- 相關(guān)推薦
論文《應(yīng)用題數(shù)學(xué)要滲透數(shù)學(xué)思想》
應(yīng)用題教學(xué),歷來(lái)就是小學(xué)數(shù)學(xué)教學(xué)的重點(diǎn)和難點(diǎn),學(xué)生往往在課堂上學(xué)懂的知識(shí),在運(yùn)用時(shí)卻又茫然失措。我認(rèn)為主要是學(xué)生欠缺一些數(shù)學(xué)思想方法的緣故。而數(shù)學(xué)思想它蘊(yùn)含滲透在知識(shí)體系中,是無(wú)形的。教師如何讓學(xué)生學(xué)會(huì)知識(shí)的同時(shí),又學(xué)會(huì)數(shù)學(xué)思想,一直是眾多教師探究的重要課題。本人在這方面也作了一些初步探討,下面就結(jié)合教學(xué)實(shí)際談一些粗淺的認(rèn)識(shí)。
一、滲透數(shù)形結(jié)合的思想
數(shù)學(xué)家華羅庚曾說(shuō):“人們對(duì)數(shù)學(xué)早就產(chǎn)生了干燥無(wú)味、神秘難懂的印象,成因之一便是脫離實(shí)際!睌(shù)形結(jié)合的思維方法,便是理論與實(shí)際的有機(jī)聯(lián)系,是思維的起點(diǎn),是兒童建構(gòu)數(shù)學(xué)模型的基本方法。數(shù)形結(jié)合一般要畫圖,在小學(xué)階段通常采用模象圖、直觀圖、點(diǎn)子圖、線段圖、矩形圖、韋思圖等。行程問(wèn)題,比倍、比差問(wèn)題,分?jǐn)?shù)應(yīng)用題等通常一畫線段圖,就能弄清題意,明白算理,從而列式解答出來(lái)。不少應(yīng)用題通過(guò)畫圖,可以拓寬解題思路,使得一題多解。如:
三年級(jí)同學(xué)去參加農(nóng)業(yè)展覽,把90人平均分成2隊(duì),每隊(duì)平均分成3組,每組有幾人?
學(xué)生就不難有下列3種解法:
1、90÷2÷3
2、90÷3÷2
3、90÷(2×3)
數(shù)形結(jié)合可以化難為易,調(diào)動(dòng)小學(xué)生主動(dòng)積極參與學(xué)習(xí)的熱情,同時(shí)發(fā)揮他們創(chuàng)造思維的潛能。
二、滲透對(duì)應(yīng)思想
對(duì)應(yīng)關(guān)系體現(xiàn)在分?jǐn)?shù)應(yīng)用題中比起整數(shù)、小數(shù)應(yīng)用題更為直接。這源于分?jǐn)?shù)定義里的單位“1”,這類應(yīng)用題中一個(gè)數(shù)量對(duì)應(yīng)著一個(gè)分率。解題的關(guān)鍵也就是抓量率對(duì)應(yīng)。如:
一個(gè)發(fā)電廠有煤2500噸,用去 ,還剩多少噸?
要求剩下的噸數(shù),可先求出它所對(duì)應(yīng)的分率,再求分率對(duì)應(yīng)的數(shù)量,列式為2500×(1- )。
從分析分率與數(shù)量之間的對(duì)應(yīng)關(guān)系出發(fā),來(lái)解答稍復(fù)雜的分?jǐn)?shù)應(yīng)用題,常有其得便之處。
三、滲透等量思想
列方程解應(yīng)用題是等量思想的具體應(yīng)用。教學(xué)中要著力引導(dǎo)學(xué)生解決好分析問(wèn)題中數(shù)量間的等量關(guān)系這一關(guān)鍵性步驟。如:五年級(jí)男女生共40人,其中男生人數(shù)是女生人數(shù)的3倍。五年級(jí)男、女生各有多少人?
解題時(shí)先根據(jù)“男生人數(shù)是女生人數(shù)的3倍”,確定設(shè)女生人數(shù)為X,再根據(jù)“男女生共40人”寫出等量關(guān)系:男生+女生=40。最后輕而易舉就可以列出方程來(lái),即X+3X=40。
當(dāng)然,還有和差問(wèn)題、差倍問(wèn)題,只要抓住題中等量關(guān)系,一般都容易列方程解答出來(lái)。
四、滲透比較思想
比較是把事物的個(gè)別屬性加以分析、綜合,而后確定他們之間的異同,從而得出一定規(guī)律的數(shù)學(xué)思想方法,這種思想在解題時(shí)運(yùn)用十分廣泛。如在學(xué)生學(xué)了加、減應(yīng)用題后,會(huì)對(duì)加減應(yīng)用題進(jìn)行比較和改編練習(xí)。學(xué)了稍復(fù)雜的分?jǐn)?shù)乘除法應(yīng)用題后,對(duì)四道不同類型的應(yīng)用題進(jìn)行了縱橫比較,找出它們之間的異同,從而提高解題的熟練程度。在教學(xué)工程應(yīng)用題時(shí),是把這兩 道應(yīng)用題進(jìn)行對(duì)比。
1、一段公路長(zhǎng)30千米,甲隊(duì)單獨(dú)修10天完成,乙隊(duì)單獨(dú)修15天完成。兩隊(duì)合修幾天可以完成?
2、一段公路,甲隊(duì)單獨(dú)修10天完成,乙隊(duì)單獨(dú)修15天完成,兩隊(duì)合修幾天可以完成?
在學(xué)生分別列式解答后,讓學(xué)生比較兩種解法,使學(xué)生領(lǐng)會(huì)后一種解法是在學(xué)習(xí)了分?jǐn)?shù)之后,把題目蠅的數(shù)量關(guān)系抽象為整體與部分之間的比率關(guān)系,簡(jiǎn)化了問(wèn)題的解法,這樣,很自然的實(shí)現(xiàn)了知識(shí)的遷移。
(
轉(zhuǎn)化思想也是教學(xué)中常用的數(shù)學(xué)思想。我們?cè)诮鈶?yīng)用題時(shí),常把新的問(wèn)題轉(zhuǎn)化為已知的問(wèn)題。通過(guò)轉(zhuǎn)化,可以溝通知識(shí)間的聯(lián)系,使得解法靈活多變。分?jǐn)?shù)應(yīng)用題與份數(shù)、比、按比例分配應(yīng)用題都有著內(nèi)在聯(lián)系,他們之間常常互相轉(zhuǎn)化。如:
1、山坡上種松樹和柏樹共120棵。其中松樹棵數(shù)是柏樹的4倍。松樹和柏樹各有多少棵?
2、把柏樹棵數(shù)看作1份,120棵里總共就有“4+1”份,可列除法算式解:120÷(4+1);
3、又因?yàn)榘貥湔?,可按比例分配解:120× ;
4、還因?yàn)榘貥渑c總棵數(shù)的比為1:(1+4),可以用比例知識(shí)解。
由此看來(lái),滲透轉(zhuǎn)化思想,無(wú)疑是對(duì)學(xué)生進(jìn)行思想點(diǎn)拔。
應(yīng)用題教學(xué)中教師不失時(shí)機(jī)地滲透。讓學(xué)生領(lǐng)悟數(shù)學(xué)思想方法,以“潤(rùn)物細(xì)無(wú)聲”的方式培養(yǎng)學(xué)生的思維品質(zhì),這樣,就可以拓寬學(xué)生的解題思路,不斷提高學(xué)持解答應(yīng)用題的能力。9:43:25
【論文《應(yīng)用題數(shù)學(xué)要滲透數(shù)學(xué)思想》】相關(guān)文章:
數(shù)學(xué)小論文11-08
小學(xué)數(shù)學(xué)教學(xué)論文()07-15
數(shù)學(xué)建模論文模板07-22
初中數(shù)學(xué)論文07-29