- 相關(guān)推薦
基于HMM的語音識別技術(shù)在嵌入式系統(tǒng)中的應(yīng)用
摘要:介紹語音識別技術(shù)在嵌入式系統(tǒng)中的應(yīng)用狀況與發(fā)展,以及在嵌入式系統(tǒng)中使用HMM語音識別算法的優(yōu)點,并對基于HMM語音識別技術(shù)的系統(tǒng)進行介紹。語音識別ASR(Automatic Speech Recognition)系統(tǒng)的實用化研究是近十年語音識別研究的一個主要方向。近年來,消費類電子產(chǎn)品對低成本、高穩(wěn)健性的語音識別片上系統(tǒng)的需求快速增加,語音識別系統(tǒng)大量地從實驗室的PC平臺轉(zhuǎn)移到嵌入式設(shè)備中。
語音識別技術(shù)目前在嵌入式系統(tǒng)中的應(yīng)用主要為語音命令控制,它使得原本需要手工操作的工作用語音就可以方便地完成。語音命令控制可廣泛用于家電語音遙控、玩具、智能儀器及移動電話等便攜設(shè)備中。使用語音作為人機交互的途徑對于使用者來說是最自然的一種方式,同時設(shè)備的小型化也要求省略鍵盤以節(jié)省體積。
嵌入式設(shè)備通常針對特定應(yīng)用而設(shè)計,只需要對幾十個詞的命令進行識別,屬于小詞匯量語音識別系統(tǒng)。因此在語音識別技術(shù)的要求不在于大詞匯量和連續(xù)語音識別,而在于識別的準確性與穩(wěn)健性。
對于嵌入式系統(tǒng)而言,還有許多其它因素需要考慮。首先是成本,由于成本的限制,一般使用定點DSP,有時甚至只能考慮使用MPU,這意味著算法的復(fù)雜度受到限制;其次,嵌入式系統(tǒng)對體積有嚴格的限制,這就需要一個高度集成的硬件平臺,因此,SoC(System on Chip)開始在語音識別領(lǐng)域嶄露頭角。SoC結(jié)構(gòu)的嵌入式系統(tǒng)大大減少了芯片數(shù)量,能夠提供高集成度和相對低成本的解決方案,同時也使得系統(tǒng)的可靠性大為提高。
語音識別片上系統(tǒng)是系統(tǒng)級的集成芯片。它不只是把功能復(fù)雜的若干個數(shù)字邏輯電路放入同一個芯片,做成一個完整的單片數(shù)字系統(tǒng),而且在芯片中還應(yīng)包括其它類型的電子功能器件,如模擬器件(如ADC/DAC)和存儲器。
筆者使用SoC芯片實現(xiàn)了一個穩(wěn)定、可靠、高性能的嵌入式語音識別系統(tǒng)。包括一套全定點的DHMM和CHMM嵌入式語音識別算法和硬件系統(tǒng)。
1 硬件平臺
本識別系統(tǒng)是在與Infineon公司合作開發(fā)的芯片UniSpeech上實現(xiàn)的。UniSpeech芯片是為語音信號處理開發(fā)的專用芯片,采用0.18μm工藝生產(chǎn)。它將雙核(DSP MCU)、存儲器、模擬處理單元(ADC與DAC)集成在一個芯片中,構(gòu)成了一種語音處理SoC芯片。這種芯片的設(shè)計思想主要是為語音識別和語音壓縮編碼領(lǐng)域提供一個低成本、高可靠性的硬件平臺。
該芯片為語音識別算法提供了相應(yīng)的存儲量和運算能力。包括一個內(nèi)存控制單元MMU(Memory Management Unit)和104KB的片上RAM。其DSP核為16位定點DSP,運算速度可達到約100MIPS.MCU核是8位增強型8051,每兩個時鐘周期為一個指令周期,其時鐘頻率可達到50MHz。
UniSpeech芯片集成了2路8kHz采樣12bit精度的ADC和2路8kHz采樣11bit的DAC,采樣后的數(shù)據(jù)在芯片內(nèi)部均按16bit格式保存和處理。對于語音識別領(lǐng)域,這樣精度的ADC/DAC已經(jīng)可以滿足應(yīng)用。ADC/DAC既可以由MCU核控制,也可以由DSP核控制。
2 嵌入式語音識別系統(tǒng)比較
以下就目前基于整詞模型的語音識別的主要技術(shù)作一比較。
(1)基于DTW(Dynamic Time Warping)和模擬匹配技術(shù)的語音識別系統(tǒng)。目前,許多移動電話可以提供簡單的語音識別功能,幾乎都是甚至DTM和模板匹配技術(shù)。
DTW和模板匹配技術(shù)直接利用提取的語音特征作為模板,能較好地實現(xiàn)孤立詞識別。由于DTW模版匹配的運算量不大,并且限于小詞表,一般的應(yīng)用領(lǐng)域孤立數(shù)碼、簡單命令集、地名或人名集的語音識別。為減少運算量大多數(shù)使用的特征是LPCC(Linear Predictive Cepstrum Coefficient)運算。
DTW和模板匹配技術(shù)的缺點是只對特定人語音識別有較好的識別性能,并且在使用前需要對所有詞條進行訓練。這一應(yīng)用從20世紀90年代就進入成熟期。目前的努力方向是進一步降低成本、提高穩(wěn)健性(采用雙模板)和抗噪性能。
(2)基于隱含馬爾科夫模型HMM(Hidden Markov Model)的識別算法。這是Rabiner等人在20世紀80年代引入語音識別領(lǐng)域的一種語音識別算法。該算法通過對大量語音數(shù)據(jù)進行數(shù)據(jù)統(tǒng)計,建立識別條的統(tǒng)計模型,然后從待識別語音中提取特征,與這些模型匹配,通過比較匹配分數(shù)以獲得識別結(jié)果。通過大量的語音,就能夠獲得一個穩(wěn)健的統(tǒng)計模型,能夠適應(yīng)實際語音中的各種突發(fā)情況。因此,HMM算法具有良好的識別性能和抗噪性能。
基于HMM技術(shù)的識別系統(tǒng)可用于非特定人,不需要用戶事先訓練。它的缺點在于統(tǒng)計模型的建立需要依賴一個較大的語音庫。這在實際工作中占有很大的工作量。且模型所需要的存儲量和匹配計算(包括特征矢量的輸出概率計算)的運算量相對較大,通常需要具有一定容量SRAM的DSP才能完成。
在嵌入式語音識別系統(tǒng)中,由于成本和算法復(fù)雜度的限制,HMM算法特別CHMM(Continuous density HMM)算法尚未得到廣泛的應(yīng)用。
(3)人工神經(jīng)網(wǎng)絡(luò)ANN(Artificial Neural Network)。ANN在語音識別領(lǐng)域的應(yīng)用是在20世紀80年代中后期發(fā)展起來的。其思想是用大量簡單的處理單元并行連接構(gòu)成一種信息處理系統(tǒng)。這種系統(tǒng)可以進行自我更新,且有高度的并行處理及容錯能力,因而在認知任務(wù)中非常吸引人。但是ANN相對于模式匹配而言,在反映語音的動態(tài)特性上存在重大缺陷。單獨使用ANN的系統(tǒng)識別性能不高,所以目前ANN通常在多階段識別中與HMM算法配合使用。
3 基于HMM的語音識別系統(tǒng)
下面詳細介紹
【基于HMM的語音識別技術(shù)在嵌入式系統(tǒng)中的應(yīng)用】相關(guān)文章:
基于LD3320的語音識別系統(tǒng)在家庭電路中的模擬應(yīng)用03-11
基于DSP的Bluetooth嵌入式系統(tǒng)應(yīng)用03-20
UML 在嵌入式系統(tǒng)設(shè)計中的應(yīng)用03-18
藍牙芯片ROK 101 007在語音系統(tǒng)中的應(yīng)用03-27
基于ISD語音芯片的報警系統(tǒng)03-07
液晶顯示在嵌入式系統(tǒng)中的應(yīng)用03-21