国产激情久久久久影院小草_国产91高跟丝袜_99精品视频99_三级真人片在线观看

大學(xué)物理論文

時(shí)間:2024-05-12 15:50:11 物理畢業(yè)論文 我要投稿

大學(xué)物理論文3000字

  導(dǎo)語:回顧電磁學(xué)的歷史,是很有趣的。一直到十八世紀(jì)中,電磁似乎只是一種新奇的玩具──科學(xué)與藝術(shù)一樣,起步時(shí)都有游戲性質(zhì)──但到了后來,其產(chǎn)生的結(jié)果,竟然改造了世界。下面由小編為您整理出的大學(xué)物理論文3000字內(nèi)容,一起來看看吧。

大學(xué)物理論文3000字

  摘要:電磁運(yùn)動是物質(zhì)的又一種基本運(yùn)動形式,電磁相互作用是自然界已知的四種基本相互作用之一,也是人們認(rèn)識得較深入的一種相互作用。在日常生活和生產(chǎn)活動中,在對物質(zhì)結(jié)構(gòu)的深入認(rèn)識過程中,都要涉及電磁運(yùn)動。因此,理解和掌握電磁運(yùn)動的基本規(guī)律,在理論上和實(shí)際上都有及其重要的意義,這也就是我們所說的電磁學(xué)。

  關(guān)鍵詞:電磁學(xué),電磁運(yùn)動

  1. 庫倫定律

  17xx年法國物理學(xué)家?guī)靷愑门こ訉?shí)驗(yàn)測定了兩個(gè)帶電球體之間的相互作用的電力。庫倫在實(shí)驗(yàn)的基礎(chǔ)上提出了兩個(gè)點(diǎn)電荷之間的相互作用的規(guī)律,即庫侖定律:

  在真空中,兩個(gè)靜止的點(diǎn)電荷之間的相互作用力,其大小和他們電荷的乘積成正比,與他們之間距離的二次方成反比;作用的方向沿著亮點(diǎn)電荷的連線,同號電荷相斥,異號電荷相吸。

  這是電學(xué)以數(shù)學(xué)描述的第一步。此定律用到了牛頓之力的觀念。這成為了牛頓力學(xué)中一種新的力。與駑鈍萬有引力有相同之處。此定律成了電磁學(xué)的基礎(chǔ),如今所有電磁學(xué),第一必須學(xué)它。這也是電荷單位的來源。

  因此,雖然庫倫定律描述電荷靜止時(shí)的狀態(tài)十分精準(zhǔn),單獨(dú)的庫倫定律卻不容易,以靜電效應(yīng)為主的復(fù)印機(jī),靜電除塵、靜電喇叭等,發(fā)明年代也在1960以后,距庫倫定律之發(fā)現(xiàn)幾乎近兩百年。我們現(xiàn)在用的電器,絕大部份都靠電流,而沒有電荷(甚至接地以免產(chǎn)生多余電荷)。也就是說,正負(fù)電仍是抵消,但相互移動。──河中沒水,不可能有水流;但電線中電荷為零,卻仍然可以有電流!

  2.安培定律

  法國物理學(xué)家安培(Andre Marie Ampere, 1775-1836)提出:所有磁性的來源,或許就是電流。他在18xx年,聽到奧斯特實(shí)驗(yàn)結(jié)果之后,兩個(gè)星期之內(nèi),便開始實(shí)驗(yàn)。五個(gè)月內(nèi),便證明了兩根通電的導(dǎo)線之間也有吸力或斥力。這就是電磁學(xué)中第二個(gè)最重要的定理“安培定律”:

  兩根平行的長直導(dǎo)線中皆有電流,若電流方向相同,則相吸引。反之,則相斥。力之大小與兩線之間距離成反比,與電流之大小成正比。

  以后,安培又證實(shí)了通了電流的筒狀線圈之磁性,與磁鐵棒完全一樣。故他提出假說:物質(zhì)之磁性,皆是由物質(zhì)內(nèi)的電流而引起的。這使磁性成為電流的生成物──他后來被譽(yù)為“電磁學(xué)”的始祖(電與磁從此在物理中是分不開的)。他的名字,也成了電流的單位。

  安培這個(gè)發(fā)現(xiàn),在應(yīng)用上極為重要。它提出了用電流而發(fā)出動力,使物體動起來的方法,準(zhǔn)確而可靠。因此,它是電流計(jì)(以及各種電表)、電馬達(dá)、電報(bào),電話之原理。特別是電報(bào),在18xx年以后就成了新興事業(yè),大賺其錢。

  安培定律之后,電磁學(xué)理論與應(yīng)用之發(fā)展可以說是風(fēng)起云涌。

  3.法拉第定律

  法拉第早年是達(dá)維(18xx年發(fā)現(xiàn)金屬鈉和鉀)的助手,他對電解有很周密的研究。他發(fā)現(xiàn)了通電量與分解量有一定的關(guān)系,并且與被分解的元素之原子量有一定的關(guān)系。由此,可以大致導(dǎo)致兩個(gè)結(jié)論:

  (1) 每個(gè)原子中有一定的電含量。

  (2)原子在化合時(shí),這些電量起了作用,而通電可使化合物分解。因此,牛頓尋求的分子中的化合之力,必與電有關(guān)。此想法在18xx年由達(dá)維提出,法拉第進(jìn)一步加以驗(yàn)證,至今尚是正確的。

  牛頓的萬有引力定律提出之初,受到很多質(zhì)疑。其中之一是:很多人認(rèn)為,兩個(gè)相距遙遠(yuǎn)的物體,無所媒介,而相互牽引,是不可置信的。但是由于萬有引力之大獲成功,這種超距力的概念,不久便被普遍接受了。電磁學(xué)中的庫倫、安培等力之觀念,起始時(shí)亦是這種超距力。

  在牛頓前一百年的英國人吉伯特是伊利莎白一世的御醫(yī)。他的一本”論磁” 是有系統(tǒng)地研究電磁現(xiàn)象的第一本書(大部份說磁,因其在當(dāng)時(shí)比較有用),其重要性是揚(yáng)棄了磁性之神秘色彩,以一種客觀的自然現(xiàn)象來描述之。吉伯特的“論磁”中曾提出’力線’的觀念。這就是說:磁性物質(zhì)發(fā)出一種‘力線’,其它磁性物質(zhì)遇到了這‘力線’便受到力之作用。這樣就避過了‘超距力’的‘反直覺’。

  (a)力線不斷、不裂、不交叉打結(jié),但可以有起頭與終止。例如:電場之力線由正電荷發(fā)出,由負(fù)電荷接受。力線的數(shù)量與電荷之大小成正比。

  (b)力線像有彈性的線,在空中互相排斥又盡量緊繃。其密度與施力之大小成正比。

  (c)力線有方向性,電力線的方向是對正電荷的施力方向(負(fù)電受力方向相反),在磁力線是對‘磁北極’的施力方向。

  法拉第則更進(jìn)一步,提出了場的概念:空中任意一點(diǎn),雖然空無一物,但有電場或磁場之存在,這種場可使帶電或帶磁之物質(zhì)受力。而’力線’則是表現(xiàn)‘場’的一種方式。但是,法拉第的‘場’觀念,當(dāng)時(shí)也受到強(qiáng)烈的質(zhì)疑與反對。最重要的理由是這觀念不及‘超距力’之精確。把‘場’觀念精確化,數(shù)學(xué)化的是后來的麥克斯韋。

  法拉第發(fā)現(xiàn),一個(gè)移動的磁鐵或通了電流的筒狀線圈,也可以使附近的線圈中,產(chǎn)生感應(yīng)電流──這就是電磁學(xué)中第三個(gè)最重要的法拉第定律。

  這個(gè)定律與庫倫、安培都不同;它是動態(tài)的。第一線圈中的電流變化越快,第二線圈中的電流越大。或磁鐵、有電流的筒狀線圈,移動得越快,第二線圈中的電流也越大。這就是發(fā)電機(jī)的原理。

  4.麥克斯韋電磁理論

  與法拉第之實(shí)驗(yàn)天才對比,麥克斯韋則是長于數(shù)學(xué)的理論物理學(xué)家的典型。他生于蘇格蘭的一個(gè)小康之家。自幼便充份顯示了數(shù)學(xué)之才能。他先在阿伯丁大學(xué)任教,以后轉(zhuǎn)往劍橋。在物理中,今日麥克斯威之重要性,幾可與牛頓、愛因斯坦等量齊觀。但生前,麥克斯威并不受其故鄉(xiāng)蘇格蘭之歡迎。他在劍橋大學(xué)則受到重用。

  他在18xx年,發(fā)表了《法拉第之力線》一文,受到將退休的法拉第的鼓勵(lì)。18xx年,他由理論推導(dǎo)出:電場變化時(shí),也會感應(yīng)出磁場。這與法拉第的電感定律相對而相成,合稱電磁交感。此后他出版了《電磁場的動態(tài)理論》,《電磁論》,其重要性可以與牛頓的《自然哲學(xué)的數(shù)學(xué)原理》相提并論。

  通過了數(shù)學(xué)中的向量分析,麥克斯韋寫下了著名的麥克斯威方程式,不但完整而精確地描述了所有的已知電磁場之現(xiàn)象,而且有新的預(yù)言。其中最重要的是電磁波:

  (1)由于電磁交感,故電磁場可以在真空中以波的形式傳遞。

  (2)計(jì)算之結(jié)果,這波之速度與光速一致,故光是一種可見的電磁波。

  (3)這種波亦攜帶能量、動量等,并且遵從守恒律。

  “光是一種電磁波!”這句話現(xiàn)在是常識,在當(dāng)年則駭人聽聞。麥克斯韋只靠紙上談兵,就做大膽宣言,也難怪當(dāng)年根本不信有電磁波的人居多。但他自己卻信心滿滿。有人告訴他有關(guān)的實(shí)驗(yàn)結(jié)果,不完全成功,他毫不在意。他有信心他的理論一定是對的。──以后的理論物理學(xué)家很多人就學(xué)了他這種態(tài)度。

  德國人赫茲是第一個(gè)在實(shí)驗(yàn)室中證明電磁波存在的人。他先把麥克斯韋的電磁學(xué)改寫成今天常見的形式。然后在1886-18xx年,做了一系列的實(shí)驗(yàn),不但證明電磁波存在,而且與光有相同波速,并有反射、折射等現(xiàn)象,也對電磁波性質(zhì)(波長、頻率)定量測定。當(dāng)然,也同時(shí)發(fā)展出發(fā)射、接收電磁波的方法──這是所有無線通訊的始祖。

  5.總結(jié)

  麥克斯威的電磁理論,成為現(xiàn)在理工科的學(xué)生都要修的電磁學(xué)。簡單的說來,電磁學(xué)核心只有四個(gè)部分:庫倫定律、安培定律、法拉第定律與麥克斯威方程式。并且順序也一定如此。這可以說與電磁學(xué)的歷史發(fā)展平行。其原因也不難想見;沒有庫倫定律對電荷的觀念,安培定律中的電流就不容易說清楚。不理解法拉第的磁感生電,也很難了解麥克斯威的電磁交感。

  這套電磁理論,在物理學(xué)中,是與牛頓力學(xué)分庭抗禮的古典理論之一。如果以應(yīng)用之廣,經(jīng)濟(jì)價(jià)值之大而言,猶在牛頓力學(xué)之上。但也不能忘記,如果沒有牛頓力學(xué)中力之概念,電磁學(xué)也發(fā)生不了。電磁學(xué)中的各定律,也無法理解。因此,普通物理中,也必然先教力學(xué)再教電磁。

  力學(xué)與電磁學(xué)被稱為古典理論有兩層意思:(1)它可以自圓其說,沒有內(nèi)在的矛盾。(2)但是到了廿世紀(jì)量子理論確立后,它們被修改了。力學(xué)后來被修改為量子力學(xué),電磁學(xué)被修改為量子電動力學(xué)。然而,在原子之外,這兩個(gè)古典理論仍是非常精確,故理工學(xué)生仍然不得不學(xué)它們。

  回顧電磁學(xué)的歷史,是很有趣的。一直到十八世紀(jì)中,電磁似乎只是一種新奇的玩具──科學(xué)與藝術(shù)一樣,起步時(shí)都有游戲性質(zhì)──但到了后來,其產(chǎn)生的結(jié)果,竟然改造了世界。當(dāng)然,并不是所有科學(xué)工作都有這樣大的威力。也有些科學(xué)的成果令人不敢恭維。然而,科學(xué)有這樣的可能,卻是我們不得不重視科學(xué)研究的終極原因。

  參考文獻(xiàn)

  1.倪光炯,李洪芳,近代物理,上?茖W(xué)技術(shù)出版社,(1979),393.

  2. 人民教育出版社物理室編,高級中學(xué)課本,物理(第二冊),人民教育出版社,(19xx年第二版),266.

【大學(xué)物理論文】相關(guān)文章:

大學(xué)物理論文06-13

大學(xué)物理論文(熱門)06-14

大學(xué)物理論文(精)06-16

[熱]大學(xué)物理論文06-27

大學(xué)物理論文【合集】06-28

大學(xué)物理論文精選[15篇]06-14

論大學(xué)物理教學(xué)改革論文12-07

大學(xué)物理論文大全(15篇)06-27

大學(xué)物理論文[大全15篇]06-14

大學(xué)物理論文【優(yōu)秀15篇】06-14