初中數(shù)學《變量與函數(shù)》教學反思
作為一位到崗不久的教師,課堂教學是重要的任務之一,我們可以把教學過程中的感悟記錄在教學反思中,教學反思我們應該怎么寫呢?下面是小編整理的初中數(shù)學《變量與函數(shù)》教學反思,歡迎大家分享!
在沈陽撫順的研討會上,本人承擔了《變量與函數(shù)》的教學任務。之前,我分別在本校與廣州開發(fā)區(qū)中學分別上了一堂課。三節(jié)課,是一個實踐、反思、改進、再實踐的過程。經(jīng)過課題組的點評與討論,本人對概念課的教學設計與教學實踐有了更深入的了解。
本設計呈現(xiàn)的課堂結(jié)構(gòu)為:
。1)揭示學習目標;
。2)引入數(shù)學原型;
。3)抽象出數(shù)學現(xiàn)實,逐步達致數(shù)學形式化的概念;
(4)鞏固概念練習(概念辨析);
。5)小結(jié)(質(zhì)疑)。
1、如何揭示學習目標
概念課的引入要考慮學生關(guān)心的如下問題:這節(jié)課學什么概念?為什么要學這樣的概念?
數(shù)學源于生活而高于生活,數(shù)學概念的引入可從生活的需要、數(shù)學的需要等方面引入。初中涉及的函數(shù)概念的核心是“量與量之間的特殊對應關(guān)系”。本課中,本人在導言中提出兩個問題:“引例1,《名偵探柯南》中有這樣一個情景:柯南根據(jù)案發(fā)現(xiàn)場的腳印,鎖定疑犯的身高。你知道其中的道理嗎?”、“引例2,我們班中同學A與職業(yè)相撲運動員,誰的飯量大?你能說明理由嗎?”學生對上述問題既熟悉又感到意外。問題1涉及兩個量的關(guān)系,腳印確定,對應的身高有多個取值;問題2涉及多個量的關(guān)系。上述問題,不僅僅是引起學生的注意,更重要的是讓學生了解客觀世界中量與量之間聯(lián)系的多樣性、復雜性,而函數(shù)研究的正是量與量之間的各種關(guān)系中的“特殊關(guān)系”。數(shù)學研究有時從最簡單、特殊的情況入手,化繁為簡。讓學生明確,這一節(jié)課我們只研究兩個量之間的特殊對應關(guān)系!疤厥庠谑裁吹胤?”學生需帶著這樣的問題開始這一課的學習。
函數(shù)概念的引入應具有“整體觀”,不僅要提供符合函數(shù)原型的單值對應的實例,還應提供其他的量與量之間關(guān)系的實例(如多個量的對應關(guān)系、兩個量間的“一對多”關(guān)系等),使學生在更廣泛的背景中經(jīng)歷篩選、提煉出新的數(shù)學知識的過程,逐步領(lǐng)悟“化繁為簡”的數(shù)學研究方法。當然,這里的問題是作為研究“背景”呈現(xiàn),教學時應作“虛化”處理,以突出主要內(nèi)容。
2、如何選取合適的數(shù)學原型
從數(shù)學的“學術(shù)形態(tài)”看,數(shù)學原型所蘊藏的數(shù)學素材應與數(shù)學概念的內(nèi)涵相一致;從數(shù)學的“教育形態(tài)”看,數(shù)學原型應真實、簡潔、簡單。真實指的是基于學生的生活現(xiàn)實、數(shù)學現(xiàn)實,它可以是生活中的實例,也可以是學生熟悉的動漫故事、童話故事等。簡潔、簡單指的是問題的表述應簡潔,問題情境的設置要盡可能簡單,全體學生對情境中的問題不應存在太大的理解困難,設計的問題情境要能突出將要學習的新知識的本質(zhì)。
本設計采用了三個數(shù)學原型的.問題:問題1,“票房收入與售出票數(shù)問題”(可用解析式表示);問題2,成績登記表中的一次數(shù)學測試的“成績與學號問題”(表格表示);問題3,“氣溫變化與時間問題”(圖象表示)。這三個問題從不同層面、不同角度體現(xiàn)函數(shù)的“單值對應關(guān)系”,也都是學生生活中的真實問題,問題簡單易懂,學生容易基于上述生活實例抽象出新的數(shù)學概念。
由于不少學生在理解“彈簧問題”時面臨列函數(shù)關(guān)系式的困難,可能沖淡對函數(shù)概念的學習,故本節(jié)課沒有采用該引例。
對于繁難的概念,我們更應注重為學生構(gòu)建學生所熟悉的、簡單的數(shù)學現(xiàn)實,化繁為簡、化抽象為形象。過難、過繁的背景會成為學生學習抽象新概念的攔路虎。
3、如何引領(lǐng)學生經(jīng)歷數(shù)學化、形式化的過程
“數(shù)學教學是數(shù)學活動的教學”,面對抽象的數(shù)學內(nèi)容,老師會想方設法創(chuàng)設易于學生理解的數(shù)學情境。但如何從具體的實例中提煉出數(shù)學的素材、形式化為數(shù)學知識是教學的關(guān)鍵環(huán)節(jié)。從具體情境到數(shù)學知識的形式化,需要教師為學生搭建合適的“腳手架”,提出能引發(fā)學生思考、過渡到數(shù)學形式化的問題。本人在學生完成問題情境的幾個問題后,提出系列問題“上述幾個問題中,分別涉及哪些量的關(guān)系?哪些量的變化會引會另一個量的變化?通過哪一個量可以確定另一個量?”
在與學生的交流過程中把重點內(nèi)容板書,板書注重揭示兩個量間的關(guān)系,引領(lǐng)學生經(jīng)歷數(shù)學概念的形成過程,引導學生認識為什么要引進變量、常量。由問題1~3的共性“單值對應關(guān)系”與“腳印與身高”問題中反映的“一對多關(guān)系”進行對比抽象出函數(shù)的概念,逐步了解如何給數(shù)學概念下定義,并理解概念的本質(zhì)特征。
4、如何引用反例
學生對概念的理解需要經(jīng)歷一個從模糊到清晰的過程,通過正例與反例的對照,才能準確理解概念的內(nèi)涵。反例引用的時機、反例的量要恰到好處。過早、過多的反例會干擾學生對概念的準確理解。
概念生成的前期提供的各種量的關(guān)系中的實例提供的是一個更為廣泛的背景,讓學生經(jīng)歷從各種關(guān)系中抽象出“特殊的單值對應關(guān)系”,從而體會產(chǎn)生函數(shù)概念的背景。這樣的引入有利于避免概念教學中“一個定義,三點注意”的傾向。
在本校上課時,從“氣溫問題”中的函數(shù)圖象引導學生發(fā)現(xiàn)時間t取定一個值時,所得T的對應值只有一個,學生習慣性地提出問題“溫度T取定一個值時,時間t是否唯一確定?”全體同學從正反兩個方面認識“唯一確定”的含義,在這樣的基礎(chǔ)上再歸納出函數(shù)的定義,學生較好地掌握函數(shù)中的單值對應關(guān)系。
在廣州開發(fā)區(qū)中學上課時,在概念的形成前期,忙中出漏,沒有抓住“氣溫問題”中的函數(shù)圖象講解“唯一確定”,特別是沒有從反面(溫度T=8,時間t=12~14)幫助學生理解“唯一性”,也沒有強化“腳印與身高”反映的“一對多關(guān)系”,只在涉及“單值對應關(guān)系”的實例基礎(chǔ)上引出概念,也跳過后面提到的三個反例,學生在后面的概念辨析練習中錯漏較多,為糾正學生的理解花了九牛二虎之力。
在撫順上課時,在完成例1、例2的教學后,還用到如下反例:問題2變式“在這次數(shù)學測試中,成績是學號的函數(shù)嗎?”、問題3變式“北京春季某一天的時間t是氣溫T的函數(shù)嗎?”、練習2(3)變式“汽車以60千米/秒的速度勻速行駛,t是s的函數(shù)嗎?”,學生借助這三個逆向變式,根據(jù)生活經(jīng)驗理解“兩個量間的對應關(guān)系”是否為“單值對應關(guān)系”,有利于學生明確“由哪一個量能唯一確定另一個量”,從而更好地理解自變量與函數(shù)的關(guān)系,更重要的是讓學生養(yǎng)成逆向思維的習慣。
【初中數(shù)學《變量與函數(shù)》教學反思】相關(guān)文章: