiàn)形如a-x=b和a÷x=b的方程,特別是我們不能刻意地給學(xué)生強(qiáng)調(diào)不能列出X在后面做減數(shù)或做除數(shù)的方程,如果這樣強(qiáng)調(diào),學(xué)生心中會存在很大的疑惑,當(dāng)學(xué)生列出這樣的方程時,我們更頭痛于學(xué)生求解能力的局限性。

  鑒于以上原因,課堂上我采用了新老教學(xué)思路結(jié)合使用的方法,先從教材中的`新思路運用等式的基本性質(zhì)教會孩子解較簡單的方程,以便于日后初中學(xué)習(xí)時順利接軌,同時對于初中學(xué)習(xí)“移項”也能順利接收。但是面對現(xiàn)在四年級孩子的思維及接受能力,我再利用老教材的教學(xué)思路 “加減、乘除法各部分之間的關(guān)系”教給孩子解方程,至少這樣能讓我的學(xué)生會解各種類型的方程,特別是有利于孩子們列方程解決實際問題,他們不會再被“以乘代除”、“以加代減”的思路困擾著列方程,并且列出來還能順利解這個方程。

  我個人以為,這樣用新舊方法結(jié)合著教學(xué),既能讓學(xué)生為以后的學(xué)習(xí)做好銜接,形成綠色的通道,同時又體現(xiàn)解決同一問題方法、思路的多樣性。通過學(xué)生的課堂作業(yè),我發(fā)現(xiàn)教學(xué)效果出奇的好。

  通過解方程這部分內(nèi)容的教學(xué),我感到不論你的教齡有多長,你對同一教學(xué)內(nèi)容教學(xué)了有幾遍,每次教學(xué)都需要教師靜下心來好好的研究教材教法,這樣才能用最適合學(xué)生未來發(fā)展的方法去教學(xué)生。

  五年級數(shù)學(xué)《解簡易方程》教學(xué)反思 篇4

  在本課教學(xué)中,我主要采用小組合作學(xué)習(xí),討論的方式,讓學(xué)生探究新知識,效果較好。

  出示例題2,小組合作學(xué)習(xí),討論:

  ①你是怎樣理解圖意的?

 、谀闶侨绾瘟蟹匠痰?

 、勰闶歉鶕(jù)什么解方程的?④怎樣檢驗方程的解是否正確?然后班交流討論,展示學(xué)生的練習(xí)。

  指名回答,說說自己的分析。你對他的分析有什么要問的嗎?

  教師總結(jié)解題關(guān)鍵。

  教學(xué)例3時,讓學(xué)生觀察、分析,這道題與前面的練習(xí)題比較有什么區(qū)別?這道題可以怎樣解?(先小組交流后個人解答)學(xué)生找出解題關(guān)鍵,培養(yǎng)一題多解的`習(xí)慣與能力。

  最后讓學(xué)生做全課總結(jié):今天學(xué)習(xí)了什么知識?解方程的關(guān)鍵是什么?

  充分練習(xí),進(jìn)行思維訓(xùn)練,設(shè)計有趣的習(xí)題“幫小兔找家”:4x-12=20 3x=15 x+7=15 2x+3×2=16

  18-2x=2 15÷3+4x=25

  鞏固知識,激發(fā)興趣。

  五年級數(shù)學(xué)《解簡易方程》教學(xué)反思 篇5

  新課程的改革,使得小學(xué)的知識要體現(xiàn)與初中更加的接軌,五年級上冊第四單元“解簡易方程”中進(jìn)行了一次新的改革。

  要求方程的解法要根據(jù)天平的'原理來進(jìn)行解答,也就是說要通過等式的性質(zhì)來解方程,這一方法雖然說讓方程的解法找到了本質(zhì)的東西。老教材中解方程的教學(xué)是利用加減乘除各部分之間的關(guān)系解決的,學(xué)生只要掌握了一個加數(shù)=和-另一個加數(shù),減數(shù)=被減數(shù)-差,被減數(shù)=差+減數(shù),一個因數(shù)=積÷另一個因數(shù),除數(shù)=被除數(shù)÷商,被除數(shù)=商×除數(shù)這些關(guān)系式,不管是簡單的還是復(fù)雜的方程都可以用這些關(guān)系式去解。

  而我們新教材卻完全不是這種方法,它是利用天平的平衡原理得到等式的基本性質(zhì),即等式的兩邊同時加上或減去同一個數(shù)等式不變,和等式的兩邊同時乘或除以同一個數(shù)(0除外),等式不變進(jìn)行解方程的新教材如果能把天平的規(guī)律教學(xué)得到位,這樣就能把等式性質(zhì)掌握好,等式性質(zhì)掌握的好了解起方程來也有規(guī)律可循了。于是,我在教學(xué)時充分地利用天平實物以及課件讓學(xué)生深入地理解天平的平衡規(guī)律,從而順利地揭示出了等式的性質(zhì)。

  這樣在解簡易方程時學(xué)生很容易掌握方法。知道未知數(shù)加(或減)一個數(shù)時,只要在方程的兩邊同時減(或加)同一個數(shù),未知數(shù)乘(或除)一個數(shù)時,只要在方程的兩邊同時除(或乘)同一個數(shù)即可。一般不會出現(xiàn)運算符號弄錯的現(xiàn)象了。

  五年級數(shù)學(xué)《解簡易方程》教學(xué)反思 篇6

  義務(wù)教育小學(xué)階段五年級數(shù)學(xué)上冊第五單元《簡易方程》在解簡易方程呈現(xiàn)五個例題。

  其中例1以X+3=9為例,討論了X加減某一數(shù)的方程解法。教學(xué)重點是運用等式的性質(zhì)1解方程,并引入方程的解與解方程兩個概念。如圖所示:

  為了便于給出解方程全過程的直觀展示,例題中借助三幅天平演示圖,展現(xiàn)了解方程的完整思考過程,這一點值得稱道,對于學(xué)生來說,這樣的圖示剖析,有助于學(xué)生自我探究理解,學(xué)習(xí)解簡易方程,從而學(xué)會解簡易方程的方法。

  但問題來了。在例1當(dāng)中沒有完整的解題過程示范,只有檢驗過程的示范。如上圖所示。而完整的示范出現(xiàn)在例3,經(jīng)歷了例1運用等式性質(zhì)1解方程,例2利用等式性質(zhì)2解方程,遞進(jìn)至例3完成方程轉(zhuǎn)化解方法(未知數(shù)位于減數(shù)、除數(shù)位置,屬逆向解方程)才有一個完整的解方程的.示范。如下圖所示:

  從學(xué)習(xí)心理學(xué)來講,學(xué)生在接觸新知識點的第一印象極為重要,第一次學(xué)習(xí)新知,是由不知到知,由不懂到懂而邁出的重要第一步。這一步的踏出對學(xué)生而言異常重要。第一次是新的,大腦對新知的接受是處于興奮狀態(tài),此時的理解記憶刻痕是最深的,無論到的是直,是斜,一旦留下,再想更改那就難上加難。作為老師一定要重視學(xué)生的第一次接觸新知,“課上損失課外補(bǔ)”更是事倍功半。

  學(xué)材的編排著實讓我有點撓頭,明明能夠一目了解,通過閱讀自學(xué)就能搞定的解方程規(guī)范,這樣一個基礎(chǔ)性的知識點,非要放在例3才有完整呈現(xiàn),在實際的課堂教學(xué)中有點不得勁兒,也有些不符合學(xué)生學(xué)習(xí)的認(rèn)知規(guī)律。

  五年級數(shù)學(xué)《解簡易方程》教學(xué)反思 篇7

  人教版五年級上冊《解簡易方程》這個單元中,教材是通過等式的基本性質(zhì)來解方程,這個方法雖然說使得小學(xué)的知識與初中的知識更加的接軌,讓方程的解法更加的簡單。從教材的編排上,整體難度下降,對學(xué)生以后的發(fā)展是有利的。但是教材中故意避開了減數(shù)和除數(shù)為未知數(shù)的方程,如:a-x=b或a÷x=b,要求學(xué)生根據(jù)實際問題的數(shù)量關(guān)系,列成如x+b=a或bx=a的方程。這樣的處理方法,有時也會無法避免地直接和方程思想發(fā)生矛盾。例如“爸爸比小明大28歲,小明Х歲,爸爸40歲!焙芏鄬W(xué)生列出了這樣的方程:40-Х=28,方程列的是沒有任何問題的,但是應(yīng)該怎么解呢?允不允許學(xué)生用四則運算各部分的關(guān)系來解方程?是否該向?qū)W生講解方法?還是讓學(xué)生把此方程改成教材要求的那樣的方程?如果要改成教材要求的方程,那就是在向?qū)W生傳達(dá)這樣的思想:這樣的列法是不被認(rèn)可的,那么以后在學(xué)習(xí)“未知數(shù)是減數(shù)和除數(shù)的方程”時,學(xué)生的思維不就又和現(xiàn)在沖突了嗎?現(xiàn)在學(xué)習(xí)的節(jié)方程中,學(xué)生很容易看見加法就減,看見減法就加,看見乘法就除,看見除法就乘,如把30÷Ⅹ=15的解法教給學(xué)生,能熟練掌握并運用的學(xué)生很少,對大部分學(xué)生來說越教越是糊涂,把本來剛建構(gòu)的解方程方法打破了。如果不安排,那么每次在出現(xiàn)的時故意回避嗎?

  在教學(xué)列方程解加減乘除解決問題第一課時,我是這樣處理的。先出示做一做的題目,這題更接近學(xué)生的實際,學(xué)生也能更好理解數(shù)量關(guān)系。小明今年身高152厘米,比去年長高了8厘米。小明去年身高多少?先讓學(xué)生讀題理解題目中有哪幾個量?引導(dǎo)學(xué)生進(jìn)行概括,去年的身高、今年的身高、相差數(shù)。追問:這三個量之間有怎樣的相等關(guān)系呢?

  去年的'身高+長高的8cm=今年的身高

  今年的身高-去年的身高=長高的8cm

  今年的身高-長高的8cm=去年的身高

  你能根據(jù)這三個數(shù)量關(guān)系列出方程嗎?學(xué)生嘗試列方程。幾乎全班學(xué)生都是正確的。

  X+8=152 152-x=8 152-8=x

  追問學(xué)生你對哪個方程有想法?學(xué)生一致認(rèn)為對第三個方程有想法?生1:這個根本沒有必要寫x,因為直接可以計算了。生2:x不寫,就是一個算式,直接可以算了。我肯定到:列算式解決實際問題時,未知數(shù)始終作為一個“解決的目標(biāo)”不參加列式運算,只能用已知數(shù)和運算符號組成算式,所以這樣的x就沒有必要。接著讓學(xué)生解這兩個方程X+8=152 、152-x=8方程。學(xué)生發(fā)現(xiàn)152-x=8解出來的解是不正確的。告訴學(xué)生減數(shù)為未知數(shù)的方程我們小學(xué)階段不作要求,所以你們就無法解答了。接著,我再引導(dǎo)學(xué)生觀察這三個數(shù)量關(guān)系,他們之間有聯(lián)系嗎?其實減法是加法的逆運算,是有加法轉(zhuǎn)變過來。因此,我們在思考數(shù)量關(guān)系時,只要思考加法的數(shù)量關(guān)系,這是順向思維,解題思路更加直截了當(dāng),降低了思考的難度。接著只要把未知數(shù)以一個字母(如x)為代表和已知數(shù)一起參加列式運算x+b=a,體會列方程解決問題的優(yōu)越性。這就是我們今天學(xué)習(xí)的一種新的解決問題的方法——列方程解決問題。

  接著用同樣的教學(xué)方法探究bx=a的解決問題。

  我這樣的教學(xué)不知道是否合理?其實小學(xué)生在學(xué)習(xí)加減法、乘除法時,早就對四則運算之間的關(guān)系有所感知,并積累了比較豐富的感性經(jīng)驗。要不要運用等式的性質(zhì)對學(xué)生再加以概括呢?

  五年級數(shù)學(xué)《解簡易方程》教學(xué)反思 篇8

  《解方程》是人教課標(biāo)版小學(xué)數(shù)學(xué)五年級上冊第四單元內(nèi)容,本節(jié)課是在學(xué)生學(xué)習(xí)了用字母表示數(shù)和方程的基礎(chǔ)上進(jìn)行教學(xué)的,新課程的解方程一改以往的由加減乘除各部分之間的關(guān)系的引入方法,運用更能讓學(xué)生明白的天平平衡的原理來引入。解題的基本原理從未改變——等式的基本性質(zhì),即:方程的兩邊同時加上或減去相同的數(shù),除以或乘以同一個不為零的數(shù),方程的兩邊仍相等。

  這節(jié)課內(nèi)容不是新內(nèi)容,但方法卻是新方法,我認(rèn)為設(shè)計教學(xué)時應(yīng)將“方程的解”和“解方程”這兩個概念放到例題1的后面引入,能使學(xué)生對概念理解更充分,印象更深刻。

  教學(xué)中我先利用課件演示了天平兩端同時加上或減去同樣的重量,同時擴(kuò)大或縮小相同倍數(shù),天平任然保持平衡,目的是讓學(xué)生直觀感受天平保持平衡原理,為學(xué)生遷移類推到方程中打基礎(chǔ)。然后出示例1,讓學(xué)生列出方程x+3=9,用課件演示x+3個方塊=9個方塊,提問:“如果要稱出x有多種,改怎么辦?”,引導(dǎo)學(xué)生思考,只要將天平兩端同時減去3個方塊,天平仍平衡,得到一個x相當(dāng)于6個方塊,從而得到x=6。你能把稱的過程用算式表示出來嗎?大部分學(xué)生快速的寫出了我想要的答案:x+3-3=9-3,于是我問:為什么方程兩邊要同時減去3,而不減去其它數(shù)呢?學(xué)生沉默,終于有兩雙小手舉起來了,“為了得到一個x得多少”,我又強(qiáng)調(diào)了一遍,我們的目標(biāo)是求一個x的多少,所以要把多余的3減去,為了不耽誤更多的時間,我沒有繼續(xù)深入探究。接下來教學(xué)例2,同樣我利用天平原理幫助學(xué)生理解,在學(xué)生說出要把天平兩端平均分成3分,得到每份是6的`基礎(chǔ)上,我用課件演示了分的過程,讓學(xué)生把演示過程寫出來,從而解出方程。在此基礎(chǔ)上我引導(dǎo)學(xué)生總結(jié)天平保持平衡的道理,得到等式的基本性質(zhì):方程的兩邊同時加上或減去相同的數(shù),除以或乘上同一個不為0的數(shù),方程兩邊仍然相等。當(dāng)學(xué)生的解題方法得到了教師的肯定,讓學(xué)生明白這種解題方法的優(yōu)缺點。培養(yǎng)學(xué)生的創(chuàng)新能力和自主學(xué)習(xí)的能力讓學(xué)生成為課堂的主體,教師充分發(fā)揮主導(dǎo)作用。

  按理說,只要稍加類推,學(xué)生應(yīng)該能掌握方程的解法。但接下來的練習(xí)卻大大出人意料,除了少數(shù)成績較好的學(xué)生能按照要求完成外,大部分幾乎不會做,甚至動不了筆。問題出在哪里?經(jīng)過認(rèn)真反思總結(jié)如下:

  一是從天平過渡到方程,類推的過程學(xué)生理解不透,天平兩端同時減去3個方塊,就相當(dāng)于方程兩邊同時減去3,這個過程寫下來時,要強(qiáng)調(diào)左右兩邊原來狀態(tài)保持不變,要原樣寫下來,如果這樣的話就不會造成有的學(xué)生不會格式;

  二是對為什么要減去3討論不夠,雖然有學(xué)生回答上來了,我應(yīng)該能覺察出學(xué)生理解有困難,課件和天平能讓學(xué)生懂得方程兩邊要同時減去相同的數(shù),至于為什么這里要減去3卻還似懂非懂,如果當(dāng)時舉例說明也許很有效果,比如:x-3=6,我們該怎么辦呢?學(xué)生通過對比討論,就會發(fā)現(xiàn)我們要求出一個x是多少,就要根據(jù)方程的具體情況,若比x多余的就要減去,不足x的就要補(bǔ)足,這樣效果肯定好些。

  三是備學(xué)生環(huán)節(jié)出現(xiàn)差錯,這部分內(nèi)容應(yīng)該不難,但學(xué)生的現(xiàn)有基礎(chǔ)是確定教學(xué)方法的基礎(chǔ),從教學(xué)效果看,我明顯做的不夠。

  四是教學(xué)內(nèi)容確定不恰當(dāng),本來我是想,上公開課要有一定的容量,就把例1和例2放在一起教學(xué),既有加減,又有乘除的,只教學(xué)加法和乘法的,減法和除法的解法,讓學(xué)生通過遷移類推的方法的解決。由于我班學(xué)生是本期從各個地方轉(zhuǎn)來的,基礎(chǔ)參差不齊,而且整體水平較差,因此安排兩個例題有難度。

  五年級數(shù)學(xué)《解簡易方程》教學(xué)反思 篇9

  本課為人教版第四單元教學(xué)內(nèi)容,本教材解方程方法利用了天平平衡的原理,采用了等式的性質(zhì)來教學(xué)解方程。形如x±a=b一類的方程利用等式的基本性質(zhì)一學(xué)生很容易解決,形如ax=b與x÷a=b一類的方程,利用等式的基本性質(zhì)二學(xué)生也很容易解決。但行如a-x=b和a÷x=b此類的方程,學(xué)生就無從下手了,如果利用等式的基本性質(zhì)解,方程變形的過程及算理解釋比較麻煩。解決問題時當(dāng)需要列出形如a-x=b或a÷x=b的方程時,我就要求學(xué)生根據(jù)實際問題的數(shù)量關(guān)系,列成形如x+b=a或bx=a的方程。但我覺得回避這兩類問題不是很好的方法,否則,我們的教學(xué)就會顯得片面和狹隘。如:一共有128人平均分成Х組,每組8人,學(xué)生們都不假思索地列出了128÷x=8,但是利用等式的基本性質(zhì)學(xué)生就不會解,但你也不能說這個方程列錯了呀。

  因此我當(dāng)有學(xué)生列了a-x=b或a÷x=b的方程時,我借機(jī)教了利用算術(shù)思路解方程(被減數(shù)=差+減數(shù),被除數(shù)=商xx除數(shù))介紹老板教材的解方程的`方法。基礎(chǔ)好的孩子就容易接受新的方法,而基礎(chǔ)差的孩子就還是無法解答此類問題。

  另外教材要求,在學(xué)生用等式基本性質(zhì)解方程時,方程的變形過程應(yīng)該要寫出來,等到熟練以后,再逐步省略。這樣的要求,在實際操作中,帶來了書寫上的繁瑣。因為用等式基本性質(zhì)解方程,每兩步才能完成一次方程的變形。這相對于簡單的方程,尚沒什么,但對一些稍復(fù)雜的方程,其解的過程就顯得太繁瑣了。

  看來教材利用等式的基本性質(zhì)來解簡易方程也是存在著一些問題,不知各位老師有什么好的方法來解決這些問題呢?請不吝賜教!

  五年級數(shù)學(xué)《解簡易方程》教學(xué)反思 篇10

  《簡易方程》是五年級上冊第五單元的知識,是學(xué)生在小學(xué)階段第一次系統(tǒng)接觸代數(shù)知識。這一單元學(xué)生掌握的好壞將直接影響到他們初中代數(shù)知識的學(xué)習(xí)。因此,我將其放在十分重要的地位。

  《簡易方程》是五年級上冊第五單元的知識,也是這冊內(nèi)容的重點和難點。本單元的內(nèi)容分為兩節(jié),第一節(jié)的主要內(nèi)容是用字母表示數(shù)、表示運算定律、計算公式和數(shù)量關(guān)系。第二節(jié)的主要內(nèi)容是方程的意義,等式的基本性質(zhì)和解簡易方程,以及列方程解決一些比較簡單的實際問題。很多時候,遇到稍復(fù)雜的題,列算式解決時,解題思路常常迂回曲折,很難理解,而列方程解決實際問題,解題思路往往直截了當(dāng),降低了思維難度,它讓學(xué)生從一個簡單的思路——找相等關(guān)系來解題。所以說,這個單元的知識如何教好,是至關(guān)重要的。

  第一塊,用字母表示數(shù)是學(xué)生學(xué)習(xí)代數(shù)初步知識的起步。在教學(xué)這一部分知識時,要注重學(xué)生對數(shù)量關(guān)系的理解,也就是說要加強(qiáng)學(xué)生用含字母的式子表示數(shù)量的訓(xùn)練。所以,在這里一定要向?qū)W生強(qiáng)調(diào)并反復(fù)練習(xí)用含有字母的式子表示數(shù)量,讓學(xué)生明白以往學(xué)習(xí)的所有數(shù)量關(guān)系在用含有字母的式子表示數(shù)量中都能用到。體會到含有字母的式子的數(shù)量關(guān)系和以前是一樣的,只是現(xiàn)在用符號來代替數(shù)字了。

  第二塊,解方程和列方程解決問題。要根據(jù)等式的`性質(zhì)來解方程,普通方程學(xué)生解起來問題不大,比多比少的方程,學(xué)生錯誤率還是滿多的,我要求學(xué)生圈出多、少關(guān)鍵字,誰和誰比劃出來,寫上誰大誰小。“稍復(fù)雜方程”把“寫關(guān)系式”作為教學(xué)的重點,耐心地引導(dǎo)學(xué)生理解題目的意思,根據(jù)題意寫關(guān)系式,但好幾個同學(xué)接受起來仍有困難,就算寫出了關(guān)系式,仍不會列方程,或是寫的關(guān)系式與列的方程根本是兩碼事。如何用稍復(fù)雜的方程來解決實際問題仍是本單元教學(xué)的薄弱點。

  學(xué)習(xí)是個循序漸進(jìn)的過程,尤其是解方程,所以教學(xué)要慢慢來,不用急,有些孩子慢慢來就會了。

  五年級數(shù)學(xué)《解簡易方程》教學(xué)反思 篇11

  很多時候,我們大人都喜歡用方程來解題,這固然是因為到了中學(xué)大量學(xué)習(xí)了各種各樣的方程,一元一次,一元二次,二元一次等等,但還有一個更重要的原因就是方程對解題思路的解放,列算式解決實際問題時,解題思路常常迂回曲折,而他從根本上讓學(xué)生脫離了繁瑣的思路分析,而列方程解決實際問題,解題思路往往直截了當(dāng),降低了思維難度,它讓學(xué)生從一個簡單的思路——找等量關(guān)系來解題。所以說,這個單元的知識如何教好,從而讓學(xué)生學(xué)好是非常重要的。

  一、用字母表示數(shù)要注意對數(shù)量關(guān)系的理解

  用字母表示數(shù)是學(xué)生學(xué)習(xí)代數(shù)初步知識的起步。在算術(shù)里,人們只對一些具體的、個別的數(shù)量關(guān)系進(jìn)行研究,引入用字母表示數(shù)后,就可以表達(dá)、研究具有更普遍意義的數(shù)量關(guān)系?梢哉f,學(xué)習(xí)代數(shù)就是從學(xué)習(xí)用字母表示數(shù)開始的。

  對小學(xué)生來說,從具體事物的個數(shù)抽象出數(shù)是認(rèn)識上的一個飛躍,而由具體的、確定的數(shù)過渡到用字母表示抽象的、可變的數(shù),更是認(rèn)識上的一個飛躍。而且,在用字母表示未知數(shù)的基礎(chǔ)上,使學(xué)生解決實際問題的數(shù)學(xué)工具,從列出算式解發(fā)展到列出方程解,這又是數(shù)學(xué)思想方法認(rèn)識上的一次飛躍,它將使學(xué)生運用數(shù)學(xué)知識解決實際問題能力提高到一個新的水平。而在老師們的教學(xué)實踐中,由于在進(jìn)行用方程解題時格式非常重要,因此往往老師們教學(xué)時都會特別強(qiáng)調(diào)格式?墒菑膶W(xué)生的后續(xù)學(xué)習(xí)來看,我慢慢發(fā)現(xiàn),其實在教學(xué)這一部分知識時,老師要注重學(xué)生對數(shù)量關(guān)系的理解,也就是說要加強(qiáng)對學(xué)生的用含字母的式子表示數(shù)量的訓(xùn)練,也就是寫代數(shù)式的訓(xùn)練。因為這是列方程的'基礎(chǔ)。所以,在這里教師一定要向?qū)W生強(qiáng)調(diào)并反復(fù)練習(xí)用含有字母的式子表示數(shù)量,讓學(xué)生明白以往學(xué)習(xí)的所有數(shù)量關(guān)系在用含有字母的式子表示數(shù)量中都能用到。如:原來有100元,用掉X元,一樣的要用減法求還剩下多少錢,買了3個練習(xí)本,每個A元,一樣的用乘法來求一共要多少錢。讓學(xué)生在這樣的大量的練習(xí)和強(qiáng)化中,知道含有字母的式子的數(shù)量關(guān)系和以前是一樣的,只是現(xiàn)在所用的符號不一樣,其實,從廣義上來講,字母是一種符號,數(shù)字也是一種符號。

  二、注重方程的意義的教學(xué)。

  方程是什么,教材中是這樣說的,含有未知數(shù)的等式叫做方程。其實,這只是從方程的表現(xiàn)形式來給方程下定義。也就是說,從表象上來說,如果一個式子是一個等式,并且含有未知數(shù),我們就說這個式子是方程。但是,從數(shù)學(xué)的本質(zhì)上來說,方程的意義是什么呢?我們每個人都能夠熟練地列方程解決問題,那么,在你列方程解決問題時,你每次抓住的核心是什么呢?是等量關(guān)系。所以,方程最本質(zhì)的教學(xué)意義應(yīng)是同一個量(或相等的量)用不同的形式去表達(dá)。但很多時候,老師們在教學(xué)方程的意義時,往往只研究了方程的表面形式,也就是書上所說的:含有未知數(shù)的等式叫方程,所以,老師們一般都是從等式入手,讓學(xué)生在認(rèn)識等式的基礎(chǔ)上引入未知數(shù),然后告訴學(xué)生,象這樣的含有未知數(shù)的等式叫方程。這樣一節(jié)課教下來,學(xué)生除了會判斷一個關(guān)系式是不是方程,還知道了什么呢?這樣的學(xué)習(xí)對于后面的列方程解決問題真的有幫助嗎?我想,每個人靜下心來想想,應(yīng)該都會有答案。

  三、解方程的教學(xué)時不要被以前的教材編排所影響。

  新教材對于解方程的安排是變動非常大的。以前我們是根據(jù)四則運算各部分之間的關(guān)系來解方程。一開始時,還不和學(xué)生說解方程,叫求未知數(shù)X。而現(xiàn)在的教材編排時是根據(jù)等式的性質(zhì)來解,當(dāng)然,在教材上并沒有歸納出等式的性質(zhì),畢竟,在學(xué)生的小學(xué)階段,只要讓學(xué)生明白,在等式的兩邊同時加、減、乘和除以同一個數(shù),等式仍然成立,這并不是完整意義上的等式的性質(zhì)。從學(xué)生的學(xué)習(xí)上來看,我覺得學(xué)生是比較容易接受這種方法的,特別是比較簡單的方程,學(xué)生只要明白了要把誰抵消,怎么抵消,基本上問題不大。不過,到了稍微復(fù)雜的方程出現(xiàn)了一些問題,這也許是我在教學(xué)這一部分內(nèi)容時,因為總是考慮到學(xué)生不喜歡列方程(以往的學(xué)生都有這個問題,可能就是覺得方程的格式繁瑣,好像步驟也不少,學(xué)生總不喜歡),所以,我就想怎么讓學(xué)生少寫點字,所以,在具體的書寫格式和步驟上,和教材稍微有點不同,我沒有象教材那樣寫出怎樣應(yīng)用等式的性質(zhì)的那一步,而是讓學(xué)生直接寫出這一步的結(jié)果,以至于到了后面,有部分學(xué)生就出現(xiàn)了一些問題,特別是象5(X+3)=55這樣的方程,學(xué)生掌握得比較差,也可能是學(xué)生在用含有字母的式子表示數(shù)量時,還是沒有很好地建立這樣的一個式子是一個整體,表示一個數(shù)量這樣的概念,盡管也進(jìn)行了一些強(qiáng)調(diào)。另一個方面就是具體的步驟可能也對學(xué)生有影響,所以,我個人認(rèn)為,可能讓學(xué)生按照書上的步驟來寫盡管麻煩一點,但對于學(xué)生理清思路可能更有幫助。

  總的來說,我覺得簡易方程這個單元,只要讓學(xué)生有很好地用字母或含有字母的式子表示數(shù)的基礎(chǔ),再加上對方程的本質(zhì)意義有清晰的理解,知道怎樣解方程,其他的應(yīng)該都不是問題,畢竟,上面的這些都是為列方程解決問題打基礎(chǔ)。基礎(chǔ)打好了,后面的問題就都能能迎刃而解了。

【五年級數(shù)學(xué)《解簡易方程》教學(xué)反思】相關(guān)文章:

小學(xué)數(shù)學(xué)《方程》教學(xué)反思04-08

小學(xué)數(shù)學(xué)解方程教學(xué)反思02-05

小學(xué)數(shù)學(xué)《解方程》教學(xué)反思11-20

五年級數(shù)學(xué)《解方程》教學(xué)反思范文07-19

小學(xué)數(shù)學(xué)解方程教學(xué)反思5篇02-05

小學(xué)數(shù)學(xué)解方程教學(xué)反思(5篇)02-05

小學(xué)數(shù)學(xué)《解方程》教學(xué)反思4篇11-20

小學(xué)數(shù)學(xué)列方程解應(yīng)用題說課稿04-04

小學(xué)數(shù)學(xué)五年級《列方程解應(yīng)用題》說課稿04-03