- 相關推薦
高等級公路路面裂縫類病害輪廊提取的算法研究
摘要:介紹了高等級公路路面的裂縫類病害的輪廓利用數(shù)字圖像技術進行提取的方法。利用高速的黑白CCD攝像機配合光源,實時攝取公路路面的圖像,并對圖像進行噪聲濾除、邊緣檢測和圖像分割操作,最后可以清晰地提取出路面裂縫的輪廓,為后期計算裂縫開裂長度、寬度和損壞密度等參數(shù)的計算提供依據(jù)。隨著我國高等級公路建設的快速發(fā)展,高等級公路路基路面的質量監(jiān)控體系越來越完善,要求的檢測水平也越來越高。由于車輛在高等級公路上行駛時,對路面的平整度、路面完好率要求很高,當路面出現(xiàn)凹凸、裂紋等病害時,應及時進行維修;否則,交通安全就會受到影響。目前,國內檢測高等級公路路況的手段主要是依靠人工丈量的方法,不但效率低、勞動強度大、檢測速度慢、誤差較大,不能滿足高等級公路檢測的要求,而且在高速公路上進行人工檢測十分危險。CCD攝像機作為一種光電圖像傳感器,已廣泛應用于幾何尺寸測量、光譜測試、位移測量、速度測量、天文觀測等領域[1]。將CCD技術應用于高等級公路路況的檢測,可解決人工丈量所存在的缺陷和不足。
本文提出利用數(shù)字圖像技術對高等級公路路面的裂縫類病害的輪廓進行提取。利用高速的黑白CCD攝像機配合光源,實時攝取公路路面的圖像,并對圖像進行噪聲濾除、邊緣檢測和圖像分割等操作,最后可以清晰地提取出裂縫的輪廓,為后期的測量提到高質量的圖像。
1 圖像采集
系統(tǒng)硬件環(huán)境的結構設計是系統(tǒng)實現(xiàn)的關鍵之一。根據(jù)系統(tǒng)實現(xiàn)目標和可行性的分析,以及實驗條件的限制,搭建了圖1所示的實驗室硬件工作環(huán)境。經(jīng)實踐證實,該系統(tǒng)可以滿足對路面圖像采集的要求。
考慮到整個系統(tǒng)將運行在野外的測試車上,各種設備的交、直流供電情況是必須考慮的一個問題。應選用合適的穩(wěn)壓電源和調光電源向照明系統(tǒng)、CCD和計算機進行供電。CCD相機對被測路面的光線情況要求很高,太強或太弱的光線都不利于病害路面在CCD相機中成像,合適的光源和光學系統(tǒng)才能保證被測路面在CCD中良好地成像。CCD借助光學系統(tǒng)將照射于其上的光信號轉換為電信號,形成視頻信號。圖像采集卡完成對圖像模擬視頻信號的模/數(shù)轉換功能,經(jīng)抽樣與量化的數(shù)字圖像在計算機中進行后期的數(shù)字圖像處理。在實際應用中,CCD攝像機選用MINTRON公司的MTV-1881EX 1/2英寸黑白低照度高解析攝像機,圖像采集卡選用MicroView公司的MVPCI-V2A專業(yè)黑白圖像采集卡。攝像機固定在可移動的測試裝置上,實時地攝取高等級公路路面的圖像并輸出視頻信號給圖像采集卡。圖像采集卡完成模擬視頻信號的數(shù)字化工作。數(shù)字化圖像的空間分辨率設置為512×512,灰度分辨率8位256級。選用精工SE0813-3CCD光學鏡頭,焦距為8mm,F(xiàn)=1.3,銳片規(guī)格為2/3英寸,視場角為42.6°。
2 圖像處理
2.1 圖像預處理
在圖像的采集過程中,由于受到光源和CCD相機抖動(運行中)的影響,圖像中不可避免地存在大量的噪聲,這為后面的邊緣檢測工作帶來了較大地困難。因此,首先需要對采集的數(shù)字圖像進行濾波去噪處理。噪聲濾除一直是數(shù)字圖像處理領域中一個經(jīng)典的課題。對有噪聲的圖像進行邊緣檢測的方法已有很多,如Robert梯子各有所長,但對于裂縫類病害的圖像并不適用。所以,希望能尋求既能很好地保護裂縫的邊緣,又有濾除圖像中噪聲的圖像濾噪算法,對圖像進行預處理。
通常的濾波算法都設計為低通濾波算法,在濾除噪聲的同時也模糊了圖像中的邊緣細節(jié)。應用較多的濾波技術有Lee濾波器、Frost濾波器、Camma CAP濾波器等。這些濾波算法都是基于對圖像局部統(tǒng)計特性自適應的,濾除噪聲的效果較好。但是,由于算法本身的原因,往往造成圖像邊緣細節(jié)信息模糊,降低了圖像的質量。針對這一問題,人們提出許多改進算法,如改進的Lee濾波器、變窗口濾波器等。這些算法雖然在一定程度上解決了邊緣模糊的問題,但也帶來新問題。例如改進的Lee濾波器,由于要進行邊緣檢測,所以選擇的窗口就不能太大;但小窗口對消除斑噪聲不利,又降低了效能[5]。因此,希望能尋求一種具有邊緣保護功能的噪聲濾除算法。
針對以上情況,本文采用加權的領域平均算法對圖像進行噪聲濾除。該算法不僅能夠有效地平滑噪聲,還能夠銳化模糊圖像的邊緣。同時該算法計算比較簡單,不需要任何驗知識和預定的參數(shù),能為后期的邊緣檢測工作提供高質量的數(shù)字圖像。
算法的計算公式描述如下:
用f(x,y)表示原始圖像,g(x,y)為平滑后點(x,y)的灰度值,Vx,y表示以點(x,y)為中心的領域,該鄰域包含N個像素,m(x,y)表示鄰域Vx,y內的灰度均值。則修正的領域平均法由下式給出:
式(1)中,α為修正系數(shù),取值范圍為0到1,它的大小反映Vx,y中的邊緣狀況。α定義如下:
式(2)中,γ
【高等級公路路面裂縫類病害輪廊提取的算法研究】相關文章:
路面裂縫影像幾何特征提取算法03-07
研究公路路基病害的危害及其防治03-18
探析公路瀝青路面裂縫的成因與防治方法03-20
路面病害分析處理03-13